

$$
\begin{aligned}
& Q C \\
& 61 \\
& S 66 \\
& 1914
\end{aligned}
$$

Count the gift of Dr. Audreur $\$$. White 4.299353

The date ahows when this volume was taken.
To renew this book copy the call No. and give to the fibrarian.
JUL UU 1915 HOME USE RULES.

Do not deface book by marks and writing.

QC $61.566{ }^{\text {Cornall Univeralty Library }}$

 Cornell University Library

The original of this book is in the Cornell University Library.

There are no known copyright restrictions in the United States on the use of the text.

SMITHSONIAN MISCELLANEOUS COLLECTIONS

 VOLUME 63. NUMBER 6
SMITHSONIAN PHYSICAL TABLES

SIXTH REVISED EDITION
prepared by
FREDERICK E. FOWLE
AID, SMITHSONIAN ASTROPHYSICAL OBSERYATORY

(Publication 2269)
city of washingtion pUBLISHED BY THE SMITHSONLAN INSTITUTION 1914

ADVERTISEMENT.

In connection with the system of meteorological observations established by the Smithsonian Institution about 1850 , a series of meteorological tables was compiled by Dr. Arnold Guyot, at the request of Secretary Henry, and the first edition was published in $\mathbf{1 8 5 2}$. Though primarily designed for meteorological observers reporting to the Smithsonian Institution, the tables were so widely used by physicists that it seemed desirable to recast the work entirely. It was decided to publish three sets of tables, each representative of the latest knowledge in its field, and independent of one another, but forming a homogeneous series. The first of the new series, Meteorological Tables, was published in 1893, the second, Geographical Tables, in 1894, and the third, Physical Tables, in 1896. In 1909 yet another volume was added, so that the series now comprises : Smithsonian Meteorological Tables, Smithsonian Geographical Tables, Smithsonian Physical Tables, and Smithsonian Mathematical Tables.

The fourteen years which had elapsed in 1910 since the publication of the first edition of the Physical Tables, prepared by Professor Thomas Gray, had brought such changes in the material upon which the tables must be based that it became necessary to make a radical revision for the 5 th revised edition issued in 19ro. That revision has been still further continued for the present sixth edition.

Charles D. Walcott, - Secretary of the Smithsonian Institution.

Fune, 1914.

PREFACE TO THE 5TH REVISED EDITION.

The present Smithsonian Physical Tables are the outcome of a radical revision of the set of tables compiled by Professor Thomas Gray in $\mathbf{1 8 9 6}$. Recent data and many new tables have been added for which the references to the sources have been made more complete; and several mathematical tables have been added, - some of them especially computed for this work. The inclusion of these mathematical tables seems warranted by the demand for them. In order to preserve a uniform change of argument and to facilitate comparison, many of the numbers given in some tables have been obtained by interpolation in the data actually given in the papers quoted.
Our gratitude is expressed for many suggestions and for help in the improvement of the present edition : to the U. S. Bureau of Standards for the revision of the electrical, magnetic, and metrological tables and other suggestions; to the U. S. Coast and Geodetic Survey for the revision of the magnetic and geodetic tables ; to the U. S. Geological Survey for various data ; to Mr. Van Orstrand for several of the mathematical tables; to Mr. Wead for the data on the musical scales; to Mr. Sosman for the new physical-chemistry data; to Messrs. Abbot, Becker, Lanza, Rosa, and Wood; to the U. S. Bureau of Forestry and to others. We are also under obligation to the authors and publishers of Landolt-BörnsteinMeyerhoffer's Physikalisch-chemische Tabellen (1905) and B. O. Peirce's Mathematical Tables for the use of certain tables.
It is hardly possible that any series of tables involving so much transcribing, interpolation, and calculation should be entirely free from errors, and the Smithsonian Institution will be grateful, not only for notice of whatever errors may be found, but also for suggestions as to other changes which may seem advisable for later editions.

F. E. Fowle.

Astrophysical Observatory of the Smithsonian Institution, June, 1910

PREFACE TO THE бтн REVISED EDITION.

The revision commenced for the fifth edition has been continued; a large proportion of the tables have been rechecked, typographical errors corrected, later data inserted and many new tables are added, including among others a new set of wire tables from advance sheets courteously given by the Bureau of Standards, new mathematical tables computed by Mr. Van Orstrand and those on Röntgen rays and radioactivity. The number of tables has been increased from 335 to over 400 . We express our gratitude to the Bureau of Standards, to the Geophysical Laboratory, the Geological Survey, and to those who have helped through suggested improvements, new data, or by calling our attention to errors in the earlier editions.

F. E. Fowle.

Astrophysical Orservatory of the Smithsonian Institution, October, 1913.

TABLE OF CONTENTS.

Introduction on units of measurement and conversion factors
pagr
Units of measurement : general discussion xvii
Dimension formulæ for dynamic units xix
" " " heat units xxv
" of electric and magnetic units : general discussion xxvii
" formulæ in electrostatic system xxviii
" " " electromagnetic system xxxi
Practical units of electricity, legalization of xxxv
TABle

1. Formulæ for conversion factors: (a) Fundamental units 2
(b) Derived units 2
I. Geometric and dynamic units 2
II. Heat units 3
III. Magnetic and electric units 3
2. Tables for converting U. S. weights and measures :
(I) Customary to metric 5
(2) Metric to customary 6
3. Equivalents of metric and British imperial weights and measures :
(r) Metric to imperial 7
(2) Multiples, metric to imperial 8
(3) Imperial to metric 9
(4) Multiples, imperial to metric ro
4. Volume of a glass vessel from weight of its volume of water or mercury II
5. Derivatives and integrals 12
6. Series 13
7. Mathematical constants 14
8. Reciprocals, squares, cubes and square roots of natural numbers 15
9. Logarithms, ro00-2000 24
10. Logarithms 26
II. Antilogarithms 28
11. Antilogarithms, .9000-1.0000 30
12. Circular (trigonometric) functions, argument $\left({ }^{\circ},{ }^{\prime}\right)$ 32
13. " " " argument (radians) 37
14. Logarithmic factorials, n !, $\mathrm{n}=\mathrm{I}$ to 100 40
15. Hyperbolic functions 41
16. Factorials, $\mathbf{1 - 2 0}$ 47
17. Exponential functions 48
18. Values of $e^{x^{2}}$ and $e^{-x^{2}}$ and their logarithms 54
19. " " $e^{\frac{\pi}{4} x}$ and $e^{\frac{-\pi}{4} x}$ " " " 55
20. " " $e^{\frac{\sqrt{ } \pi}{4} x}$ and $e^{\frac{-\sqrt{ } \pi}{e^{4}}}$ 55
21. " " e^{x} and e^{-x} and 56
22. Probability of errors of observations : probability integral 56
$24 . \quad$ " 57
23. Values of $0.6745 \sqrt{\frac{I}{n-1}}$ 57
24. " " $0.6745 \sqrt{\frac{\mathrm{I}}{n(n-1)}}$. 5^{8}
25. " " $0.8453 \sqrt{\frac{1}{n(n-1)}}$. 58
26. " " $0.8453 \frac{1}{n \sqrt{n-1}}$ 58
27. Least-squares formulæ 59
28. Inverse of probability integral. Diffusion 60
29. Logarithms of the gamma function $\Gamma(n)$ for values of n between 1 and 2 62
30. Values for the first seven zonal harmonics from $\theta=0^{\circ}$ to $\theta=90^{\circ}$ 64
Value for $\int_{0}^{\frac{\pi}{2}}\left(\mathrm{r}-\sin ^{2} \theta \sin _{.}^{2} \phi\right)^{ \pm 2} \mathrm{~d} \Phi$ for different values of θ; also the cor-responding logarithms66
31. Moments of inertia, radii of gyration, corresponding weights 67
32. Strength of materials : (a) metals 68
(b) stones 68
(c) brick 68
(d) concretes 68
33. " " " timber tests 69
34. 70
35. Moduli of rigidity 71
36. Variation of the moduli of rigidity with the temperature 71
37. Young's modulus 72
38. Compressibility of the more important solid elements 73
39. Hardness 73
40. Relative hardness of the elements 73
41. Poisson's ratio 73
42. Elastic moduli of crystals, formulæ 74
43. " " " " numerical results 75
44. Compressibility of O , air, N, H at different pressures and temperatures 76
45. 49
" ethylen 76 76
46. " carbon dioxide at 77
5 r. " gases, values of a 77
47. Compressibility of air and oxygen between 18° and $22^{\circ} \mathrm{C}$ 77
48. Relation between pressure, temperature and volume of sulphur dioxide 78
49. 78
Compressibility of liquids 55 79
" " solids 56. 80
50. Specific gravities corresponding to the Baumé scale 8 I
51. Reduction of weighings in air to vacuo 82
52. " densities " " " " 82
53. Densities of the solid and liquid elements 83
6 r. " " various woods 85
54. solids 86
55. alloys 87
56. natural and artificial minerals 88
57. " " molten tin and tin-lead eutectic 88
58. Weight in grams per square meter of sheet metal 89
59. " " various common units of sheet metal 89
60. Densities of various liquids 90
61. gases $9 x$
62. aqueous solutions of salts, bases and acids 92
63. Density of water free from air between 0° and $36^{\circ} \mathrm{C}$ 94
64. Volume of water at temperatures between 0° and $36^{\circ} \mathrm{C}$ in terms of its volume at the temperature of maximum density 95
65. Density and volume of water at different temperatures from-10 to $25^{\circ} \mathrm{C}$ 9^{6}
66. 97
Densities aqueous ethyl alcohol. Temp. variation 75. 98
67. " " mixtures methyl alcohol, cane-sugar or sulphuric acid 100
68. Velocity of sound in solidsror
69. 102
Musical scales 79. 103
70. 103
71. Acceleration of gravity at sea level and different latitudes 104
72. Results of some of the more recent gravity determinations - 105
73. Value of gravity at some of the U. S. C. and G. Survey stations 106
74. Length of seconds pendulum for sea level and different latitudes - 107
75. Determinations of the length of the seconds pendulum - 107
76. Miscellaneous geodetic data 108
77. Lengths of degrees on earth's surface ro8
78. Miscellaneous astronomical data - 109
79. Planetary data - 110
go. Equation of time - Iro
9r. Miscellaneous astronomical data - IIO
80. Terrestrial magnetism : secular change of declination - III
93 94.
" " dip or inclination - 113
81. "
secular change of dip - II3
82. secular change of horizontal intensity 114
83. Terrestrial magnetism : total intensity II5
84. " " secular change of total intensity II5
" " agonic line 116
85. Magnetic elements at magnetic observatories 117
86. Pressure of mercury and water columns Ir8
87. Reduction of barometer to standard temperature 119
88. " " " " gravity, inch and metric scales 120
89. " " " " latitude 45° : inch scale - 121
90. - 122
91. Correction of barometer for capillarity: inch and metric scale - 123
92. Volume of mercury meniscus in cu. mm. - 123
ro8. Aerodynamics : data for wind pressures - 124
93. " " " the soaring of planes - 125
94. Coefficients of friction - 126
iII. Lubricants 126
95. " for cutting tools - 126
96. a Viscosity of water at different temperatures 127
b Specific viscosity of water at different temperatures 127
97. Coefficients of viscosity for solutions of alcohol in water 128
98. Specific viscosity of mineral oils 128
ı16. " " " various oils - 128
99. Viscosity of various liquids 129
100. " " " " temperature variation 130
101. Specific viscosity of solutions: variation with density and temperature 131
102. " atomic concentrations 135
103. Viscosity of gases and vapors 136
104. " " air $20^{\circ} .2 \mathrm{C}$ 136
105. " " gases and vapors, temperature variation 137
106. Diffusion of an aqueous solution into pure water 138
107. " " vapors - 139
108. " " gases and vapors 140
" " metals into metals. 140
109.

Solubility of inorganic salts in water: temperature variation 141
129. " " a few organic salts in water: temperature variation - 142
" " gases in water 142
130.
131. " . change produced by uniform pressure 143
I 14
132. Absorption of gases by liquids
r 45
133. Capillarity and surface tension : water and alcohol in air
I45
" " " " miscellaneous liquids in air
145
" " "
" " " aqueous solutions of salts .134.
136. Capillarity and surface tension: liquids in contact with air, water or mercury 146
137. Capillarity and surface tension : liquids at solidifying point r 46
138. 146
139. Vapor pressures147
140. " " of ethyl alcohol 149
141. Vapor pressures of methyl alcohol
142. and temperatures: (a) carbon disulphide. 149
(b) chlorobenzine 150
(c) bromobenzine 150 150
150(d) aniline
150
(e) methyl salicylate 151
(f) bromonaphthaline
(J) bromonaphthaline $15 I$
(g) mercury 151
143. Vapor pressure of solutions of salts in water 152
144. Pressure of saturated aqueous vapor at low temperature over ice - 154
145. " " " " " " " " " water 154
146. " " " " " 0° to $50^{\circ} \mathrm{C}$ - I54
147.
147. 50° to $374^{\circ} \mathrm{C}$ - 155
148. Weight in grains of aqueous vapor in a cubic foot of saturated air 156
149. " " grams" - 156
150. Hygrometry, vapor pressure in the atmosphere I57
151. "، dew-points 158
152. Relative humidity 160
153. Values of $0.378 e$ in the atmospheric pressure equation $h=B-0.378 e$ 161
154. Table for facilitating the calculation of $h / 760$ 162
155. Logarithms of $h / 760$ for values of h between 80 and 800 162
156. Values of $1+0.00367 t$:
(a) for values of t between 0° and $10^{\circ} \mathrm{C}$, by tenths 164
(b) " " "، " $-90^{\circ} "+1990^{\circ} \mathrm{C}$, by tens 165
(c) Logarithms for t " -49° " $+399^{\circ} \mathrm{C}$, by units 166
(d) " " " " 400° " $1990^{\circ} \mathrm{C}$, by tens 168
157. Determination of heights by the barometer 169
158. Barometric pressures corresponding to different temperatures of the boiling-point of water :
(a) Common measure 170
(b) Metric measure 17 1
159. International Primary wave-length standard, Red Cd. line 172
160. " Secondary " standards Fe. arc lines 172
161. Additional standard Fe. lines 172
162. Stronger lines of some of the elements 172
163. Rowland's standard solar wave-lengths (also corrections) - 173
164. Tertiary standard wave-lengths Fe. arc lines 176
165. Wave-lengths of the Fraunhofer lines 177
166. Photometric standards 178
167. Intrinsic brightness of various lights 178
168. Visibility of white lights 178
169. Efficiency of various electric lights 179
ryo. Sensitiveness of the eye to radiation of different wave-lengths: low (threshold) intensities 180
171. Sensitiveness of the eye: greater intensities 180
172. Sensibility of the eye to small differences of intensity (Fechner) 180
173. The solar constant and temperature - 18 r
174. Solar spectrum energy; atmospheric transparency 18r
175. Distribution of solar energy in spectrum 18I
176. Distribution of intensity of radiation over solar disk 181
177. Transmissibility of radiation by dry and moist air 182
178. Brightness of sky 182
179. Relative intensities of sun- and sky-light - 182
180. Air masses 182
181. Relative intensities of solar radiation - monthly change 183
182. Mean monthly and yearly temperatures 183
183. Indices of refraction of Jena glasses - 184
184. " " " 184
185.

" "
" " " temperature coefficients - 184
186. " " " for rock salt 185
187.

" " '
" " " temperature coefficients. 185
188. " sylvine 185
189. " fluorite 185
190.

" " ،
" " temperature coefficients 186 186
191. " Iceland spar 186
192. " nitroso-dimethyl-aniline 186
193. " quartz 187
194.

" "
" various alums 187
195. " " monorefringents 188
196
197.

" " " 189

" " biaxial crystals

" " biaxial crystals 190
198.(a) solutions in water19r
(b) " " alcohol 191
(c) " " potassium permanganate 191
199. " " " " " various liquids 192
" gases and vapors 193
201. Stardard refractive media : $n=1.74$ to r .87 194
202. " " " $n=1.68$ to 210 - 194
203. " " " $n=1.546$ to 1.682 - 194
204. Optical constants of metals - (definitions) 195
205. " 195
206.
207. Reflecting power of metals 196

- 197

208. Reflection of light, perpendicular incidence : various values of n

- 197

209. " " " incidence varying: n near unity
197
210.
211. Reflection from metals 198
198
212. " " various materials

199

199

213.
214. Transmissibility of radiation by Jena glasses Transmissibility of radiation by Jena glasses 19 19
215.
216. " " " " \quad " \quad " \quad ultra-violet glasses " " " " \quad " \quad " \quad ultra-violet glasses 199 199
217.
218. 199 199
219. Transmissibility of radiation by alum, rock salt, sylvine, fluorite, Ice- land spar, quartz
220. Color screens (Landolt) 200 200
221. " " (Wood) 201
222. " " (Jena glasses)
219 a. Transmissibility of radiation by water 202
223. Rotation of the plane of polarized light by solutions
224. 203
225. Colors of thin films, Newton's rings 204
226. Thermal conductivity of metals and alloys 205
227. Thermal conductivity at high temperature 206
228. "، " of various substances 207
229. " " "water and salt solutions 207
230. " " " organic liquids 207
231. "" " "gases 207
232. Diffusivities 208
233. Heat of combustion 209
234. Heat values and analyses of various fuels: (a) coals 210
(b) peats 210
(c) liquid fuels 210
235. Chemical and physical properties of explosives 211
236. Heat of combination 212
237. Latent heat of vaporization 214
238. " " " fusion 216
239. Melting-points of the chemical elements 217
240. Boiling-points 218
241. Densities, melting and boiling points, inorganic compounds 219
242. Effect of pressure on melting points 220
243. " " " " freezing point of water 221
244. Melting points of various mixtures of metals 222
245. " 222
246. Low-melting-point alloys 222
247. Densities, melting-points, boiling-points of organic compounds :
(a) Paraffin series 223
(b) Olefine series 223
(c) Acetylene series 224
(d) Monatomic alcohols 224
(e) Alcoholic ethers 224
(f) Ethyl ethers 224
(g) Miscellaneous 225
248. Transformation and melting-points, minerals and eutectics 226
249. Lowering of freezing-points by salts in solution 227
250. Raising of boiling-points by salts in solution 229
251. Freezing mixtures 23°
252. Critical temperatures, pressure, volumes and densities of gases 231
253. Coefficients of linear expansion of the chemical elements 232
25 r.
Coefficients of linear expansion of miscellaneous substances 233
254. " cubical " crystalline and other solids 234
255. " " " " liquids 235
256. " thermal expansion of gases 236
257. Mechanical equivalent of heat : various data 237
258. " adopted values (Ames) 237
259. " " " " conversion values 237
260. Specific heats of the chemical elements 238
261. " " water and mercury 239
262. Additional specific heats of the elements 240
$26 r$. Mean specific heats of quartz, silica glass and platinum 240
263. Specific heats of various solids 241
264. " " " " liquids 24r
265. " minerals and rocks 242
266. " " " " gases and vapors 243
267. Gas and mercury thermometers: formulæ 244
Comparison of hydrogen and 16^{111} thermometers : 0° to $100^{\circ} \mathrm{C}$. 244
268. " " " " $16{ }^{\text {III }}$ and $59^{\text {III }}$ thermometers: -5° to $-35^{\circ} \mathrm{C}$. 244" " " $59^{\text {III }}$ " 0° to $100^{\circ} \mathrm{C}$.244
270 Comparison of air and $\mathrm{r}^{\prime \prime \prime}$ glass thermometers : 0° to $300^{\circ} \mathrm{C}$. 245
27 I. " " " $59^{\text {iII }}$ " 100° to $200^{\circ} \mathrm{C}$. 245
269. " hydrogen and various mercury thermometers 246
270. " air and high temperature ($59^{\text {inI }}$) mercury thermometer 246
274." "H., toluol, alcohol, petrol ether, pentane thermometers246
271. Platinum resistance thermometry 247
272. Thermodynamic scale; temperature of ice-point 247
277 Standard points for calibration of thermometers 247
273. Stem correction for thermometers 248
274. 249
275. 249
276. Calibration of thermo-element Pt.-Pt. Rh. 250282.
277. Radiation formulæ and constants for perfect radiator 8 25 I250284." in calories for perfect radiators at various temperatures,
886 Cooling by radiation and convection : ordinary pressures 286 252
"، "، different pressures 287. 252288.
Properties and constants of saturated steam: metric measure 254
" " " " very small pressures 253253
278. Ratio of the electrostatic to the electromagnetic unit of electricity 260
279. Electromotive force of standard cells: absolute current measures 261
Data for voltaic cells : (a) double fluid cells 294. 262
(b) single fluid cells 263
(c) standard cells 263
280. Data for voltaic cells : (d) secondary (storage) cells 263
281. Contact differences of potential, solids with liquids and liquids with liquids in air
264
264
282. Contact differences of potential, solids with solids in air 266
283. Potential difference between metals in various salt solutions 267
284. Thermoelectric powers 268
285. 300.
" " with alloys - 269
286. 270302.of Pt. with Pt. Rh. alloys
271Peltier effect 270
303." "Fe-constantan, Cu-constantan .

号
304. " " E. M. F. in volts 271
305. Various determinations of the ohm 271 272
306. Specific resistance of metallic wires 273
307. Specific resistance of metals ${ }^{2} 74$
308. Temperature resistance coefficient 276
309. Conductivities of three-metal and other alloys 277
310. " " alloys 278
3 II. Allowable carrying capacity rubber-covered copper wires - 279
312. Resistance of metals and alloys at low temperatures 280
313. Temperature variation of electrical resistance of glass, porcelain 282
314. Temperature resistance coefficients of glass, porcelain, quartz 282
315. Tabular comparison of wire gages 283
316. Wire tables. Mass and volume resistivities of Cu . and Al. 284
317. " " Temperature coefficients of copper 285
318. 319. 285
" " Standard annealed copper wire, English units 286320.321.322.323.324.
325.326.
327.
328.
329.
330.
33 r .332.
Dielectric strength; steady potential for spark in air . " 294
" " " " " " metric units . . 289
" " Hand-drawn aluminum wire, English units 292alternating potential for spark in air 294
"
" potentials for longer sparks in air 295
"
" effect of (air) pressure. " - 295
" " of various materials 296

- 296
Electric resistance with alternating currents (straight wires) 297
297
Wireless telegraphy ; wave-lengths, frequencies, oscillation constant 298
" " radiation resistance for various wave-length 300
International atomic weights and electrochemical equivalents - 301
Conductivity of a few dilute solutions. 302
Electrochemical equivalents and densities of nearly normal solutions 302

336. Specific molecular conductivity of solutions 303
337. " " " " " limiting values 304 "
338. 66 temperature coefficients 304
339. Equivalent conductivity of salts, acids, bases in solution 305
340. " " " some additional salts in solution 307
34 I. " conductance of the separate ions 308
341. Hydrolisis of ammonium acetate : ionization of water 308
342. Dielectric constants (specific inductive capacity) of gases 309
343. " " " " " " temperature coefficient 309
344. Dielectric constants (specific inductive capacity) of gases : pressure co- efficient 310
345. Dielectric constants of liquids - 310
347 . " " " " temperature coefficient 312
346. 312349 •
" " " standard solutions for calibrations - 313
313
I " " " crystals 35 I. 314
Permeability of iron rings and wire, various inductions 352.Permeability of transformer iron:
(a) specimen of Westinghouse No. 8 transformer 315
(b) " " " " 6 - 316
(c) " " " " 4 316
(d) " "Thomson-Houston 1500 -watt transformer 316

- 317
Magnetic properties of iron and steel
317

355.

" corrections for ring specimens 317
356.

- 318

357. Composition and magnetic properties of iron and steel
320
320
358. Permeability of some of the specimens in Table 303
359. Permeability of some of the specimens in Table 303

- 320

359. Magnetic properties of soft iron at 0° and $100^{\circ} \mathrm{C}$.

- 320
- 320
36 I. " " " " steel at 0° and ro 10 -32I

362. " nickel " " " - 32 I
363. " magnetite - 32 I
364. " Lowmoor wrought iron - 32 I
365. - 32 I" Vicker's tool steel- 32 I
366. Saturation values for different steels 321
367. Magnetic properties of iron in very weak fields 322
368. Dissipation of energy in cyclic magnetization of magnetic substances 322

" " " " " " cable transformers . 370. 322
Demagnetizing factors for rods 371. 323
372. 323
Dissipation of energy in cyclic magnetization of various substances 373. 374. 324 - 325Magneto-optic rotation, formulæ: Verdet's constant
376. " " " in solids
377. " " " " solutions of salts and acids in water - 327
378.326
379. Magneto-optic rotation, gases 330
380. Verdet's and Kundt's constants 330
381. Values of Kerr's constant 331
382. Dispersion of Kerr's effect. Ingersoll's values 33 I
383. Foote's 331
384. Magnetic susceptibility 33^{2}
385. Variation of the resistance of bismuth in magnetic field 333
$386 . \quad$ " " " " nickel 333
387. " " " " " various metals in a magnetic field 333
388. Transverse galvanomagnetic and thermomagnetic effects 334
389. Variation of the Hall constant with the temperature 334
390. Röntgen rays (x -rays) ionization due to 335
391. " " Secondary Röntgen rays 335
392. " " " Cathodic rays 335
393. absorption coefficients 336
394. X-R spectra and atomic numbers 336
395. Radioactivity : production of phosphorescence 337
396. " " " a-particles 337
397. " heating effects 337
398. " various constants 338
399. " stopping powers for a rays 340
400. 340401." " " " γ "
402. ions produced by the a, β, and γ rays $34{ }^{5}$340
403. radium emanation; units 34I
404. vapor pressure of Ra emanation 341
405. " spectra 405 341
406. Miscellaneous constants, molecular, atomic, etc. 342
407. Periodic system of the elements 343
Definitions of units 345
Index. 349

INTRODUCTION.

UNITS OF MEASUREMENT AND CONVERSION FORMULÆ.

Units. - The quantitative measure of anything is a number which expresses the ratio of the magnitude of the thing to the magnitude of some other thing of the same kind. In order that the number expressing the measure may be intelligible, the magnitude of the thing used for comparison must be known. This leads to the conventional choice of certain magnitudes as units of measurement, and any other magnitude is then simply expressed by a number which tells how many magnitudes equal to the unit of the same kind of magnitude it contains. For example, the distance between two places may be stated as a certain number of miles or of yards or of feet. In the first case, the mile is assumed as a known distance; in the second, the yard, and in the third, the foot. What is sought for in the statement is to convey an idea of the distance by describing it in terms of distances which are either familiar or easily referred to for comparison. Similarly quantities of matter are referred to as so many tons or pounds or grains and so forth, and intervals of time as a number of hours or minutes or seconds. Generally in ordinary affairs such statements appeal to experience; but, whether this be so or not, the statement must involve some magnitude as a fundamental quantity, and this must be of such a character that, if it is not known, it can be readily referred to. We become familiar with the length of a mile by walking over distances expressed in miles, with the length of a yard or a foot by examining a yard or a foot measure and comparing it with something easily referred to, - say our own height, the length of our foot or step, - and similarly for quantities of other kinds. This leads us to be able to form a mental picture of such magnitudes when the numbers expressing them are stated, and hence to follow intelligently descriptions of the results of scientific work. The possession of copies of the units enables us by proper comparisons to find the magnitude-numbers expressing physical quantities for ourselves. The numbers descriptive of any quantity must depend on the intrinsic magnitude of the unit in terms of which it is described. Thus a mile is 1760 yards, or 5280 feet, and hence when a mile is taken as the unit the magnitude-number for the distance is 1 , when a yard is taken as the unit the magnitude-number is 1760 , and when a foot is taken it is 5280 . Thus, to obtain the magnitude-number for a quantity in terms of a new unit when it is already known in terms of another we have to multiply the old magnitudenumber by the ratio of the intrinsic values of the old and new units; that is, by the number of the new units required to make one of the old.

Fundamental Units of Length and Mass. - It is desirable that as few different kinds of unit quantities as possible should be introduced into our measurements, and since it has been found possible and convenient to express a large number of physical quantities in terms of length or mass or time units and combinations of these, they have been very generally adopted as fundamental units. Two systems of such units are used in this country for scientific measurements, namely, the customary, and the French or metric, systems. Tables of conversion factors are given in the book for facilitating comparisons between quantities expressed in terms of one system with similar quantities expressed in the other. In the customary system the standard unit of length is the yard and is now defined as $3600 / 3937$ meter. The unit of mass is the avoirdupois pound and is defined as $1 / 2.20462$ kilogram.

The British yard is defined as the "straight line or distance (at 62° F.) between the transverse lines in the two gold plugs in the bronze bar deposited in the office of the exchequer." The British standard of mass is the pound avoirdupois and is the mass of a piece of platinum marked "P.S. r844, I lb.," preserved in the exchequer office.

In the metric system the standard of length is the meter and is defined as the distance between two lines at 0° Centrigrade on a platinum iridium bar deposited at the International Bureau of Weights and Measures. This bar is known as the International Prototype Meter, and its length was derived from the "mètre des Archives," which was made by Borda. Copies of the International Prototype Meter are possessed by the various governments, and are called "National Prototypes."

Borda, Delambre, Laplace, and others, acting as a committee of the French Academy, recommended that the standard unit of length should be the ten millionth part of the length, from the equator to the pole, of the meridian passing through Paris. In 1795 the French Republic passed a decree making this the legal standard of length, and an arc of the meridian extending from Dunkirk to Barcelona was measured by Delambre and Mechain for the purpose of realizing the standard. From the results of that measurement the meter bar was made by Borda. The meter is not now defined in terms of the meridian length, and hence subsequent measurements of the length of the meridian have not affected the length of the meter.

The metric standard of mass is the kilogram and is defined as the mass of a piece of platinum-iridium deposited at the International Bureau of Weights and Measures. This standard is known as the International Prototype Kilogram. Its mass is equal to that of the older standard, the "kilogramme des Archives," made by Borda and intended to have the same mass as a cubic decimeter of distilled water at the temperature of $4^{\circ} \mathrm{C}$. Copies of the International Prototype Kilogram are possessed by the various governments, and as in the case of the meter standards are called National Prototypes.

Comparisons of the French and customary standards are given in tabular form in Table 2; and similarly Table 3, differing slightly, compares the British and French systems. In the metric system the decimal subdivision is used, and thus we have the decimeter, the centimeter, and the millimeter as subdivisions, and the dekameter, hektometer, and kilometer as multiples. The centimeter is most commonly used in scientific work.

Time. - The unit of time in both the systems here referred to is the mean solar second, or the 86,400 th part of the mean solar day. The unit of time is thus founded on the average time required for the earth to make one revolution on its axis relatively to the sun as a fixed point of reference.

Derived Units. - Units of quantities depending on powers greater than unity of the fundamental length, mass, and time units, or on combinations of different powers of these units, are called "derived units." Thus, the unit of area and of volume are respectively the area of a square whose side is the unit of length and the volume of a cube whose edge is the unit of length. Suppose that the area of a surface is expressed in terns of the foot as fundamental unit, and we wish to find the area-number when the yard is taken as fundamental unit. The yard is 3 times as long as the foot, and therefore the area of a square whose side is a yard is 3×3 times as great as that whose side is a foot. Thus, the surface will only make one ninth as many units of area when the yard is the unit of length as it will make when the foot is that unit. To transform, then, from the foot as old unit to the yard as new unit, we have to multiply the old area-number by I / g, or by the ratio of the magnitude of the old to that of the new unit of area. This is the same rule as that given above, but it is usually more convenient to express the transformations in terms of the fundamental units directly. In the above case, since on the method of measurement here adopted an area-number is the product of a length-number by a length-number the ratio of two units is the square of the ratio of the intrinsic values of the two units of length. Hence, if l be the ratio of the magnitude of the old to that of the new unit of length, the ratio of the corresponding units of area is l^{2}. Similarly the ratio of two units of volume will be l^{3}, and so on for other quantities.

Dimensional Formulæ. - It is convenient to adopt symbols for the ratios of length units, mass units, and time units, and adhere to their use throughout; and in what follows, the small letters, l, m, t, will be used for these ratios. These letters will always represent simple numbers, but the magnitude of the number will depend on the relative magnitudes of the units the ratios of which they represent. When the values of the numbers represented by l, m, t are known, and the powers of l, m, and t involved in any particular unit are also known, the factor for transformation is at once obtained. Thus, in the above example, the value of l was $\mathrm{r} / 3$ and the power of l involved in the expression for area is l^{2}; hence, the factor for transforming from square feet to square yards is $1 / 9$. These factors
have been called by Prof. James Thomson "change ratios," which seems an appropriate term. The term "conversion factor" is perhaps more generally known, and has been used throughout this book.

Conversion Factor. - In order to determine the symbolic expression for the conversion factor for any physical quantity, it is sufficient to determine the degree to which the quantities length, mass, and time are involved in the quantity. Thus, a velocity is expressed by the ratio of the number representing a length to that representing an interval of time, or L / T, an acceleration by a velocity-number divided by an interval of time-number, or $\mathrm{L} / \mathrm{T}^{2}$, and so on, and the corresponding ratios of units must therefore enter to precisely the same degree. The factors would thus be for the above cases, l / t and l / t^{2}. Equations of the form above given for velocity and acceleration which show the dimensions of the quantity in terms of the fundamental units are called "dimensional equations." Thus

$$
\mathbf{E}=\mathrm{ML}^{2} \mathrm{~T}^{-2}
$$

is the dimensional equation for energy, and $\mathrm{ML}^{2} \mathrm{~T}^{-2}$ is the dimensional formula for energy.

In general, if we have an equation for a physical quantity

$$
\mathrm{Q}=\mathrm{CL}^{a} \mathbf{M}^{b} \mathrm{~T}^{c}
$$

where C is a constant and LMT represents length, mass, and time in terms of one set of units, and we wish to transform to another set of units in terms of which the length, mass, and time are $L_{i} M_{i} T_{i}$, we have to find the value of $\frac{L_{i}}{L}, \frac{M_{i}}{M}, \frac{T_{i}}{T}$, which in accordance with the convention adopted above will be $l m t$, or the ratios of the magnitudes of the old to those of the new units.

Thus $\mathrm{L}_{i}=\mathrm{L} l, \mathrm{M}_{i}=\mathrm{M} m, \mathrm{~T}_{i}=\mathrm{T} t$, and if Q_{l} be the new quantity-number

$$
\begin{aligned}
\mathrm{Q}_{1} & =\mathrm{CL}_{1}{ }^{a} \mathrm{M}_{1}{ }^{b} \mathrm{~T}_{i}{ }^{c} \\
& =\mathrm{CL}^{a} l^{a} \mathrm{M}^{b} m^{b} \mathrm{~T}^{c} t^{c}=\mathrm{Q}^{a} m^{b} \epsilon^{c},
\end{aligned}
$$

or the conversion factor is $l^{\mu} m^{b} t^{c}$, a quantity of precisely the same form as the dimension formula $\mathrm{L}^{a} \mathrm{M}^{b} \mathrm{~T}^{c}$.

We now proceed to form the dimensional and conversion factor formulæ for the more commonly occurring derived units.
r. Area. - The unit of area is the square the side of which is measured by the unit of length. The area of a surface is therefore expressed as

$$
\mathrm{S}=\mathrm{CL}^{2}
$$

where C is a constant depending on the shape of the boundary of the surface and L a linear dimension. For example, if the surface be square and L be the length of a side C is unity. If the boundary be a circle and L be a diameter $\mathrm{C}=\pi / 4$, and so on. The dimensional formula is thus L^{2}, and the conversion factor l^{2}.
2. Volume. - The unit of volume is the volume of a cube the edge of which is measured by the unit of length. The volume of a body is therefore expressed as

$$
\mathrm{V}=\mathrm{CL}^{8}
$$

where as before C is a constant depending on the shape of the boundary. The dimensional formula is L^{8} and the conversion factor \boldsymbol{l}^{8}.
3. Density. - The density of a substance is the quantity of matter in the unit of volume. The dimension formula is therefore M / V or ML^{-8}, and conversion factor ml^{-8}.

Example. - The density of a body is 150 in pounds per cubic foot: required the density in grains per cubic inch.

Here m is the number of grains in a pound $=7000$, and l is the number of inches in a foot $=12 ; \therefore \mathrm{ml}^{-8}=7000 / \mathbf{1 2}^{8}=4.05 \mathrm{I}$. Hence the density is $\mathrm{I} 50 \times$ $4.051=607.6$ in grains per cubic inch.

Note. - The specific gravity of a body is the ratio of its density to the density of a standard substance. The dimension formula and conversion factor are therefore both unity.
4. Velocity. - The velocity of a body at any instant is given by the equation $v=\frac{d \mathrm{~L}}{d \mathrm{~T}}$, or velocity is the ratio of a length-number to a time-number. The dimension formula is LT^{-1}, and the conversion factor $2 t^{-1}$.

Example. - A train has a velocity of 60 miles an hour: what is its velocity in feet per second ?

Here $l=5280$ and $t=3600 ; \therefore l t^{-1}=\frac{5280}{3600}=\frac{44}{30}=1.467$. Hence the velocity $=60 \times 1.467=88.0$ in feet per second.
5. Angle. - An angle is measured by the ratio of the length of an arc to the length of the radius of the arc. The dimension formula and the conversion factor are therefore both unity.
6. Angular Velocity. - Angular velocity is the ratio of the magnitude of the angle described in an interval of time to the length of the interval. The dimension formula is therefore T^{-1}, and the conversion factor is t^{-1}.
7. Linear Acceleration. - Acceleration is the rate of change of velocity or $a=\frac{d v}{d t}$. The dimension formula is therefore VT^{-1} or LT^{-2}, and the conversion factor is ${t t^{-2}}^{2}$.

Example. - A body acquires velocity at a uniform rate, and at the end of one minute is moving at the rate of 20 kilometers per hour: what is the acceleration in centimeters per second per second?

Since the velocity gained was 20 kilometers per hour in one minute, the acceleration was 1200 kilometers per hour per hour.

Here $l=100000$ and $t=3600 ; \therefore l t^{-2}=100000 / 3600^{2}=.0077 \mathrm{I}$, and therefore acceleration $=.0077 \mathrm{I} \times 1200=9.26$ centimeters per second.
8. Angular Acceleration. - Angular acceleration is rate of change of angu-
lar velocity. The dimensional formula is thus $\frac{\text { angular velocity }}{T}$ or T^{-2}, and the conversion factor t^{-2}.
9. Solid Angle. - A solid angle is measured by the ratio of the surface of the portion of a sphere enclosed by the conical surface forming the angle to the square of radius of the spherical surface, the centre of the sphere being at the vertex of the cone. The dimensional formula is therefore $\frac{\text { area }}{L^{2}}$ or I , and hence the conversion factor is also 1 .
10. Curvature. - Curvature is measured by the rate of change of direction of the curve with reterence to distance measured along the curve as independent variable. The dimension formula is therefore $\frac{\text { angle }}{\text { length }}$ or L^{-1}, and the conversion factor is l^{-1}.
ri. Tortuosity. - Tortuosity is measured by the rate of rotation of the tangent plane round the tangent to the curve of reference when length along the curve is independent variable. The dimension formula is therefore $\frac{\text { angle }}{\text { length }}$ or L^{-1}, and the conversion factor is l^{-1}.
12. Specific Curvature of a Surface. - This was defined by Gauss to be, at any point of the surface, the ratio of the solid angle enclosed by a surface formed by moving a normal to the surface round the periphery of a small area containing the point, to the magnitude of the area. The dimensional formula is therefore $\frac{\text { solid angle }}{\text { surtace }}$ or L^{-2}, and the conversion factor is thus l^{-2}.
13. Momentum. - This is quantity of motion in the Newtonian sense, and is, at any instant, measured by the product of the mass-number and the velocitynumber for the body.

Thus the dimension formula is MV or MLT ${ }^{-1}$, and the conversion factor mll^{-1}.
Example. - A mass of 10 pounds is moving with a velocity of 30 feet per second: what is its momentum when the centimeter, the gram, and the second are fundamental units?

Here $m=453.59, l=30.48$, and $t=1 ; \therefore m l t^{-1}=453.59 \times 30.48=\mathrm{r}_{3} 825$. The momentum is thus $13825 \times 10 \times 30=4147500$.
14. Moment of Momentum. - The moment of momentum of a body with reference to a point is the product of its momentum-number and the number expressing the distance of its line of motion from the point. The dimensional formula is thus $\mathrm{ML}^{2} \mathrm{~T}^{-1}$, and hence the conversion factor is $m l^{2} t^{-1}$.
15. Moment of Inertia. - The moment of inertia of a body round any axis is expressed by the formula $\Sigma m r^{2}$, where m is the mass of any particle of the body
and r its distance from the axis. The dimension formula for the sum is clearly the same as for each element, and hence is ML^{2}. The conversion factor is therefore $m l^{2}$.
16. Angular Momentum. - The angular momentum of a body round any axis is the product of the numbers expressing the moment of inertia and the angular velocity of the body. The dimensional formula and the conversion factor are therefore the same as for moment of momentum given above.
17. Force. - A force is measured by the rate of change of momentum it is capable of producing. The dimension formulæ for force and "time rate of change of momentum" are therefore the same, and are expressed by the ratio of momentum-number to time-number or MLT^{-2}. The conversion factor is thus $m i t^{-2}$.

Note. - When mass is expressed in pounds, length in feet, and time in seconds, the unit force is called the poundal. When grams, centimeters, and seconds are the corresponding units the unit of force is called the dyne.

Example. Find the number of dynes in 25 poundals.
Here $m=453.59, l=30.48$, and $t=\mathbf{1} ; \therefore m l t^{-2}=453.59 \times 30.48=13825$ nearly. The number of dynes is thus $13825 \times 25=345625$ approximately.
18. Moment of a Couple, Torque, or Twisting Motive. - These are different names for a quantity which can be expressed as the product of two numbers representing a force and a length. The dimension formula is therefore FL or $\mathrm{ML}^{2} \mathrm{~T}^{-2}$, and the conversion factor is $m l^{2} t^{-2}$.
19. Intensity of a Stress. - The intensity of a stress is the ratio of the number expressing the total stress to the number expressing the area over which the stress is distributed. The dimensional formula is thus FL^{-2} or $\mathrm{ML}^{-1} \mathrm{~T}^{-2}$, and the conversion factor is $m t^{-1} t^{-2}$.
20. Intensity of Attraction, or "Force at a Point." - This is the force of attraction per unit mass on a body placed at the point, and the dimensional formula is therefore FM^{-1} or LT^{-2}, the same as acceleration. The conversion factors for acceleration therefore apply.
21. Absolute Force of a Centre of Attraction, or "Strength of a Centre." - This is the intensity of force at unit distance from the centre, and is therefore the force per unit mass at any point multiplied by the square of the distance from the centre. The dimensional formula thus becomes $\mathrm{FL}^{2} \mathrm{M}^{-1}$ or $\mathrm{L}^{8} \mathrm{~T}^{-2}$. The conversion factor is therefore $l^{3} t^{-2}$.
22. Modulus of Elasticity. - A modulus of elasticity is the ratio of stress intensity to percentage strain. The dimension of percentage strain is a length divided by a length, and is therefore unity. Hence, the dimensional formula of a modulus of elasticity is the same as that of stress intensity, or $\mathrm{ML}^{-1} \mathrm{~T}^{-2}$, and the conversion factor is thus also $\mathrm{ml}^{-1} t^{-2}$.
23. Work and Energy. - When the point of application of a force, acting on a body, moves in the direction of the force, work is done by the force, and the amount is measured by the product of the force and displacement numbers. The dimensional formula is therefore FL or $\mathrm{ML}^{2} \mathrm{~T}^{-2}$.

The work done by the force either produces a change in the velocity of the body or a change of shape or configuration of the body, or both. In the first case it produces a change of kinetic energy, in the second a change of potential energy. The dimension formulæ of energy and work, representing quantities of the same kind, are identical, and the conversion factor for both is $m l^{2} t^{-2}$.
24. Resilience. - This is the work done per unit volume of a body in distorting it to the elastic limit or in producing rupture. The dimension formula is therefore $\mathrm{ML}^{2} \mathrm{~T}^{-2} \mathrm{~L}^{-8}$ or $\mathrm{ML}^{-1} \mathrm{~T}^{-2}$, and the conversion factor $m l^{-1} t^{-2}$.
25. Power, or Activity. - Power - or, as it is now very commonly called, activity - is defined as the time rate of doing work, or if W represent work and P power $\mathrm{P}=\frac{d w}{d t} . \quad$ The dimensional formula is therefore WT^{-1} or $\mathrm{ML}^{2} \mathrm{~T}^{-8}$, and the conversion factor $m l^{2 t^{-8}}$, or for problems in gravitation units more conveniently flt^{-1}, where f stands for the force factor.

Examples. (a) Find the number of gram centimeters in one foot pound.
Here the units of force are the attraction of the earth on the pound ${ }^{*}$ and the gram of matter, and the conversion factor is f, where f is 453.59 and l is 30.48 .

Hence the number is $453.59 \times 30.48=13825$.
(b) Find the number of foot poundals in 1000000 centimeter dynes.

Here $m=1 / 453.59, l=1 / 30.48$, and $t=1 ; \therefore m l^{2} t^{-2}=1 / 453.59 \times 30.48^{2}$, and $10^{0} m l^{2} t^{-2}=10^{0} / 453.59 \times 30.48^{2}=2.373$.
(c) If gravity produces an acceleration of $\mathbf{3 2 . 2}$ feet per second per second, bow many watts are required to make one horse-power?

One horse-power is 55° foot pounds per second, or $550 \times 32.2=17710$ foot poundals per second. One watt is 10^{7} ergs per second, that is, 10^{7} dyne centimeters per second. The conversion factor is $m l^{2} t^{3}$, where $m=453.59, l=30.48$, and $t=1$, and the result has to be divided by 10^{7}, the number of dyne centimeters per second in the watt.

Hence, $17710 \mathrm{ml}^{2} t^{8} / \mathrm{o}^{7}=17710 \times 453.59 \times 30.48^{2} / \mathrm{LO}^{7}=746.3$.
(d) How many gram centimeters per second correspond to 33000 foot pounds per minute ?
The conversion factor suitable for this case is $f t^{-1}$, where f is $453.59, l$ is 30.48 , and t is 60 .
Hence, $33000 ~ l t^{-1}=33000 \times 453.59 \times 30.48 / 60=7604000$ nearly.

[^0]
HEAT UNITS.

I. If heat be measured in dynamical units its dimensions are the same as those of energy, namely $\mathrm{ML}^{2} \mathrm{~T}^{-2}$. The most common measurements, however, are made in thermal units, that is, in terms of the amount of heat required to raise the temperature of unit mass of water one degree of temperature at some stated temperature. This method of measurement involves the unit of mass and some unit of temperature ; and hence, if we denote temperature-numbers by © ${ }^{\oplus}$ and their conversion factors by θ, the dimensional formula and conversion factor for quantity of heat will be $\mathrm{M} \Theta$ and $m \theta$ respectively. The relative amount of heat compared with water as standard substance required to raise unit mass of different substances one degree in temperature is called their specific heat, and is a simple number.

Unit volume is sometimes used instead of unit mass in the measurement of heat, the units being then called thermometric units. The dimensional formula is in that case changed by the substitution of volume for mass, and becomes $L^{8} \oplus($ and hence the conversion factor is to be calculated from the formula $l^{8} \theta$.

For other physical quantities involving heat we have:-
2. Coefficient of Expansion. - The coefficient of expansion of a substance is equal to the ratio of the change of length per unit length (linear), or change of volume per unit volume (voluminal) to the change of temperature. These ratios are simple numbers, and the change of temperature is inversely as the magnitude of the unit of temperature. Hence the dimensional and conversion-factor formulæ are Θ^{-1} and θ^{-1}.
3. Conductivity, or Specific Conductance. - This is the quantity of heat transmitted per unit of time per unit of surface per unit of temperature gradient. The equation for conductivity is therefore, with H as quantity of heat,

$$
\mathrm{K}=\frac{\mathrm{H}}{\frac{\varrho_{\mathrm{L}}}{\mathrm{~L}^{2} \mathrm{~T}}}
$$

and the dimensional formula $\frac{\mathrm{H}}{\Theta \mathrm{MT}}=\frac{\mathrm{M}}{\mathrm{LT}}$, which gives $m l^{-1} t^{-1}$ for conversion factor.
In thermometric units the formula becomes $\mathrm{L}^{2} \mathrm{~T}^{-1}$, which properly represents diffusivity. In dynamical units H becomes $\mathrm{ML}^{2} \mathrm{~T}^{-2}$, and the formula changes to $\mathrm{MLT}^{-8} \Theta^{-1}$. The conversion factors obtained from these are $l^{2} t^{-1}$ and $m l t^{-8} \theta^{-1}$ respectively.
4. Thermal Capacity. - This is the product of the number for mass and the specific heat, and hence the dimensional formula and conversion factor are simply M and m.
5. Latent Heat. - Latent heat is the ratio of the number representing the quantity of heat required to change the state of a body to the number representing the quantity of matter in the body. The dimensional formula is therefore $\mathrm{M} \Theta / \mathrm{M}$ or Θ, and hence the conversion factor is simply the ratio of the temperature units or θ. In dynamical units the factor is $l^{2} t^{-2}$.*
6. Joule's Equivalent. - Joule's dynamical equivalent is connected with quantity of heat by the equation

$$
\mathrm{ML}^{2} \mathrm{~T}^{-2}=\mathrm{JH} \text { or } \mathrm{JM} \Theta .
$$

This gives for the dimensional formula of J the expression $L^{2} \mathrm{~T}^{-2} \Theta^{-1}$. The conversion factor is thus represented by $l^{2} t^{-2} \theta^{-1}$. When heat is measured in dynamical units J is a simple number.
7. Entropy. - The entropy of a body is directly proportional to the quantity of heat it contains and inversely proportional to its temperature. The dimensional formula is thus $\mathrm{M} \Theta / \Theta$ or M , and the conversion factor is m. When heat is measured in dynamical units the factor is $m t^{2} t^{-2} \theta^{-1}$.

Examples. (a) Find the relation between the British thermal unit, the calorie, and the therm.

Neglecting the variation of the specific heat of water with temperature, or defining all the units for the same temperature of the standard substance, we have the following definitions. The British thermal unit is the quantity of heat required to raise the temperature of one pound of water $I^{\circ} \mathrm{F}$. The calorie is the quantity of heat required to raise the temperature of one kilogramme of water $\mathbf{r}^{\circ} \mathbf{C}$. The therm is the quantity of heat required to raise the temperature of one gramme of water I° C. Hence:-
(1) To find the number of calories in one British thermal unit, we have $m=.45359$ and $\theta=\frac{5}{8} ; \therefore m \theta=.45359 \times 5 / 9=.25199$.
(2) To find the number of therms in one calorie, $m=1000$ and $\theta=\mathrm{r}$; $\therefore m \theta=1000$.

It follows at once that the number of therms in one British thermal unit is $1000 \times .25199=251.99$.
(b) What is the relation between the foot grain second Fahrenheit-degree and the centimetre gramme second Centigrade-degree units of conductivity?

The number of the latter units in one of the former is given by the for-

[^1]mula $m l^{-1} t^{-1} \theta^{\circ}$, where $m=.064799, l=30.48$, and $t=1$, and is therefore $=$ $.064799 / 30.48=2.126 \times 10^{-3}$.
(c) Find the relation between the units stated in (b) for emissivity.

In this case the conversion formula is $m l^{-2} t^{-1}$, where $m l$ and t have the same value as before. Hence the number of the latter units in the former is $0.064799 / 30.48^{2}=6.975 \times 10^{-0}$ 。
(d) Find the number of centimeter gram second units in the inch grain hour unit of emissivity.

Here the formula is $m t^{-2} t^{-1}$, where $m=0.064799, l=2.54$, and $t=3600$. Therefore the required number is $0.064799 / 2.54^{2} \times 3600=2.790 \times 10^{-6}$.
(e) If Joule's equivalent be 776 foot pounds per pound of water per degree Fahrenheit, what will be its value in gravitatiou units when the metre, the kilogramme, and the degree Centigrade are units?

The conversion factor in this case is $\frac{l^{2} t^{-2} 0^{-1}}{l t^{-4}}$ or $l 0^{-1}$, where $l=.3048$ and $\theta^{-1}=\mathrm{r} .8 ; \therefore 776 \times .3048 \times 1.8=425.7$.
(f) If Joule's equivalent be 24832 foot poundals when the degree Fahrenheit is unit of temperature, what will be its value when kilogram meter second and degree-Centigrade units are used ?

The conversion factor is $l^{2} t^{-2} \theta^{-1}$, where $l=.3048, t=\dot{\mathrm{r}}$, and $\theta^{-1}=1.8$; $\therefore 24832 \times l^{2} t^{-1} \theta^{-1}=24832 \times .3048^{2} \times 1.8=4152.5$.

In gravitation units this would give $4{ }^{152.5} / 9.8 \mathrm{I}=423.3$.

ELECTRIC AND MAGNETIC UNITS.

There are two systems of these units, the electrostatic and the electromagnetic systems, which differ from each other because of the different fundamental suppositions on which they are based. In the electrostatic system the repulsive force between two quantities of static electricity is made the basis. This connects force, quantity of electricity, and length by the equation $f=a \frac{q q_{l}}{l^{2}}$, where f is force, a a quantity depending on the units employed and on the nature of the medium, q and q_{l} quantities of electricity, and l the distance between q and q_{l}. The magnitude of the force f for any particular values of q, q, and l depends on a property of the medium across which the force takes place called its inductive capacity. The inductive capacity of air has generally been assumed as unity, and the inductive capacity of other media expressed as a number representing the ratio of the inductive capacity of the medium to that of air. These numbers are known as the specific inductive capacities of the media. According to the ordinary assumption, then, of air as the standard medium, we obtain unit quantity of electricity when in the above equation $q=q_{l}$, and f, a, and l are each unity. A formal definition is given below.

In the electromagnetic system the repulsion between two magnetic poles or
quantities of magnetism is taken as the basis. In this system the quantities force, quantity of magnetism, and length are connected by aul equation of the form

$$
f=a \frac{m m_{l}}{l^{2}}
$$

where m and m_{d} are in this case quantities of magnetism, and the other symbols have the same meaning as before. In this case it has been usual to assume the magnetic inductive capacity of air to be unity, and to express the magnetic inductive capacity of other media as a simple number representing the ratio of the inductive capacity of the medium to that of air. These numbers, by analogy with specific inductive capacity for electricity, might be called specific inductive capacities for magnetism. They are usually called permeabilities. (Vide Thomson, "Papers on Electrostatics and Magnetism," p. 484.) In this case, also, like that for electricity, the unit quantity of magnetism is obtained by making $m=m_{i}$, and f, a, and l each unity.

In both these cases the intrinsic inductive capacity of the standard medium is suppressed, and hence also that of all other media. Whether this be done or not, direct experiment has to be resorted to for the determination of the absolute values of the units and the relations of the units in the one system to those in the other. The character of this relation can be directly inferred from the dimensional formulæ of the different quantities, but these can give no information as to the relative absolute values of the units in the two systems. Prof. Rücker has suggested (Phil. Mag. vol. 27) the advisability of at least indicating the existence of the suppressed properties by putting symbols for them in the dimensional formulæ. This has the advantage of showing how the magnitudes of the different units would be affected by a change in the standard medium, or by making the standard medium different for the two systems. In accordance with this idea, the symbols K and P have been introduced into the formulæ given below to represent inductive capacity in the electrostatic and the electromagnetic systems respectively. In the conversion formulæ k and p are the ordinary specific inductive capacities and permeabilities of the media when air is taken as the standard, or generally those with reference to the first medium taken as standard. The ordinary formulæ may be obtained by putting K and P equal to unity.

ELECTROSTATIC UNITS.

r. Quantity of Electricity. - The unit quantity of electricity is defined as that quantity which if concentrated at a point and placed at unit distance from an equal and similarly concentrated quantity repels it, or is repelled by it, with unit force. The medium or dielectric is usually taken as air, and the other units in accordance with the centimeter gram second system.
In this case we have the force of repulsion proportional directly to the square of the quantity of electricity and inversely to the square of the distance between the quantities and to the inductive capacity. The dimensional formula is therefore the same as that for [force \times length $^{2} \times$ inductive capacity] ${ }^{\frac{1}{2}}$ or $M^{\frac{1}{2}} L^{\frac{1}{2}} \mathrm{~T}^{-1} \mathrm{~K}^{\frac{1}{4}}$ and the conversion factor is $m^{81} t^{-1} k^{4}$.
2. Electric Surface Density and Electric Displacement. - The density of an electric distribution at any point on a surface is measured by the quantity per unit of area, and the electric displacement at any point in a dielectric is measured by the quantity displaced per unit of area. These quantities have therefore the same dimensional formula, namely, the ratio of the formulæ for quantity of electricity and for area or $\mathrm{M}^{\frac{1}{2}} \mathrm{~L}^{-\frac{b}{2}} \mathrm{~T}^{-1} \mathrm{~K}^{\frac{1}{2}}$, and the conversion factor $m^{\frac{1}{2}} l^{-\frac{b}{2}} t^{-1} k^{\frac{1}{2}}$.
3. Electric Force at a Point, or Intensity of Electric Field. - This is measured by the ratio of the magnitude of the force on a quantity of electricity at a point to the magnitude of the quantity of electricity. The dimensional formula is therefore the ratio of the formulæ for force and electric quantity, or
which gives the conversion factor $m^{\frac{1}{2}} l^{-\frac{1}{2}} t^{-1} k^{-\frac{1}{2}}$.
4. Electric Potential and Electromotive Force. - Change of potential is proportional to the work done per unit of electricity in producing the change. The dimensional formula is therefore the ratio of the formulæ for work and electric quantity, or

$$
\frac{\mathrm{ML}^{2} \mathrm{~T}^{-2}}{\mathrm{M}^{\frac{1}{4}} \mathrm{~L}^{\frac{1}{2}} \mathrm{~K}^{\frac{1}{2}}}=\mathrm{M}^{1} \mathrm{~L}^{\frac{1}{2}} \mathrm{~T}^{-1} \mathrm{~K}^{-\frac{1}{2}}
$$

which gives the conversion factor $m^{\frac{1}{2}} t^{2} t^{-1} k^{-\frac{1}{2}}$.
5. Capacity of a Conductor. - The capacity of an insulated conductor is proportional to the ratio of the numbers representing the quantity of electricity in a charge and the potential of the charge. The dimensional formula is thus the ratio of the two formulæ for electric quantity and potential, or

$$
\frac{\mathrm{M}^{3} \mathrm{~L}^{3} \mathrm{~T}^{-1} \mathrm{~K}^{3}}{\mathrm{M}^{b} \mathrm{~L}^{\frac{1}{2}} \mathrm{~T}^{-1} \mathrm{~K}^{-1}}=\mathrm{LK}
$$

which gives $l k$ for conversion factor. When K is taken as unity, as in the ordinary units, the capacity of an insulated conductor is simply a length.
6. Specific Inductive Capacity. - This is the ratio of the inductive capacity of the substance to that of a standard substance, and hence the dimensional formula is K / K or r .*
7. Electric Current. - Current is quantity flowing past a point per unit of time. The dimensional formula is thus the ratio of the formulæ for electric quantity and for time, or

$$
\frac{\mathrm{M}^{\frac{1}{2}} \mathrm{LT}^{-1} \mathrm{~K}^{\frac{1}{2}}}{\mathrm{~T}}=\mathrm{M}^{\frac{1}{4} \mathrm{~L}^{-2} \mathrm{~K}^{\frac{1}{2}}, ~ ; ~}
$$

and the conversion factor $m^{3} l^{1} t^{-2} k^{4}$.

[^2]8. Conductivity, or Specific* Conductance. - This, like the corresponding term for heat, is quantity per unit area per unit potential gradient per unit of time. The dimensional formula is therefore
$$
\frac{\mathrm{M}^{\frac{1}{2}} \mathrm{~L}^{2} \mathrm{~T}^{-1} \mathrm{~K}^{\frac{1}{2}}}{\mathrm{~L}^{2} \frac{\mathrm{M}^{1} \mathrm{~L}^{1} \mathrm{~T}^{-1} \mathrm{~K}^{-1} \mathrm{~T}}{\mathrm{~L}}}=\mathrm{T}^{-1} \mathrm{~K} \text {, or } \frac{\text { electric quantity }}{\text { area } \times \text { potential gradient } \times \text { time }} .
$$

The conversion factor is $t^{-1} k$.
9. Specific* Resistance. - This is the reciprocal of conductivity as above defined, and hence the dimensional formula and conversion factor are respectively TK^{-1} and $t k^{-1}$.
10. Conductance. - The conductance of any part of an electric circuit, not containing a source of electromotive force, is the ratio of the numbers representing the current flowing through it and the difference of potential between its ends. The dimensional formula is thus the ratio of the formulæ for current and potential, or

$$
\frac{\mathrm{M}^{\frac{1}{b} \mathrm{~L}^{-2} \mathrm{~K}^{\frac{1}{2}}}}{\mathrm{M}^{4} \mathrm{~L}^{6} \mathrm{~T}^{-1} \mathrm{~K}^{-1}}=\mathrm{LT}^{-1} \mathrm{~K},
$$

from which we get the conversion factor $l t^{-1} k$.
ir. Resistance.-This is the reciprocal of conductance, and therefore the dimensional formula and the conversion factor are respectively $\mathrm{L}^{-1} \mathrm{TK}^{-1}$ and $l^{-1} t k^{-1}$.

EXAMPLES OF CONVERSION IN ELECTROSTATIC UNITS.

(a) Find the factor for converting quantity of electricity expressed in foot grain second units to the same expressed in c. g. s. units.

By (r) the formula is $m^{1} l^{1} t^{-1} k^{3}$, in which in this case $m=0.0648, l=30.48, t=$ 1 , and $k=1 ; \therefore$ the factor is $0.0648^{\frac{1}{2}} \times 30.48^{8}=4.2836$.
(b) Find the factor required to convert electric potential from millimeter milligram second units to c. g. s. units.
 $k=1 ; \therefore$ the factor $=0.001^{3} \times 0 . \mathrm{r}^{\frac{1}{2}}=0.0 \mathrm{r}$.
(c) Find the factor required to convert from foot grain second and specific inductive capacity 6 units to c. g. s. units.

By (5) the formula is $l k$, and in this case $l=30.48$ and $k=6 ; \therefore$ the factor $=30.48 \times 6=182.88$.

[^3]
ELECTROMAGNETIC UNITS.

As stated above, these units bear the same relation to unit quantity of magnetism that the electric units do to quantity of electricity. Thus, when inductive capacity is suppressed, the dimensional formula for magnetic quantity on this system is the same as that for electric quantity on the electrostatic system. All quantities in this system which only differ from corresponding quantities defined above by the substitution of magnetic for electric quantity may have their dimensional formulæ derived from those of the corresponding quantity by substituting P for K.
I. Magnetic Pole, or Quantity of Magnetism. - Two unit quantities of magnetism concentrated at points unit distance apart repel each other with unit force. The dimensional formula is thus the same as for [force \times length $^{2} \times$ in-

2. Density of Surface Distribution of Magnetism. - This is measured by quantity of magnetism per unit area, and the dimension formula is therefore the ratio of the expressions for magnetic quantity and for area, or $\mathrm{M}^{\frac{1}{2}} \mathrm{~L}^{-\frac{1}{2}} \mathrm{~T}^{-1} \mathrm{P}^{\frac{1}{2}}$,

3. Magnetic Force at a Point, or Intensity of Magnetic Field. - The number for this is the ratio of the numbers representing the magnitudes of the force on a magnetic pole placed at the point and the magnitude of the magnetic pole.

The dimensional formula is therefore the ratio of the expressions for force and magnetic quantity, or

$$
\frac{\mathrm{MLT}^{-2}}{\mathrm{M}^{8} \mathrm{~L}^{\mathrm{T}} \mathrm{~T}^{-1} \mathrm{P}^{\mathrm{B}}}=\mathrm{M}^{1} \mathrm{~L}^{-1} \mathrm{~T}^{-1} \mathrm{P}^{-1},
$$

and the conversion factor $m^{3} l^{-\frac{1}{2}} t^{-1} p^{-\frac{1}{2}}$.
4. Magnetic Potential. - The magnetic potential at a point is measured by the work which is required to bring unit quantity of positive magnetism from zero potential to the point. The dimensional formula is thus the ratio of the formula for work and magnetic quantity, or

$$
\frac{\mathrm{ML}^{2} \mathrm{~T}^{-2}}{\mathrm{M}^{1} \mathrm{~L}^{1 \mathrm{~T}^{-1} \mathrm{P}^{1}}}=\mathrm{M}^{3} \mathrm{~L}^{3} \mathrm{~T}^{-1} \mathrm{P}-\frac{1}{},
$$

which gives the conversion factor $m^{4} l^{1} t^{-1} p^{-1}$.
5. Magnetic Moment. - This is the product of the numbers for pole strength and length of a magnet. The cimensional formula is therefore the product of the formulæ for magnetic quantity and length, or $\mathrm{M}^{\prime} \mathrm{L}^{4} \mathrm{~T}^{-1} \mathrm{P}^{3}$, and the conversion factor $m^{3} 2^{t} t^{-1} p^{3}$.
6. Intensity of Magnetization. - The intensity of magnetization of any portion of a magnetized body is the ratio of the numbers representing the magni-
tude of the magnetic moment of that portion and its volume. The dimensional formula is therefore the ratio of the formula for magnetic moment and volume, or

The conversion factor is therefore $m^{8} l^{-1} t^{-1} p^{b}$.
7. Magnetic Permeability,* or Specific Magnetic Inductive Capacity. - This is the analogue in magnetism to specific inductive capacity in electricity. It is the ratio of the magnetic induction in the substance to the magnetic induction in the field which produces the magnetization, and therefore its dimensional formula and conversion factor are unity.
8. Magnetic Susceptibility. -This is the ratio of the numbers which represent the values of the intensity of magnetization produced and the intensity of the magnetic field producing it. The dimensional formula is therefore the ratio of the formulæ for intensity of magnetization and magnetic field or

$$
\frac{\mathrm{M}^{\frac{1}{3}} \mathrm{~L}^{-1} \mathrm{~T}^{-1} \mathrm{P}^{\frac{1}{2}}}{\mathrm{M}^{8} \mathrm{~L}^{-b} \mathrm{~T}^{-1} \mathrm{P}^{-\frac{1}{3}}} \text { or } \mathrm{P} .
$$

The conversion factor is therefore p, and both the dimensional formula and conversion factor are unity in the ordinary system.
9. Current Strength. - A current of strength c flowing round a circle of radius r produces a magnetic field at the centre of intensity $2 \pi c / r$. The dimensional formula is therefore the product of the formulæ for magnetic field intensity

1o. Current Density, or Strength of Current at a Point. - This is the ratio of the numbers for current strength and area. The dimensional formula and the conversion factor are therefore $\mathrm{M}^{\frac{1}{4}} \mathrm{~L}^{-\frac{4}{4}} \mathrm{~T}^{-1} \mathrm{P}^{-\frac{1}{3}}$ and $m^{\frac{1}{2}} l^{-\frac{1}{-1}} t^{-1}$.
II. Quantity of Electricity. - This is the product of the numbers for current and time. The dimensional formula is therefore $M^{\frac{1}{1}} \mathrm{~L}^{1 \mathrm{~T}^{-1} \mathrm{P}^{-1}} \times \mathrm{T}=\mathrm{M}^{4} \mathrm{~L}^{4} \mathrm{P}^{-1}$, and the conversion factor $m^{2}{ }^{2} p^{-\frac{1}{2}}$.
12. Electric Potential, or Electromotive Force. - As in the electrostatic system, this is the ratio of the numbers for work and quantity of electricity. The dimensional formula is therefore

$$
\frac{\mathrm{ML}^{\frac{9}{9} \mathrm{~T}^{-2}}}{\mathrm{M}^{4} \mathrm{~L}^{\frac{1}{-7}}}=\mathrm{M}^{\frac{3}{4}} \mathrm{LT}^{-2} \mathrm{P}^{\frac{4}{4}},
$$

and the conversion factor $m^{8} y^{2} t^{-2} p^{\frac{1}{2}}$.

[^4]13. Electrostatic Capacity. - This is the ratio of the numbers for quantity of electricity and difference of potential. The dimensional formula is therefore
$$
\frac{M^{\frac{1}{2} \mathrm{~L}^{\frac{b}{-1}}}}{\mathrm{M}^{4} \mathrm{~L}^{\prime} \mathrm{T}^{-2} \mathrm{P}^{4}}=\mathrm{L}^{-1} \mathrm{~T}^{2} \mathrm{P}^{-1}
$$
and the conversion factor $t^{-1} t^{2} p^{-1}$.
14. Resistance of a Conductor. - The resistance of a conductor or electrode is the ratio of the numbers for difference of potential between its ends and the constant current it is capable of producing. The dimensional formula is therefore the ratio of those for potential and current or
$$
\frac{\mathrm{M}^{1} \mathrm{~L}^{1} \mathrm{~T}^{-2} \mathrm{P}^{1}}{\mathrm{M}^{1} \mathrm{~L}^{5} \mathrm{~T}^{-1} \mathrm{P}^{-1}}=\mathrm{LT}^{-1} \mathrm{P} .
$$

The conversion factor thus becomes $l t^{-1} p$, and in the ordinary system resistance has the same conversion factor as velocity.
15. Conductance. - This is the reciprocal of resistance, and hence the dimensional formula and conversion factor are respectively $\mathrm{L}^{-1} \mathrm{TP}^{-1}$ and $l^{-1} t p^{-1}$.
16. Conductivity, or Specific Conductance. - This is quantity of electricity transmitted per unit of area per unit of potential gradient per unit of time. The dimensional formula is therefore derived from those of the quantities mentioned as follows:-

The conversion factor is therefore $l^{-2} t p^{-1}$.
17. Specific Resistance. - This is the reciprocal of conductivity as defined in 16, and hence the dimensional formula and conversion factor are respectively $\mathrm{L}^{2} \mathrm{~T}^{-1} \mathrm{P}$ and $l^{2} t^{-1} p$.
18. Coefficient of Self-Induction, or Inductance, or Electro-kinetic Inertia. - These are for any circuit the electromotive force produced in it by unit rate of variation of the current through it. The dimensional formula is therefore the product of the formula for electromotive force and time divided by that for current or

The conversion factor is therefore $l p$, and in the ordinary system is the same as that for length.
19. Coefficient of Mutual Induction. - The mutual induction of two circuits is the electromotive force produced in one per unit rate of variation of the current in the other. The dimensional formula and the conversion factor are therefore the same as those for self-induction.
20. Electro-kinetic Momentum. - The number for this is the product of the numbers for current and for electro-kinetic inertia. The dimensional formula is therefore the product of the formulæ for these quantities, or $\mathrm{M}^{\frac{1}{2}} \mathrm{~L}^{\frac{1}{2}} \mathrm{~T}^{-1} \mathrm{P}^{-1} \times \mathrm{LP}$

21. Electromotive Force at a Point. - The number for this quantity is the ratio of the numbers for electric potential or electromotive force as given in 12 , and for length. The dimensional formula is therefore $\mathrm{M}^{\frac{1}{2}} \mathrm{~L}^{-2} \mathrm{P}^{\frac{1}{2}}$, and the conversion factor $m^{\frac{1}{2}} b^{-2} p^{2}$.
22. Vector Potential. - This is time integral of electromotive force at a point, or the electro-kinetic momentum at a point. The dimensional formula may therefore be derived from 2r by multiplying by T, or from 20 by dividing

23. Thermoelectric Height. - This is measured by the ratio of the numbers for electromotive force and for temperature. The dimensional formula is therefore the ratio of the formulæ for these two quantities, or $\mathrm{M}^{\frac{1}{4}} \mathrm{~L}^{\frac{1}{-2}} \mathrm{P}^{\frac{1}{(} \mathbb{O}^{-1}}$, and the conversion factor $m^{3} l^{4} t^{-2} p^{\frac{2}{2}} \theta^{-1}$.
24. Specific Heat of Electricity. - This quantity is measured in the same way as 23 , and hence has the same formulæ.
25. Coefficient of Peltier Effect. - This is measured by the ratio of the numbers for quantity of heat and for quantity of electricity. The dimensional formula is therefore

$$
\frac{\mathrm{M} \Theta}{\mathrm{M}^{\frac{1}{2} \mathrm{~L}^{\frac{1}{2}}}=\mathrm{M}^{\frac{1}{b}} \mathrm{~L}^{-\frac{1}{2}} \mathrm{P}^{ \pm} \Theta, ~}
$$

and the conversion factor $m^{\frac{1}{2}} l^{-\frac{1}{2}} p^{2}$.

EXAMPLES OF CONVERSION 1N ELECTROMAGNETIC UNITS.
(a) Find the factor required to convert intensity of magnetic field from foot grain minute units to c. g. s. units.

By (3) the formula is $m^{\frac{7}{2}} l^{-\frac{1}{2}} t^{-1} p^{-\frac{1}{2}}$, and in this case $m=0.0648, l=30.48, t=$ 60 , and $p=\mathrm{r} ; \therefore$ the factors $=0.0648^{\frac{1}{2}} \times 30.4^{-\frac{1}{2}} \times 60^{-1}=0.00076847$.

Similarly to convert from foot grain second units to c. g. s. units the factor is $0.0648^{\frac{3}{3}} \times 30.48^{-\frac{1}{2}}=0.046108$.
(b) How many c. g. s. units of magnetic moment make one foot grain second unit of the same quantity?

By (5) the formula is $m^{\frac{1}{2}} l^{4-1} p^{\frac{2}{2}}$, and the values for this problem are $m=0.0648$, $l=30.48, t=1$, and $p=1 ; \therefore$ the number $=0.0648^{\frac{3}{3}} \times 30.48^{\frac{1}{2}}=\mathrm{r} 305.6$.
(c) If the intensity of magnetization of a steel bar be 700 in c. g. s. units, what will it be in millimeter milligram second units?

By (6) the formula is $m^{\frac{1}{2}} l^{2} t^{-1} p^{\frac{1}{2}}$, and in this case $m=1000, l=10, t=1$, and $p=x ; \therefore$ the intensity $=700 \times 1000^{\frac{1}{2}} \times 10^{\frac{1}{2}}=70000$.
(d) Find the factor required to convert current strength from c. g. s. units to earth quadrant $10^{-1 I}$ gram and second units.

By (9) the formula is $m^{d} l^{l} t^{-1} p^{-d}$, and the values of these quantities are here $m=$ $\mathrm{ro}^{\mathrm{II}}, l=10^{-9}, t=\mathrm{I}$, and $p=\mathrm{r} ; \therefore$ the factor $=10^{\frac{12}{3}} \times 10^{-\frac{9}{2}}=10$.
(e) Find the factor required to convert resistance expressed in c.g. s. units into the same expressed in earth-quadrant 10^{-11} gram and second units.

By (14) the formula is $l t^{-1} p$, and for this case $l=10^{-9}, t=1$, and $p=1$; \therefore the factor $=10^{-8}$.
(f) Find the factor required to convert electromotive force from earth-quadrant 10^{-11} gram and second units to c. g. s. units.

By (12) the formula is $m^{1} l^{1} t^{-2} p^{\text {b }}$, and for this case $m=10^{-11}, l=10^{9}, t=1$, and $p=1 ; \therefore$ the factor $=10^{8}$.

PRACTICAL UNITS.

In practical electrical measurements the units adopted are either multiples or submultiples of the units founded on the centimeter, the gram, and the second as fundamental units, and air is taken as the standard medium, for which K and P are assumed unity. The following, quoted from the report to the Honorable the Secretary of State, under date of November 6th, 1893 , by the delegates representing the United States, gives the ordinary units with their names and values as defined by the International Congress at Chicago in 1893 :-
"Resolved, That the several governments represented by the delegates of this International Congress of Electricians be, and they are hereby, recommended to formally adopt as legal units of electrical measure the following: As a unit of resistance, the international ohm, which is based upon the ohm equal to 10^{9} units of resistance of the C. G. S. system of electro-magnetic units, and is represented by the resistance offered to an unvarying electric current by a column of mercury at the temperature of melting ice $\mathbf{1 4 . 4 5 2}$ I grams in mass, of a constant crosssectional area and of the length of 106.3 centimeters.
"As a unit of current, the international ampere, which is one tenth of the unit of current of the C. G. S. system of electro-magnetic units, and which is represented sufficiently well for practical use by the unvarying current which, when passed through a solution of nitrate of silver in water, and in accordance with accompanying specifications,* deposits silver at the rate of 0.001118 of a gram per second.

[^5]"As a unit of electromotive force, the international volt, which is the electromotive force that, steadily applied to a conductor whose resistance is one international ohm, will produce a current of one international ampère, and which is represented sufficiently well for practical use by $10 \frac{0}{3} \frac{0}{4}$ of the electromotive force between the poles or electrodes of the voltaic cell known as Clark's cell, at a temperature of $15^{\circ} \mathrm{C}$., and prepared in the manner described in the accompanying specification.*
"As a unit of quantity, the international coulomb, which is the quantity of electricity transferred by a current of one international ampère in one second.
"As a unit of capacity, the international farad, which is the capacity of a condenser charged to a potential of one international volt by one international coulomb of electricity. \dagger
"As a unit of work, the joule, which is equal to 10^{7} units of work in the c. g. s. system, and which is represented sufficiently well for practical use by the energy expended in one second by an international ampere in an international ohm.
"As a unit of power, the watt, which is equal to 10^{7} units of power in the c.g.s. system, and which is represented sufficiently well for practical use by the work done at the rate of one joule per second.
"As the unit of induction, the henry, which is the induction in a circuit when the electromotive force induced in this circuit is one international volt, while the inducing current varies at the rate of one ampère per second.
" The Chamber also voted that it was not wise to adopt or recommend a standard of light at the present time."

By an Act of Congress approved July 12th, 1894, the units recommended by the Chicago Congress were adopted in this country with only some unimportant verbal changes in the definitions.

By an Order in Council of date August 23d, 1894, the British Board of Trade adopted the ohm, the ampere, and the volt, substantially as recommended by the Chicago Congress. The other units were not legalized in Great Britain. They are, however, in general use in that country and all over the world.

[^6]
PHYSICAL TABLES

To change a quantity from one system of units to another : substitute in the corresponding conversion factor from the following table the ratio of the magnitudes of the old units to the new and multiply the old quantity by the resulting number. For example : to reduce velocity in miles per hour to feet per second, the conversion factor is $l t^{-1} ; l=5280 / \mathrm{I}$, $t=3600 / \mathrm{I}$, therefore the factor $=5280 / 3600=1.467$.
(a) Fundamental Units.

Name of Unit.	Symbol.	Conversion Factor.
Length.		
Mass.	L	l
Time.	M	m
Temperature.	T	t
Electric Inductive Capacity.	Q	θ
Magnetic Inductive Capacity.	K	k
	P	p

(b) Derived Units.
I. Geometric and Dynamic Units.

Name of Unit.	Conversion Factor.
Area.	l^{2}
Volume.	l^{3}
Angle.	I
Solid Angle.	1
Curvature.	l^{-1}
Tortuosity.	l^{-1}
Specific curvature of a surface.	l^{-2}
Angular velocity.	t^{-1}
Angular acceleration.	t^{-2}
Linear velocity.	$l t^{-1}$
Linear acceleration.	$l t^{-2}$
Density.	$m l^{-8}$
Moment of inertia.	$m l^{2}$
Intensity of attraction, or "force at a point."	$l t^{-2}$
$\left.\begin{array}{l}\text { Absolute force of a centre of attraction, or "strength } \\ \text { of a centre." }\end{array}\right\}$	$l^{8} t^{-2}$
Momentum.	$m l t^{-1}$
Moment of momentum, or angular momentum.	$m l^{2} t^{-1}$
Force.	$m l t^{-2}$
Moment of a couple, or torque.	$m l^{2} t^{-2}$
Intensity of stress.	$m l^{-1} t^{-2}$
Modulus of elasticity.	$m l^{-1} t^{-2}$
Work and energy.	$m l^{2} t^{-2}$
Resilience.	$m l^{-1} t^{-2}$
Power or activity.	$m l^{2} t^{-8}$

II. Heat Units.

Name of Unit.
Conversion Factor.

Quantity of heat (thermal units).
"، " (thermometric units).
" (dynamical units)
Coefficient of thermal expansion.
Conductivity (thermal units).
" (thermometric units), or diffusivity.
" (dynamical units).

$$
\begin{aligned}
& m \theta \\
& l^{3} \theta \\
& m l^{2} t^{-2} \\
& \theta^{-1} \\
& m l^{-1} t^{-1} \\
& l^{2} t^{-1} \\
& m l^{-8} \theta^{-1} \\
& m \\
& \theta \\
& l^{2} t^{-2} \\
& l^{2} t^{-2} \theta \\
& m \\
& m l^{2} t^{-2} \theta
\end{aligned}
$$

Thermal capacity.
Latent heat (thermal units).
" " (dynamical units).
Joule's equivalent.
Entropy (heat measured in thermal units).
" (" " "dynamical units).
III. Magnetic and Electric Units.

Name of Unit.	Conversion factor for electrostatic system.	Conversion factor for electromagnetic system.
Magnetic pole, or quantity of mag- $\}$ netism. Density of surface distribution of $\}$ magnetism. Intensity of magnetic field. Magnetic potential. Magnetic moment. Intensity of magnetisation. Magnetic permeability. $\left.\begin{array}{l}\text { Magnetic susceptibility and mag- } \\ \text { netic inductive capacity. }\end{array}\right\}$ netic inductive capacity. Quantity of electricity. $\left.\begin{array}{c}\text { Electric surface density and electric } \\ \text { displacement. }\end{array}\right\}$ displacement. Intensity of electric field. Electric potential and e. m. f. Capacity of a condenser. Inductive capacity. Specific inductive capacity. Electric current.	$m^{\frac{1}{2}} l^{\frac{1}{3}} k^{-3}$ $m^{\frac{1}{2}} \boldsymbol{1}^{-\frac{1}{2}} k^{-\frac{1}{3}}$ $m^{\frac{1}{4}} l^{\frac{1}{2}} k^{4}$ $m^{\frac{1}{2}} l^{\frac{1}{3}} t^{-2} k^{\ddagger}$ $m^{\frac{1}{1}} l^{\sharp} k^{-\frac{1}{3}}$ $m^{\frac{1}{4}} l^{-\frac{1}{2}} k^{-\frac{3}{3}}$ 1 $L^{-2} t^{2} k^{-1}$ $m^{\frac{1}{4}} l^{9} t^{-1} k^{\frac{1}{1}}$ $m^{4} t^{-1} t^{-1} k^{4}$ $m^{\frac{1}{4}} l^{-1} t^{-1} k^{-\frac{1}{3}}$ $m^{\frac{1}{2}} t^{-1} k^{-l}$ lk k I $m^{\frac{1}{y}} t^{\frac{1}{2}} t^{-2} k^{\frac{1}{2}}$	

1II. Magnetic and Electric Units.

Name of Unit.	Conversion factor for electrostatic system.	Conversion factor for electromag. netic system.
Conductivity.	$t^{-1} k$	$l^{-2} t p^{-1}$
Specific resistance.	$t k^{-1}$	$l^{2} t^{-1} p$
Conductance.	$l t^{-1} k$	$l^{-1} t p^{-1}$
Resistance.	$l^{-1} t k^{-1}$	$l t^{-1} p$
Coefficient of self induction and \} coefficient of mutual induction.	$L^{-1} t^{2} k^{-1}$	$l p$
Electrokinetic momentum.	$m^{4} l^{\frac{1}{2}} k^{-\frac{1}{3}}$	$m^{\frac{1}{2}} l^{1} t^{-1} p^{4}$
Electromotive force at a point.	$m^{4} H^{-1} t^{-1} k^{-1}$	$m^{\frac{2}{2}} t^{-2} p^{4}$
Vector potential.	$m^{4} l^{-1} k^{-\frac{1}{2}}$	$m^{\frac{1}{4}} l^{\frac{1}{4}} t^{-1} p^{\frac{1}{3}}$
$\left.\begin{array}{l}\text { Thermoelectric height and specific } \\ \text { heat of electricity. }\end{array}\right\}$	$m^{1} l^{1} t^{-1} k^{-3} \theta^{-1}$	$m^{\frac{1}{2}} l^{\frac{1}{4} t^{-2} p^{\frac{1}{2}} \theta^{-1}}$
Coefficient of Peltier effect.	$m^{4} l^{-1} t k^{-1} \theta$	$m^{\frac{1}{4}} p^{\text {d }} \theta$

Smithsonian Tableg.

Table 2.
TABLES FOR CONVERTING U. S. WEIGHTS AND MEASURES.*
(1) CUSTOMARY TO METRIC.

LINEAR.					CAPACITY.				
	$\begin{gathered} \text { Inches } \\ \text { to } \\ \text { millimeters. } \end{gathered}$	Feet to meters.	Yards to meters.	$\begin{gathered} \text { Milea } \\ \text { to } \\ \text { kilometers. } \end{gathered}$		Fluid drams to milliliters or cubic centimetera.	$\begin{gathered} \text { Fluid } \\ \text { ounces } \\ \text { to } \\ \text { millilitera. } \end{gathered}$	$\begin{aligned} & \text { Liquid } \\ & \text { quarts to } \\ & \text { liters. } \end{aligned}$	Gallons to liters.
1	25.4001	0.304801	0.914402	1.60935	I	3.70	29.57	0.94633	3.78533
2	50.8001	0.609601	1.828804	3.21869	2	7.39	59.55	I. 89267	7.57066
3	76.2002	0.914402	2.743205	4.82804	3	11.09	88.72	2.83900	I1.35600
4	101.6002	1.219202	3.657607	6.43739	4	14.79	118.29	3.78533	15.14133
5	127.0003	I. 524003	4.572009	8.04674	5	18.48	147.87	4.73167	18.92666
6	152.4003	1.828804	5.486411	9.65608	6	22.18	177.44	5.67800	22.71199
7	177.8004	2.133604	6.400813	11.26543	7	25.88	207.01	6.62433	26.49733
8	203.2004	2.438405	7.315215	12.87478	8	29.57	236.58	7.57066	30.28266
9	228.6005	2.743205	8.229616	14.48412	9	33.27	266.16	8.51700	34.06799
SQUARE.					WEIGHT.				
	Square iuches to square centimeters.	Square feet to square decimetera.	Square yards to square meters.	Acres to hectares.		Grains to milligrams.	Avoirdupois ounces to grams.	Avoirdupois pounds to kilograms.	$\begin{gathered} \text { Troy } \\ \text { ounces to } \end{gathered}$ grams.
1	6.452	9.290	0.836	0.4047	I	64.7989	28.3495	0.45359	3 T .10348
2	12.903	18.581	1.672	0.8094	2	129.5978	56.6981	0.90718	
3	19.355	27.871	2.508	1.2141	3	194.3968	85.0486	1.36078	93.31044
4	25.807	37.161	3.345	1.6187	4	259.1957	113.3981	1.81437	124.41392
5	32.258	46.452	4.181	2.0234	5	323.9946	141.7476	2.26796	I 55.51740
6	38.710	55.742	5.817	2.428 I	6	388.7935	170.0972	2.72155	186.62088
7	45.161	65.032	5.853	2.8328	7	453.5924	198.4467	3.17515	217.72437
8	5 I .613	74.323	6.689	3.2375	8	518.3913	226.7962	3.62874	248.82785
9	58.065	83.613	7.525	3.6422	9	583.1903	255.1457	4.08233	279.93133
CUBIC.					I Gunter's chain $=20.1168$ meters. isq. statute mile $=259.000$ hectares. 1 fathom $=1.829$ meters. 1 nautical mile $=1853.25$ meters. 1 foot $=0.304801$ meter. 1 avoir. pound $=453.5924277$ grams. ${ }^{1} 5432.35639$ grains $=1.000$ kilogram.				
	Cubic inches to cubic centimeters.	Cubic feet to cubic meters.	$\underset{\text { yards to }}{\text { Cubic }}$ cubic meters.	Bushels to hectoliters.					
1	16.387	0.02832	0.765	0.35239					
2	32.774	0.05663	1.529	0.70479					
3	49.161	0.08495	2.294	1.05718					
4	65.549	0.11327 0.14159	3.058	I. 40957 I. 76196					
5	81.936	0.14159	3.823	1.76196					
6	98.323	0.16990	$4 \cdot 587$	2.11436					
7	114.710	0. 19822	$5 \cdot 352$	2.46675					
8	131.097	0.22654	6.116	2.81914					
9	147.484	0.25485	6.88I	3.17154					

According to an executive order dated April 55 , 1893, the United States yard is defined as $3600 / 3937$ meter, and the avoirdupois pound as $1 / 2,20462$ kilogram. ${ }_{1553} 164.13$ times the wave-length of the red Cd. line. Benoit, Fabry and I meter (international prototype) $=1553164.13$ timea the the measure of Michelson and Benoit $\mathbf{r} 4$ years earlier. Perot. C. R. 144, 1907 differs only in the decimal pord adopted by the U.S. Coast and Geodetic Survey many years ago,
fined as that of a minute of arc of a great circle of a sphere whose surface equals that of the earth (Clarke's Spheroid of 1866).

* Quoted from sheets issued by the United States Bureau of Standards.

Smithsonian Tables.

TABLES FOR CONVERTING U. S. WEICHTS AND MEASURES.
(2) METRIC TO CUSTOMARY.

By the concurrent action of the principal governments of the world an International Bureau of Weights and Measures has been established near Paris. Under the direction of the International Cortumittee, two ingots were cast of pure platimm-iridium in the proportion of 9 parts of the former to x of the latter metal. From one of these a certain number of kilograms were prepared, from the other a definite number of meter bars. These standards of weight and length were intercompared, without preference, and certain ones were selected as International prototype standards. The others were distributed by lot, in September, 1889, to the different governments, and are called National prototype standards. Those apportioned to the United States were received in 18go, and are kept at the Bureau of Standards in Washington, D. C.

The metric system was legalized in the United States in 1866.
The International Standard Meter is derived from the Mètre des Archives, and its length is defined by the distance between two lines at 0° Centigrade, on a platinum-iridinm bar deposited at the International Bureau of Weights and Measures.

The International Standard Kilogram is a mass of platinum-iridium deposited at the same place, and its weight in vacuo is the same as that of the Kilogram des Archives.

The liter is equal to the quantity of pure water at $4^{\circ} \mathrm{C}$, 760 mm . Hg. pressure which weighs 1 kilogram $=1.000027$ cu. dm. (Trav. et Mem. Bureau Intern. des P. et M. 14, 1910, Benoit.)

Smithsonian Tables.

EQUIVALENTS OF METRIC AND BRITISH IMPERIAL WEICHTS

 AND MEASURES.*(1) METRIC TO IMPERIAL.

SQUARE MEASURE.

CUBIC MEASURE.

I cub. centimeter
(c.c.) $(1,000$ cubic $\}=0.0610 \mathrm{cub}$. in. millimeters)
I cub. decimeter

centimeters)

$\left.\begin{array}{l}\text { or stere } \\ \text { (} 1,000 \text { c.d. })\end{array}\right\} \cdot .=\left\{\begin{array}{c}35.3148 \text { cub. } \mathrm{ft} . \\ \mathrm{I} .307954 \text { cub. } \mathrm{yds} .\end{array}\right.$

MEASURE OF CAPACITY.

$\left.\begin{array}{rl}\text { I milliliter (ml.) (.001 } \\ \text { liter) }\end{array}\right\}=0.0610$ cub. in. I centiliter (.or liter) $=\left\{\begin{array}{l}0.61024 \text { " } " \\ 0.070 \text { gill. }\end{array}\right.$
I deciliter (. l liter) . $\quad=0.176$ pint.
I LITER ($\mathrm{I}, 000$ cub.
$\left.\begin{array}{l}\text { centimeters or } \mathbf{I} \\ \text { cub. decimeter) }\end{array}\right\}=1.75980$ pints.
dekaliter (10 liters) $\quad=2.200$ gallons.
I hectoliter (100") . $=2.75$ bushels.
r kiloliter ($\mathrm{r}, 000$ ") $=3.437$ quarters.

APOTHECARIES' MEASURE.

I cubic centi- $\quad\left\{\begin{array}{l}0.03520 \text { fluid ounce. }\end{array}\right.$
 gram w't) $\quad 15.4323^{\prime}$ grains weight.
I cub, millimeter $=0.01693$ minim.

AVOIRDUPOIS WEIGHT.

$$
\begin{aligned}
& 1 \text { milligram (mgr.) } . \quad=0.01543 \text { grain. } \\
& 1 \text { centigram (.01 gram.) }=0.15432 \\
& 1 \text { decigram (.1 ") }=1.54324 \text { grains. } \\
& \text { I GRAM }=15.43236 \\
& \text { I dekagram (} 10 \mathrm{gram} \text {.) }=5.64383 \text { drams. } \\
& 1 \text { hectogram (} 100 \text { ") }=3.52739 \mathrm{oz} \text {. } \\
& \text { I KILOGRAM (} 1,000^{\prime \prime} \text {) }=\left\{\begin{array}{l}
2.2046223 \mathrm{lb}{ }^{-} \\
15432.3564
\end{array}\right. \\
& \text { I Kilogram (1,000) }=\left\{\begin{array}{r}
1542.35 \mathrm{~g} \\
\text { grains. }
\end{array}\right. \\
& 1 \text { myriagram (} \mathrm{r} 0 \mathrm{kilog} \text {.) }=22.04622 \mathrm{lbs} \text {. } \\
& 1 \text { quintal (} 100 \text { " })=1.96841 \mathrm{cwt} \text {. } \\
& \text { a millier or tonne } \\
& (\mathrm{x}, 000 \text { kilog.) }\} . \quad=0.9842 \text { ton. }
\end{aligned}
$$

TROY WEIGHT.

$$
\text { I GRAM } \cdot .=\left\{\begin{array}{c}
0.03215 \text { oz. Troy. } \\
0.64301 \text { pennyweight. } \\
15.43236 \text { grains. }
\end{array}\right.
$$

APOTHECARIES' WEIGHT.

Notr.-The Meter is the leogth, at the temperature of $0^{\circ} \mathrm{C}$., of the platinum-iridium bar deposited at the International Bureau of Weights and Measures at Sevres, near Paris, France.

The present legal equivalent of the meter is 39.370 rri3 inches, as above stated.
The Kilogram is the mass of a platinum-iridium weight deposited at the same place.
The Liter contains one kilogram weight of distilled water at its maximum density ($4^{\circ} \mathrm{C}$.), the barometer being at 760 millimeters.
*Id accordance with the schedule adopted under the Weights and Measures (metric system) Act, 1897 .

Emithsonian Tables.

EQUIVALENTS OF METRIC AND BRITISH IMPERIAL WEIGHTS AND MEASURES.
(2) METRIC TO IMPERIAL.

Smithsonian Tables.

Table 3.

EQUIVALENTS OF BRITISH IMPERIAL AND METRIC WEICHTS AND MEASURES.

(3) IMPERIAL TO METRIC.

LINEAR MEASURE.

SQUARE MEASURE.

I square inch \square $\{6.4516$ sq. centimeters.
9.2903 sq. decimeters.
I sq. ft. (144 sq . in.) $=$
I sq. yard ($9 \mathrm{sq} . \mathrm{ft}$. $)=\left\{\begin{array}{c}0.836 \mathrm{Iz6} \mathrm{sq} \\ \text { meters. }\end{array}\right.$
1 perch ($\left.30 \frac{1}{4} \mathrm{sq} . \mathrm{yd}.\right)=\left\{\begin{array}{l}25.293 \mathrm{sq} . \text { me- } \\ \text { ters. }\end{array}\right.$
1 rood (40 perches) $=10.117$ ares.
I ACRE (4840 sq. yd.) $=\quad 0.40468$ hectare.
I sq. mile (640 acres) $=\{259.00$ hectares.

CUBIC MEASURE.

I cub. inch $=16.387$ cub. centimeters.
$\left.\begin{array}{l}\text { I cub. foot (} 1728 \\ \text { cub. in.) }\end{array}\right\}=\left\{\begin{array}{c}0.028317 \text { cub. me- } \\ \text { ter, or } 28.317 \\ \text { cub. decimet }\end{array}\right.$

APOTHECARIES' MEASURE.

$\left.\begin{array}{l}\text { I gallon (} 8 \text { pints or } \\ 160 \text { fluid ounces) }\end{array}\right\}=4.5459631$ liters. $\left.\begin{array}{l}160 \text { fluid ounces) } \\ \text { Auid ounce, } f 3\end{array}\right\}=\{28.4123$ cubic
$\left.\begin{array}{c}\text { fluid ounce, } \mathrm{f}^{3} \\ \text { (} \text { drachms) }\end{array}\right\}=\left\{\begin{array}{c}28.4123 \text { cabic } \\ \text { centimeters. }\end{array}\right.$
I fluid drachm, f 3$\}=\left\{\begin{array}{l}3.5515 \text { cubic } \\ \text { centimeters. }\end{array}\right.$
 grain weight) $\}=\{$ centimeters.
Nots. - The Apothecaries' gallon is of the same capacity as the Imperial gallon.

MEASURE OF CAPACITY.

1 gill $=\mathbf{I} .42$ deciliters.
I pint (4 gills) . . . $=0.568$ liter.
I quart (2 pints) . $=$ I. 136 liters.
I GALloN (4 quarts) $=4.5459631$ "
I peck (2 galls.) . . $=9.092$
I bushel (8 galls.) $=3.637$ dekaliters.
I quarter (8 bushels) $=2.909$ hectoliters.

AVOIRDUPOIS WEIGHT.

I grain $=$	$\left\{\begin{array}{l} 64.8 \mathrm{~m} \text { illim- } \\ \text { grams. } \end{array}\right.$
1 dram	1.772 grams.
1 ounce (16 dr .)	28.350
$\left.\begin{array}{l} 1 \text { POUND (} 16 \text { oz. or } \\ 7,000 \text { grains) } \end{array}\right\}=$	0.45359243 kilogr.
I stone (14 lb.$)$.	6.350
1 quarter (28 lb .) . $=$	12.70
$\underset{(\mathrm{II} 2 \mathrm{lb} .)}{\text { I hundredweight }}\}=$	50.80 0.5080 quintal.
I ton (20 cwt.) . $=$	(1.0160 tonnes or 1016 kilograms.

TROY WEIGHT.

$\left.\begin{array}{c}\text { I Troy ounce (} 480 \\ \text { grains avoir.) }\end{array}\right\}=3$ 1.1035 grams.
$\left.\begin{array}{c}\underset{\text { grains }}{\text { pennyweight }}(24\end{array}\right\}=1.5552 \quad$ "
Note. - The Troy grain is of the same weight as the Avoirdupois graio.

APOTHECARIES' WEIGHT.

1 ounce (8 drachms) $=3$ I. 1035 grams.
$\left.\begin{array}{l}\mathrm{drachm} \\ \text { ples) } \\ \mathrm{zi} \\ \text { (} 3 \mathrm{scru-}\end{array}\right\}=3.888$
$\left.\begin{array}{l}1 \begin{array}{c}\text { scruple, } \\ \text { grains) }\end{array} \\ \text { gi (20 }\end{array}\right\}=1.296$
Notr. - The Apothecaries' ounce is of the same weight as the Troy ounce. The Apothecaries' wrian is also of the same weight as the Avoirdupois grain.

Notr. - The Yard is the length at 62° Fahr., marked on a bronze bar deposited with the Board of Trade.
The Pound is the weight of a piece of platinum weighed in vacuo at the temperature of $0^{\circ} \mathrm{C}$., and which is also deposited with the Board of Trade

The Galion contains so lh . weight of distilled water at the temperature of 62° Fahr, the barometer being at 30 laches.

Bmithsonian Tasles.

EQUIVALENTS OF BRITISH IMPERIAL AND METRIC WEIGHTS AND MEASURES.

(4) IMPERIAL TO METRIC.

Smithsonian Tablee.

Table 4.

VOLUME OF A GLASS VESSEL FROM THE WEIGHT OF ITS EQUIVALENT VOLUME OF MERCURY OR WATER.

If a glass vessel contains at $\ell^{\circ} \mathrm{C}, P$ grammes of mercury, weighted with brass weights in air at 760 mm . pressure, then its volume in $\mathrm{c} . \mathrm{cm}$.

$$
\begin{aligned}
& \text { at the same temperature, } t,: V=P R=P \frac{p}{d} \\
& \text { at another temperature, } t_{1},: V=P R_{1}=P P / d\left\{1+\gamma\left(t_{1}-t\right)\right\}
\end{aligned}
$$

$p=$ the weight, reduced to vacuum, of the mass of mercury or water which, weighed with brass weights, equals 1 gram;
$d=$ the density of mercury or water at $t^{\circ} \mathrm{C}$,
and $\gamma=0.000025$, is the cubical expansion coefficient of glass.

Temper ature t	WATER.			MERCURY.		
	R.	$R_{1}, t_{1}=10^{\circ}$.	$R_{1}, t_{1}=20^{\circ}$.	R.	$R_{1}, t_{1}=10^{\circ}$.	$R_{1}, t_{1}=20^{\circ}$.
0°	1.001192	I.001443	1.001693	0.0735499	0.0735683	0.0735867
1	1133	1358	1609	5633	5798	5982
2	1092	1292	1542	5766	5914	6098
3	1068	1243	1493	5900	6029	6213
4	1060	1210	1460	6033	6144	6328
5	Io68	1193	1443	6167	6259	6443
6	1.001092	1.001192	1.001442	0.0736301	0.0736374	0.0736558
7	1131	1206	1456	6434	6490	6674
8	1184	1234	1485	6568	6605	6789
9	1252	1277	1527	6702	6720	6904
10	1333	1333	1584	6835	6835	7020
11	1.001428	1.001403	1.001653	0.0736969	0.0736951	0.0737135
12	1536	1486	1736	7103	7066	7250
13	1657	1582	1832	7236	7181	7365
14	1790	1690	1940	7370	7297	748 I
15	1935	1810	2060	7504	7412	7596
16	1.002092	1.001942	1.002193	0.0737637	0.0737527	0.0737711
17	2261	2086	2337	7771	7642	7826
18	2441	2241	2491	7905	7757	794 I
19	2633	2407	2658	8039	7872 7988	
20	2835	2584	2835	8 I 72	7988	8172
21	1.003048	1. 002772	1.003023 3220	0.073_{8440}^{8306}	0.0738103 8218	$\begin{array}{r} 0.0738288 \\ 8403 \end{array}$
22	3271	2970 3178	3220	8440 8573	$\begin{aligned} & 8218 \\ & 8333 \end{aligned}$	$\begin{aligned} & 8403 \\ & 8518 \end{aligned}$
23 24	3504 3748	3178 3396	3429 3647	8573 8707	8333 8449	8518 863
24 25	3748 4001	3396 3624	3647 3875	8841	8564	8748
26	1.004264	1.003862	1.004113	0.0738974	$\begin{array}{r} 0.0738679 \\ 8704 \end{array}$	$\begin{array}{r} 0.0738864 \\ 8979 \end{array}$
27 28 28	4537 4818	4110 4366	436 I 46 I	$\begin{aligned} & 9108 \\ & 9242 \end{aligned}$	8794 8910	$\begin{aligned} & 8979 \\ & 9094 \end{aligned}$
28	4818 5110	4366 4632	4616 4884	$\begin{aligned} & 9242 \\ & 9376 \end{aligned}$	$\begin{aligned} & 8910 \\ & 9025 \end{aligned}$	$\begin{aligned} & 9094 \\ & 9210 \end{aligned}$
29 30	5110 5410	4632 4908	4884 5159	9510	9140	9325

Taken from Landolt, Börnstein, and Meyerhoffer's Physikalisch-Chemische Tabellen.

Smithsonian Tablea.

Table 5.
DERIVATIVES AND INTEGRAL.S.*

* See also accompanying table of derivatives. For example : $\int \cos . x d x=\sin . x+$ constant.

$$
\begin{aligned}
(x+y)^{n}=x^{n}+\frac{n}{1} x^{n-1} y+\frac{n(n-1)}{2!} x^{n-2} y^{2}+\ldots \\
\frac{n(n-1) \ldots(n-m+1)}{m!} x^{n-m} y^{m}+\ldots \quad\left(y^{2}<x^{2}\right)
\end{aligned}
$$

$(\mathrm{I} \pm x)^{n}=\mathrm{I} \pm n x+\frac{n(n-\mathrm{I}) x^{2}}{2!} \pm \frac{n(n-\mathrm{I})(n-2) x^{2}}{3!}+\ldots+\frac{(\pm \mathrm{I})_{n} n x^{k}}{(n-k)!k!}+\ldots\left(x^{2}<\mathrm{I}\right)$ $(\mathrm{I} \pm x)^{-n}=\mathrm{I} \mp n x+\frac{n(n+\mathrm{I})}{2!} x^{2} \mp \frac{n(n+\mathrm{I})(n+2) x^{3}}{3!}+\ldots$

$$
(\mp \mathrm{I})^{k} \frac{(n+k-\mathrm{I}) x^{k}}{(n-\mathrm{I})!k!}+\ldots\left(x^{2}<\mathrm{I}\right)
$$

$(1 \pm x)^{-1}=1 \mp x+x^{2} \mp x^{6}+x^{4} \mp x^{5}+\ldots$
($x^{2}<1$)
$(\mathrm{I} \pm x)^{-2}=\mathrm{I} \mp 2 x+3 x^{2} \mp 4 x^{3}+5 x^{4} \mp 6 x^{5}+\ldots$
($x^{2}<\mathrm{I}$)

$$
\left(x^{2}<\infty\right)
$$

$$
\left(x^{2}<\infty\right)
$$

$\log (1+x)=x-\frac{1}{2} x^{2}+\frac{1}{2} x^{8}-\frac{1}{4} x^{4}+\ldots$.

$$
\sin x=\frac{1}{2 i}\left(e^{2 x}-e^{-\imath x}\right)=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\cdots
$$

$$
\left(x^{2}<\infty\right)
$$

$$
\cos x=\frac{1}{2}\left(e^{i x}+e^{-i x}\right)=\mathrm{I}-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\ldots=\mathrm{I}-\operatorname{versin} x \quad\left(x^{2}<\infty\right)
$$

$$
\tan x=x+\frac{x^{3}}{3}+\frac{2 x^{5}}{15}+\frac{17 x^{7}}{315}+\frac{62}{2835} x^{9}+\ldots
$$

$$
\sin ^{-1} x=\frac{\pi}{2}-\cos .^{-1} x=x+\frac{x^{3}}{6}+\frac{1}{2} \cdot \frac{3}{4} \cdot \frac{x^{5}}{5}+\frac{1}{2} \cdot \frac{3}{4} \cdot \frac{5}{6} \cdot \frac{x^{7}}{7}+\ldots \quad\left(x^{2}<1\right)
$$

$$
\tan ^{-1} x=\frac{\pi}{2}-\cot ^{-1} x=x-\frac{1}{3} x^{3}+\frac{1}{5} x^{5}-\frac{1}{7} x^{7}+\cdots
$$

$$
\begin{equation*}
=\frac{\pi}{2}-\frac{1}{x}+\frac{1}{3 x^{3}}-\frac{1}{5 x^{5}}+\ldots \tag{2}
\end{equation*}
$$

$$
\left(x^{2}>1\right)
$$

$\sinh x=\frac{1}{2}\left(e^{x}-e^{-x}\right)=x+\frac{x^{3}}{3!}+\frac{x^{5}}{5!}+\frac{x^{7}}{7!}+\ldots$

Smithsonian Tables.

$$
\begin{align*}
& f(x+h)=f(x)+h f^{\prime}(x)+\frac{h^{2}}{2!} f^{\prime \prime}(x)+\ldots+\frac{h^{n}}{n!} f^{(n)}(x)+\ldots \\
& f(x)=f(0)+\frac{x}{\mathrm{I}} f^{\prime}(0)+\frac{x^{2}}{2!} f^{\prime \prime}(0)+\ldots \frac{x^{n}}{n!} f^{(n)}(0)+\ldots \\
& e=\lim \left(\mathrm{I}+\frac{\mathrm{I}}{n}\right)^{n}=\mathrm{I}+\frac{\mathrm{I}}{\mathrm{I}!}+\frac{\mathrm{I}}{2!}+\frac{\mathrm{I}}{3!}+\frac{\mathrm{I}}{4!}+\cdots \\
& e^{x}=1+x+\frac{x^{2}}{2!}+\frac{x^{8}}{3!}+\frac{x^{4}}{4!}+\ldots \\
& a^{x}=1+x \log a+\frac{(x \log a)^{2}}{2!}+\frac{(x \log a)^{s}}{3!}+\ldots . \\
& \log x=\frac{x-1}{x}+\frac{\mathrm{I}}{2}\left(\frac{x-1}{x}\right)^{2}+\frac{1}{3}\left(\frac{x-\mathrm{I}}{x}\right)^{2}+\ldots \tag{1}\\
& =(x-1)-\frac{1}{2}(x-1)^{2}+\frac{1}{3}(x-1)^{3}-\ldots \tag{2>x>0}\\
& =2\left[\frac{x-1}{x+1}+\frac{1}{3}\left(\frac{x-1}{x+1}\right)^{3}+\frac{1}{5}\left(\frac{x-1}{x+1}\right)^{5}+\ldots .\right] \tag{x>0}
\end{align*}
$$

SERIES.

$$
\begin{aligned}
& \cosh x=\frac{1}{2}\left(e^{x}+e^{-x}\right)=1+\frac{x^{2}}{2!}+\frac{x^{4}}{4!}+\frac{x^{8}}{6!}+\cdots \\
& \left(x^{2}<\infty\right) \\
& \tanh x=x-\frac{1}{3} x^{3}+\frac{2}{15} x^{5}-\frac{17}{315} x^{7}+\ldots \\
& \sinh ^{-1} x=x-\frac{1}{2} \frac{x^{8}}{3}+\frac{1}{2} \cdot \frac{3}{4} \cdot \frac{x^{5}}{5}-\frac{1}{2} \cdot \frac{3}{4} \cdot \frac{5}{6} \frac{x^{7}}{7}+\cdots \\
& =\log 2 x+\frac{1}{2} \frac{1}{2 x^{2}}-\frac{1}{2} \frac{3}{4} \frac{1}{4 x^{4}}+\frac{1}{2} \frac{3}{4} \frac{5}{6} \frac{1}{6 x^{6}}-\ldots \\
& \cosh ^{-1} x=\log 2 x-\frac{1}{2} \frac{1}{2 x^{2}}-\frac{1}{2} \frac{3}{4} \frac{1}{4 x^{4}}-\frac{1}{2} \frac{3}{4} \frac{5}{6} \frac{1}{6 x^{5}}-\ldots \\
& \tanh ^{-1} x=x+\frac{1}{3} x^{8}+\frac{1}{5} x^{5}+\frac{1}{7} x^{7}+\cdots \\
& \operatorname{gd} x=\phi=x-\frac{1}{6} x^{3}+\frac{1}{24} x^{5}-\frac{6 \mathrm{I}}{5040} x^{7}+\ldots \\
& =\frac{\pi}{2}-\operatorname{sech} x-\frac{1}{2} \frac{\operatorname{sech}^{3} x}{3}-\frac{1}{2} \frac{3}{4} \frac{\operatorname{sech}^{6} x}{5}-\cdots \\
& x=\mathrm{gd}^{-1} \phi=\phi+\frac{1}{6} \phi^{\mathbf{2}}+\frac{1}{24} \phi^{\mathrm{s}}+\frac{6 \mathrm{I}}{5040} \phi^{\mathrm{r}}+\ldots \\
& f(x)=\frac{1}{2} b_{o_{j}}+b_{1} \cos \frac{\pi x}{c}+b_{2} \cos \frac{2 \pi x}{c}+\cdots \\
& +a_{1} \sin \frac{\pi x}{c}+a_{2} \cos \frac{2 \pi x}{c}+\ldots(-c<x<c) \\
& \mathrm{a}_{m}=\frac{\mathbf{1}}{c} \int_{-c}^{+}{ }_{-}^{c} f(x) \sin \frac{m \pi x}{c} d x \\
& \mathrm{~b}_{m}=\frac{\mathrm{I}}{c} \int_{-c}^{+c} f(x) \cos \frac{m \pi x}{c} d x
\end{aligned}
$$

Table 7.-MATHEMATICAL CONSTANTS.

Smithsonian Tableg.

VALUES OF RECIPROCALS, SQUARES, CUBES, SQUARE ROOTS, OF NATURAL NUMBERS.

n	1000. $\frac{1}{1}$	n^{2}	n^{8}	$\sqrt{ } \times$	n	$1000 \cdot \frac{1}{n}$	n^{2}	n^{8}	\sqrt{n}
10	100.000	100	1000	3.1623	65	15.3846	4225	274625	8.0623
II	90.9091	125	1331	3.3166	66	15.1515	4356	287496	8.1240
12	83.3333	144	1728	3.4641	67	14.9254	4489	300763	8.1854
13	76.9231	169	2197	3.6056	68	14.7059	4624	314432	8.2462
14	71.4286	196	2744	3.7417	69	14.4928	476I	328509	8.3066
15	66.6667	225	3375	3.8730	70	14.2857	4900	343000	8.3666
16	62.5000	256	4096	4.0000	71	14.0845	5041	357911	8.4261
17	58.8235	289	4913	4.1231	72	13.8889	5184	373248	8.4853
18	55.5556	324	5832	4.2426	73	13.6986	5329	389017	8.5440
19	52.6316	361	6859	$4 \cdot 3589$	74	13.5135	5476	405224	8.6023
20	50.0000	400	8000	4.4721	75	13.3333	5625	421875	8.6603
2 I	47.6190	441	9261	4.5826	76	13.1579	5776	438976	8.7178
22	45.4545	484	10648	4.6904	77	12.9870	5929	456533	8.7750
23	43.4783	529	12167	4.7958	78	12.8205	6084	474552	8.8318
24	41.6667	576	13824	4.8990	79	12.6582	6241	493039	8.8882
25	40.0000	625	15625	5.0000	80	12.5000	6400	512000	8.9443
26	38.4615	676	17576	5.0990	81	12.3457	6561	531441	9.0000
27	37.0370	729	19683	5.1962	82	12.1951	6724	551368	9.0554
28	35.7143	784	21952	5.2915	83	12.0482	6889	571787	9.1104
29	34.4828	841	24389	$5 \cdot 385^{2}$	84	11.9048	7056	592704	9.1652
30	33.3333	900	27000	5.4772	$B 5$	11.7647	7225	614125	9.2195
31	32.2581	961	29791	$5 \cdot 5678$	86	11.6279	7396	636056	9.2736
32	31.2500	1024	32768	5.6569	87	11.4943	7569	658503	$9 \cdot 3274$
33	30.3030	1089	35937	5.7446	88	11.3636	7744	681472	9.3808
34	29.4118	II 56	39304	5.8310	89	11.2360	7921	704969	9.4340
35	28.5714	1225	42875	5.9161	90	II.1111	8100	729000	9.4868
36	27.7778	1296	46656	6.0000	91	10.9890	8281	753571	9.5394
37	27.0270	1369	50653	6.0828	92	10.8696	8464	778688	9.5917
38	26.3158	1444	54872	6.1644	93	10.7527	8649	804357	9.6437
39	25.6410	1521	59319	6.2450	94	10.6383	8836	830584	9.6954
40	25.0000	1600	64000	6.3246	95	10.5263	9025	857375	9.7468
41	24.3902	1681	68921	6.4031	96	10.4167	9216	884736	9.7980
42	23.8095	1764	74088	6.4807	97	10.3093	9409	912673	9.8489
43	23.2558	1849	79507	6.5574	98	10.2041	9604	941192	9.8995
44	22.7273	1936	85184	6.6332	99	10.1010	9801	970299	9.9499
45	22.2222	2025	91125	6.7082	100	10.0000	10000	1000000	10.0000
46	21.7391	2116	97336	6.7823	101	9.90099	10201	1030301	10.0499
47	21.2766	2209	103823	6.8557	102	9.80392	10404	1061208	10.0995
48	20.8333	2304	110592	6.9282	103	9.70874	10609		10.1489 10.1980
49	20.4082	2401	117649	7.0000	104	9.6153^{8}	10816	I 124864	10.1980
50	20.0000	2500	125000	7.0711	105	9.52381	11025 11236	1157625 1191016	
51	19.6078	2601	132651	7.1414	106	9.43396	11236 11449	1191016 1225043	10.2956 10.3441
52	19.2308	2704 2809	140608 148877	7.2111 7.2801	107	9.34579 9.25926	II 11449	1225043	10.3441 10.3923
53 54	18.8679 18.5185	28096	148877 157464	7.2801 7.3485	109	9.259231	11881	1295029	10.4403
55	18.1818		166375	$7.4{ }^{162}$	110	9.09091	12100	1331000	10.488 I
56	17.8571	3136	175616	7.4833	111	9.00901	12321	${ }_{1}{ }^{3} 67631$	10.5357
57	17.5439	3249	185193	7.5498	12	8.92857	12544	1404928	10.5830
58	17.2414	3364	195112	7.6158	113	8.84956	12769 12996	1442897 I48I 544	
59	16.9492	348 I	205379	7.6811	114	8.77193	12996	I48I 544	10.6771
60	16.6667	3600	216000	7.7460	115	8.69565	13225	I 520875	10.7238
61	16.3934	3721	226981	7.8102	116	8.62069	13456	1560896	10.7703 10.8167
62	16.1290	3844	$23^{8} 3^{28}$	7.8740	117	8.54701	13689	1601613	10.8167 10.8628
63	15.873°	3969	250047	7.9373	118	8.47458 8.40336	13924 14161	1643032 1685159	10.8628 10.9087
64	15.6250	4096	262144	8.0000	119	8.40336	14161		10.908

$\boldsymbol{E}_{\text {mithsonian }}$ Tables.

VALUES OF RECIPROCALS, SQUARES, CUBES, SQUARE ROOTS, OF NATURAL NUMBERS.

7	1000. $\frac{1}{n}$	n^{2}	n^{2}	$\sqrt{ } \times$	n	1000. $\frac{1}{n}$	n^{2}	n^{3}	$\sqrt{ } n$
120	8.33333	14400	1728000	10.9545	175	5.71429	30625	5359375	13.2288
121	8.26446	14641	1771561	11.0000	176	5.68182	30976	5451776	13.2665
122	8.19672	14884	1815848	11.0454	177	5.64972	31329	5545233	13.3041
123	8.13008	15129	1860867	11.0905	178	5.61798	31684	5639752	${ }^{1} 3.3417$
124	8.06452	15376	1906624	11.1355	179	$5 \cdot 58659$	32041	5735339	13.3791
125	8.00000	15625	1953125	11.1803	180	5.55556	32400	5832000	13.4164
126	7.93651	15876	2000376	11.225°	181	5.52486	32761	5929741	13.4536
127	7.87402	16129	2048383	11.2694	182	$5 \cdot 49451$	33124	6028568	13.4907
128	7.81250	16384	2097152	11.3137	183	5.46448	33489	6128487	13.5277
129	7.75194	1664I	2146689	11.3578	184	5.43478	33856	6229504	13.5647
130	7.69231	16900	2197000	II.4018	185	5.40541	34225	6331625	${ }_{1} 3.6015$
131	7.63359	17161	2248091	11.4455	186	5.37634	34596	6434856	13.6382
132	7.57576	17424	2299968	11.4891	187	$5 \cdot 34759$	34969	6539203	13.6748
133	7.51880	17689	2352637	11.5326	188	5.31915	35344	6644672	13.7113
134	7.46269	17956	2406104	II. 5758	189	5.29101	3572 I	6751269	13.7477
135	7.40741	18225	2460375	11.6190	190	5.26316	36100	6859000	13.7840
136	7.35294	18496	2515456	11.6619	191	5.23560	36481	6967871	13.8203
137	7.29927	18769	2571353	11.7047	192	5.20833	36864	7077888	13.8564
138	7.24638	19044	262807^{2}	11.7473	193	5.18135	37249	7189057	13.8924
139	7.19424	19321	2685619	11.7898	194	5.15464	37636	7301384	13.9284
140	7.14286	19600	2744000	11.8322	195	5.12821	38025	7414875	13.9642
141	7.09220	I9881	2803221	11. 8743	196	5.10204	38416	7529536	14.0000
142	7.04225	20164	2863288	11.9164	197	5.07614	38809	7645373	14.0357
143	6.99301	20449	2924207	11.958	198	5.05051	39204	7762392	14.0712
144	6.94444	20736	2985984	12.0000	199	5.02513	39601	7880599	14.1067
145	6.89655	21025	3048625	12.0416	200	5.00000	40000	8000000	14.1421
146	6.84932	21316	3112136	12.0830	201	4.97512	40401	8120601	14.1774
147	6.80272	21609	3176523	12.1244	202	4.95050	40804	8242408	14.2127
148	6.75676	21904	3241792	12.1655	203	4.92611	41209	8365427	14.2478
149	6.71141	22201	3307949	12.2066	204	4.90196	41616	8489664	14.2829
150	6.66667	22500	3375000	12.2474	205	4.87805	42025	8615125	14.3178
151	6.62252	22801	3442951	12.2882	206	4.85437	42436	8741816	14.3527
152	6.57895	23104	3511808	12.3288	207	4.83092	42849	8869743	14.3875
153	6.53595 6.49351	23409	3581577 3652264	12.3693 12.4097	208	4.80769 4.78469	43264 43681	8998912	14.4222
154	6.49351	23716	3652264	12.4097	209	4.78469	43681	9129329	14.4568
155	6.45161	24025	3723875	12.4499	210	4.76190	44100	9261000	14.4914
156	6.41026	24336	3796416	12.4900	211	4.73934	4452 I	9393931	14.525^{8}
157	6.36943	24649	3869893	12.5300	212	4.71698	44944	9528128	14.5602
158	6.32911	24964	3944312	12.5698	213	4.69484	45369	9663597	14.5945
- 159	6.28931	25281	4019679	12.6095	214	4.67290	45796	9800344	14.6287
160	6.25000	25600	4096000	12.649 I	215	4.65116	46225	9938375	14.6629
161	6.21118	25921	4173281	12.6886	216	4.62963	46656	10077696	14.6969
162	6.17284	26244	4251528	12.7279	217	4.60829	47089	10218313	14.7309
163	6.13497	26569	4330747	12.7671	218	4.58716	47524	10360232	14.7648
164	6.09756	26896	4410944	12.8062	219	4.56621	47961	10503459	14.7986
165	6.06061	27225	4492125	12.8452	220	4.54545	48400	10648000	14.8324
166	6.02410	27556	4574296	12.8841	221	4.52489	48841	10793861	14.8661
167	5.98802	27889	4657463	12.9228	222	4.5045°	49284	10941048	14.8997
168	5.95238	28224	4741632	12.9615	223	4.48430	49729	11089567	14.9332
169	5.91716	28561	4826809	13.0000	224	4.46429	50176	11239424	14.9666
170	5.88235	28900	4913000	13.0384	225	4.44444	50625	11390625	15.0000
171	5.84795	29241	5000211	13.0767	226	4.42478	51076	11543176	15.0333
172	5.81395 5.78035	29584	5088448	13.1149	227	4.40529	51529	11697083	15.0665
173	5.78035	29929	5177717 5268024	13.1529 13.1909	228	4.38596 4.36681	51984	11852352	15.0997
174	5.74713	30276	5268024	13.1909	229	$4 \cdot 36681$	52441	12008989	15.1327

Smithsonian Tables.

VALUES OF RECIPROCALS, SQUARES, CUBES, AND SQUARE ROOTS, OF NATURAL NUMBERS.

n	1000. $\frac{1}{n}$	n^{2}	n^{8}	\sqrt{n}	n	1000. $\frac{1}{n}$	n^{2}	n^{8}	$\sqrt{ } \times$
230	$4 \cdot 34783$	52900	12167000	15.1658	285	3.50877	81225	23I491 25	6.8819
231	4.32900	53361	12326391	15.1987	286	3.49650	81796	23393656	6.9115
232	4.31034	53824	12487168	15.2315	287	3.48432	82369	23639903	6.941 I
233	4.29185	54289	12649337	15.2643	288	3.47222	82944	23887872	6.9706
234	4.27350	54756	12812904	15.2971	289	3.46021	8352 I	24137569	7.0000
235	4.25532	55225	12977875	15.3297	290	3.44828	84100	24389000	7.0294
236	4.23729	55696	13144256	15.3623	291	3.43643	8468 I	24642171	7.0587
237	4.21941	56169	13312053	I 5.3948	292	3.42466	85264	24897088	17.0880
238	4.20168	56644	13481272	I 5.4272	293	3.41297	85849	25153757	17.1172
239	4.18410	5712 I	13651919	I 5.4596	294	3.40136	86436	25412184	17.1464
240	4.16667	57600	13824000	15.4919	295	3.38983	87025	25672375	17.1756
241	4.14938	58081	13997521	I 5.5242	296	3.37838	87616	25934336	17.2047
242	4.13223	58564	14172488	I 5.5563	297	3.36700	88209	26198073	7.2337
243	4.11523	59049	14348907	15.5885	298	$3 \cdot 35570$	88804	26463592	7.2627
244	4.09836	59536	14526784	15.6205	299	$3 \cdot 34448$	89401	26730899	17.2916
245	4.08163	60025	14706125	15.6525	300	$3 \cdot 33333$	90000	27000000	17.3205
246	4.06504	60516	14886936	15.6844	301	3.32226	90601	27270901	17.3494
247	4.04858	6 r 009	15069223	I 5.7162	302	3.31126	91204	27543608	17.3781
248	4.03226	61504	15252992	15.7480	303	3.30033	91809	27818127	7.4069
249	4.01606	62001	I 5438249	15.7797	304	3.28947	92416	28094464	17.4356
250	4.00000	62500	15625000	I 5.8114	305	3.27869	93025	28372625	17.4642
251	3.98406	63001	15813251	15.8430	306	3.26797	93636	28652616	17.4929
252	3.96825	63504	16003008	15.8745	307	3.25733	94249	28934443	17.5214
253	3.95257	64009	16194277	15.9060	308	3.24675	94864	29218112	17.5499
254	3.93701	64516	16387064	15.9374	309	3.23625	95481	29503629	17.5784
255	3.92157	65025	16581375	15.9687	310	3.22581	96100	29791000	17.6068
256	3.90625	65536	16777216	16.0000	311	3.21543	96721	30080231	17.6352
257	3.89105	66049	16974593	16.0312	312	3.20513	97344	30371328	17.6635
258	3.87597	66564	17173512	16.0624	313	3.19489	97969	30664297	17.6918 17.7200
259	3.86100	67081	17373979	16.0935	314	3.18471	98596	30959144	17.7200
260	3.846 r 5	67600	17576000	16.1245	315	3.17460	99225	31255875	17.7482
261	3.8314^{5}	6812 I	17779581	16.1555	316	3.16456	99856	31554496	17.7764
262	3.81679	68644	17984728	16.1864	317	3.15457	100489	31855013	17.8045
263	3.80228	69169	18191447	16.2173	318	3.14465	101124	32157432	17.8326 17.8606
264	3.78788	69696	18399744	16.248 I	319	3.13480	101761	32461759	17.8606
265	3.7735^{8}	70225	18609625	16.2788	320	3.12500	102400	32768000	17.8885
266	3.75940	70756	18821096	16.3095	32 I	3.115:6	103041	33076161	17.9165
267	3.74532	71289	19034163	16.3401	322	310559	103684	33386248	17.9444
268	3.73134	71824	19248832	16.3707	323	3.09598	104329	33698267	17.9722 18.0000
269	3.71747	72361	19465109	16.4012	324	3.08642	104976	34012224	18.0000
270	3.70370	72900	19683000	16.4317	325	3.07692	105625	34328125	18.0278
271	3.69004	73441	19902511	16.4621	326	3.06748	106276	34645976	18.0555
272	3.67647	73984	20123648	16.4924	327	3.05810	106929	34965783	18.083 I
273	3.66300	74529	20346417	16.5227	328	3.04878	$1075^{8} 4$	35287552	18.1108 18.1384
274	3.64964	75076	20570824	16.5529	329	3.03951	108241	35611289	18.1384
275	3.63636	75625	20796875	16.5831	330	3.03030	108900	35937000	18.1659
276	3.62319	76176	21024576	16.6132	331	3.02115	109561	36264691	18.1934 18.2209
277 278	3.61011	76729 77284	21253933	16.6433 16.6733	332 333	3.01205 3.00300	110224 110889	36594368 36926037	18.2209 18.2483
278 279	3.59712 3.58423	77284 77841	21484952 21717639	16.6733 16.7033	333	3.00300 2.99401	110889 11556	37259704	18.2757
279	3.58423	77841	21717639	16.703	334	2.985			
280	3.57143	78400	21952000	16.7332	335 336	2.98507 2.97619	112225 112896	37595375 37933056	18.3303
281 282	3.55872 3.54610	78961	22188041	16.7631 16.7929	336 337	2.97619 2.96736	112896 113569	38272753	18.3576
283	3.53357	80089	22665187	16.8226	338	2.95858	I 14244	38614472	18.3848 18.4120
284	3.52113	80656	22906304	16.8523	339	2.94985	114921	38958219	18.4120

Smithsonian Tables.

VALUES OF RECIPROCALS, SQUARES, CUBES, AND SQUARE ROOTS OF NATURAL NUMBERS.

n	1000. $\frac{1}{n}$	n^{2}	n^{3}	\sqrt{n}	\%	1000. $\frac{1}{n}$	n^{2}	n^{3}	\sqrt{n}
340	2.941 I8	115600	39304000	18.4391	395	2.53165	156025	61629875	19.8746
341	2.93255	116281	39651821	18.4662	396	2.52525	156816	62099136	19.8997
342	2.92398	116964	40001688	18.4932	397	2.51889	157609	62570773	19.9249
343	2.91545	117649	40353607	18.5203	398	2.51256	158404	63044792	19.9499
344	2.90698	118336	40707584	18.5472	399	2.50627	159201	63521199	19.9750
345	2.89855	119025	41063625	18.5742	400	2.50000	160000	64000000	20.0000
346	2.89017	119716	41421736	18.6011	401	2.49377	160801	64481201	20.025°
347	2.88184	120409	41781923	18.6279	402	2.48756	161604	64964808	20.0499
348	2.87356	121104	42144192	18.6548	403	2.48139	162409	65450827	20.0749
349	2.86533	121801	42508549	18.6815	404	2.47525	163216	65939264	20.0998
350	2.85714	122500	42875000	18.7083	405	2.46914	164025	66430125	20.1246
35I	2.84900	123201	43243551	18.7350	406	2.46305	164836	66923416	20.1494
352	2.84091	123904	43614208	18.7617	407	2.45700	165649	67419143	20.1742
353	2.83286	124609	43986977	18.7883	408	2.45098	166464	67917312	20.1990
354	2.82486	125316	44361864	18.8149	409	2.44499	167281	68417929	20.2237
355	2.81690	126025	44738875	18.8414	410	2.43902	168100	68921000	20.2485
356	2.80899	126736	45118016	18.8680	411	2.43309	168921	69426531	20.2731
357	2.80112	127449	45499293	18.8944	412	2.42718	169744	69934528	20.2978
358	2.79330	128164	45882712	18.9209	413	2.42131	170569	70444997	20.3224
359	2.7855^{2}	12888I	46268279	18.9473	414	2.41546	171396	70957944	20.3470
360	2.77778	129600	46656000	18.9737	415	2.40964	172225	71473375	20.3715
361	2.77008	130321	47045881	19.0000	416	2.40385	173056	71991296	20.3961
362	2.76243	131044	47437928	19.0263	417	2.39808	173889	72511713	20.4206
363	2.75482	${ }_{1} 131769$	47832147	19.0526	418	2.39234	174724	73034632	20.4450
364	2.74725	132496	48228544	19.0788	419	2.38663	175561	73560059	20.4695
365	2.73973	133225	48627125	19.1050	420	2.38095	176400	74088000	20.4939
366	2.73224	133956	49027896	19.13II	421	2.3753°	177241	7461846I	20.5183
367	2.72480	134689	49430863	19.1572	422	2.36967	178084	75151448	20.5426
368	2.71739	135424	49836032	19.1833	423	2.36407	178929	75686967	20.5670
369	2.71003	136161	50243409	19.2094	424	2.35849	179776	76225024	20.5913
370	2.70270	136900	50653000	19.2354	425	2.35294	180625		
371	2.69542	137641	51064811	19.2614	426	2.34742	181476	77308776	20.6398
372	2.68817	138384	51478848	19.2873	427	2.34192	182329	77854483	20.6640
373	2.68097	139129	51895117	19.3132	428	2.33645	183184	78402752	20.6882
374	2.67380	139876	52313624	19.3391	429	2.33100	184041	78953589	20.7123
375	2.66667	140625	52734375	19.3649	430	2.32558	184900	79507000	
376	2.65957	141376	53157376	19.3907	431	2.32019	185761	80062991	20.7605
377	2.65252	142129	53582633	19.4165	432	2.31481	186624	80621568	20.7846
378	2.64550	142884	54010152	19.4422	433	2.30947	187489	81182737	20.8087
379	2.63852	143641	54439939	19.4679	434	2.30415	188356	81746504	20.8327
380	2.63158	144400	54872000	19.4936	435	2.29885	189225	82312875	20.8567
$3^{81} 1$	2.62467	145161	55306341	19.5192	436	2.29358	190096	82881856	20.8806
382	2.61780	145924	55742968	19.5448	437	2.28833	190969	83453453	20.9045
383	2.61097	146689	56181887	19.5704	438	2.28311	191844	84027672	20.9284
384	2.60417	147456	56623104	19.5959	439	2.27790	192721	84604519	20.9523
385	2.59740	148225	57066625	19.6214	440	2.27273	193600	85184000	20.9762
386	2.59067	148996	57512456	19.6469	44 I	2.26757	194481	85766121	21.0000
387 388	2.58398 2.57732	149769	57960603 58411072	19.6723	442	2.26244	195364	86350888	21.0238
388 389	2.57732 2.57069	150544	58411072	19.6977	443	2.25734	196249	86938307	21.0476
389	2.57069	151321	58863869	19.723 I	444	2.25225	197136	87528384	21.0713
390	2.56410	152100	59319000	19.7484	445	2.24719	198025	88121125	
391	2.55754	152881	59776471	19.7737	446	2.24215	198916	88716536	21.1187
392	2.55102 2.54453	153664 154449	60236288 60698457	19.7990 19.8242	447	2.23714	199809	89314623	21.1424
393 394	2.54453 2.53807	154449 I 55236	60698457 61162984	19.8242 19.8494	448 449	2.23214 2.22717	200704	89915392 90518849	21.1660 21.1896
								9	21.1896

Smithsonian Tables.

VALUES OF RECIPROCALS, SQUARES, CUBES, AND SQUARE ROOTS

 OF NATURAL NUMBERS.| n | 1000. $\frac{1}{n}$ | n^{2} | n^{8} | $\sqrt{ } n$ | n | 1000. $\frac{1}{n}$ | n^{2} | n^{8} | $\sqrt{ } \times$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 450 | 2.22222 | 202500 | 91125000 | 21.2132 | 505 | 1.98020 | 255025 | 128787625 | 22.4722 |
| 451 | 2.21729 | 203401 | 91733851 | 21.2368 | 506 | 1.97628 | 256036 | 129554216 | 22.4944 |
| 452 | 2.21239 | 204304 | 92345408 | 21.2603 | 507 | 1. 97239 | 257049 | 130323843 | 22.5167 |
| 453 | 2.20751 | 205209 | 92959677 | 21.2838 | 508 | 1.9685° | 258064 | 131096512 | 22.5389 |
| 454 | 2.20264 | 206116 | 93576664 | 21.3073 | 509 | 1.96464 | 259081 | 131872229 | 22.5610 |
| 455 | 2.19780 | 207025 | 9419637 | 21.3307 | 510 | 1.96078 | 260100 | 132651000 | 22.5832 |
| 456 | 2.19298 | 207936 | 94818816 | 21.3542 | 511 | 1.95695 | 261121 | 133432831 | 22.6053 |
| 457 | 2.18818 | 208849 | 95443993 | 21.3776 | 512 | I. 95312 | 262144 | 134217728 | 22.6274 |
| 458 | 2.18341 | 209764 | 96071912 | 21.4009 | 513 | 1. 94932 | 263169 | 135005697 | 22.6495 |
| 459 | 2.17865 | 210681 | 96702579 | 21.4243 | 514 | I. 94553 | 264196 | 135796744 | 22.6716 |
| 460 | 2.17391 | 211600 | 97336000 | 21.4476 | 515 | 1.94175 | 265225 | 136590875 | 22.6936 |
| 461 | 2.16920 | 212521 | 97972181 | 21.4709 | 516 | 1.93798 | 266256 | 137388096 | 22.7156 |
| 462 | 2.1645° | 213444 | 98611128 | 21.4942 | 517 | 1.93424 | 267289 | 138188413 | 22.7376 |
| 463 | 2.15983 | 214369 | 99252847 | 21.5174 | 518 | 1.93050 | 268324 | 138991832 | 22.7596 |
| 464 | 2.15517 | 215296 | 99897344 | 21.5407 | 519 | 1.92678 | 269361 | 139798359 | 22.7816 |
| 465 | 2.15054 | 216225 | 1005446 | 21.5639 | 520 | 1.92308 | 270400 | 140608000 | 22.8035 |
| 466 | 2.14592 | 217156 | 101194696 | 21.5870 | 521 | 1.91939 | 271441 | 141420761 | 22.8254 |
| 467 | 2.14133 | 218089 | 101847563 | 21.6102 | 522 | 1.91571 | 272484 | 142236648 | 22.8473 |
| 468 | 2.13675 | 219024 | 102503232 | 21.6333 | 523 | 1.91205 | 273529 | 143055667 143877824 | 22.8692 22.8910 |
| 469 | 2.13220 | 219961 | 103161709 | 21.6564 | 524 | 1.90840 | 274576 | 143877824 | 22.8910 |
| 470 | 2.12766 | 220900 | 103823000 | 21.6795 | 525 | 1.90476 | 275625 | 144703125 | 22.9129 |
| 471 | 2.12314 | 221841 | 104487111 | 21.7025 | 526 | 1.90114 | 276676 | 145531576 146363183 | $\begin{aligned} & 22.9347 \\ & 22.9565 \end{aligned}$ |
| 472 | 2.11864 | 222784 | 105154048 | 21.7256 21.7486 | 527 | 1.89753 | 277729 | 146363183 | 22.9565 22.978 |
| 473 | 2.11416 | 223729 224676 | 105823817 | 21.7486 21.7715 | 528 529 | 1.89394 1.89036 | 278784 279841 | 147197952 148035889 | 22.9783 23.0000 |
| 474 | 2.10970 | 224676 | 106496424 | 21.7715 | 529 | 1.89036 | 279841 | 148035889 | 23.0000 |
| 475 | 2.10526 | 225625 | 107171875 | 21.7945 | 530 | r. 88679 | 280900 | 148877000 | 23.0217 |
| 476 | 2.10084 | 226576 | 107850176 | 21.8174 | 531 | 1.88324 | 281961 | 149721291 | 23.0434 |
| 477 | 2.09644 | 227529 | 108531333 | 21.8403 | 532 | 1.87970 | 283024 | 150568768 | 23.0651 |
| 478 | 2.09205 | 228484 | 109215352 | 21.8632 | 533 | 1.87617 | 284089 | 151419437 | 23.0868 |
| 479 | 2.08768 | 229441 | 109902239 | 21.886I | 534 | 1.87266 | 285156 | 152273304 | 23.1084 |
| 480 | 2.08333 | 2304 | 110592000 | 21.9089 | 535 | 1.86916 | 286225 | 153 | 23.1301 |
| 481 | 2.07900 | 231361 | 111284641 | 21.9317 | 536 | 1.86567 | 287296 | 153990656 | 23.1517 |
| 482 | 2.07469 | 232324 | 111980168 | 21.9545 | 537 | 1.86220 | 288369 | 154854153 | 23.1733 |
| 483 | 2.07039 | 233289 | 112678587 | 21.9773 | 538 | 1.85874 | 289444 | I 55720872 I 56590819 | 23.1948 23.2164 |
| 484 | 2.06612 | 234256 | 113379904 | 22.0000 | 539 | 1.85529 | 290521 | I 56590819 | 23.2164 |
| 485 | 2.06186 | | 114084125 | 22.0227 | 540 | 1.85185 | 291600 | 157464000 | 23.2379 |
| 486 | 2.05761 | 236196 | 114791256 | 22.0454 | 541 | 1. 848483 | 292681 | 158340421 | 23.2594 |
| 487 | 2.05339 | 237169 | 115501303 | 22.0681 | 542 | 1.84502 1.84162 | 293764 294849 | I 59220088
 160103007 | 23.2809 23.3024 |
| 488 | 2.04918 | 238144 | 116214272 | 22.0907 22.1133 | 543 544 | 1.844162 1.83824 | 294849 | 160103007 160989184 | 23.3024 23.3238 |
| 489 | 2.04499 | 239121 | 1 16930169 | 22.1133 | 544 | 1.83824 | 295936 | 160989184 | 23.3238 |
| 490 | 2.04082 | 240100 | 117649000 | $\begin{array}{r} 22.1359 \\ 22.1585 \end{array}$ | 545 | 1.83486 1.83150 | $\begin{aligned} & 297025 \\ & 298116 \end{aligned}$ | $\begin{aligned} & 161878625 \\ & 162771336 \end{aligned}$ | |
| 491 | 2.03666 | 241081 | 118370771 | $\begin{aligned} & 22.1585 \\ & 22.1811 \end{aligned}$ | 546 | 1.83150 1.82815 | $\begin{aligned} & 298116 \\ & 299209 \end{aligned}$ | $\begin{aligned} & 162771336 \\ & 1636673^{2} 3 \end{aligned}$ | $\begin{aligned} & 23 \cdot 3606 \\ & 23 \cdot 3880 \end{aligned}$ |
| 492 | 2.03252 2.02840 | 242064 | 119095488 119823157 | 22.1811 22.2036 | 547 548 | 1.82815 I. 82482 | 300304 | 164566592 | 23.4094 |
| 494 | 2.02429 | 244036 | I 20553378 | 22.2261 | 549 | 1.82149 | 301401 | 165469149 | 23.4307 |
| 495 | 2.02020 | | I2128737 | 22.2486 | 550 | 1.81818 | 302500 | 166375000 | 23.4521 |
| 496 | 2.01613 | 246016 | 122023936 | 22.2711 | 551 | I. 814888 | 303601 | 167284151 | 23.4734 |
| 497 | 2.01207 | 247009 | 122763473 | 22.2935 22.3159 | 552 | 1.81159 1.80832 | 304704 305809 | $\begin{aligned} & 168196608 \\ & 169112377 \end{aligned}$ | $\begin{aligned} & 23.4947 \\ & 23.5160 \end{aligned}$ |
| 498 | 2.00803 2.00401 | 248004 249001 | 123505992 124251499 | 22.3159 22.3383 | 553 | 1.80832 1.80505 | 306916 | 170031464 | 23.5372 |
| 499 | 2.00401 | 249001 | 12425149 | | 555 | | | | |
| 500 | 2.00000 | 250000 | 125000000 | 22.3607 22.3830 | 555 | $\begin{aligned} & \text { ェ. } 80180 \\ & \mathbf{1 . 7 9 8 5 6} \end{aligned}$ | $\begin{aligned} & 308025 \\ & 309136 \end{aligned}$ | $\begin{aligned} & 17953875 \\ & 171879616 \end{aligned}$ | $\begin{aligned} & \mathbf{2 3} \cdot 5584 \\ & \mathbf{2 3} 5797 \end{aligned}$ |
| 501 502 | 1.99601 1.99203 | 251001 | 125751501 126506008 | $\begin{aligned} & 22.3830 \\ & 22.4054 \end{aligned}$ | 556 | $\begin{aligned} & 1.79850 \\ & 1.79533 \end{aligned}$ | 310249
 18 | 172808693 | 23.6008 |
| 502 503 | 1.99203 1.98807 | 252004 253009 | 126506008 127263527 | 22.4277 | 558 | 1.79531 | 311364 | 173741112 | 23.6220 |
| 503 504 | 1.98807 1.98413 | 253009 254016 | 1272024064 1280 | 22.4499 | 559 | I .7889 I | 312481 | 174676879 | 23.6432 |

VALUES OF RECIPROCALS, SQUARES, CUBES, AND SQUARE ROOTS OF NATURAL NUMBERS.

n	1000. $\frac{1}{1}$	n^{2}	n^{8}	$\sqrt{ } \times$	n	1000. $\frac{1}{10}$	n^{2}	n^{8}	\sqrt{n}
560	1.78571	313600	175616000	23.6643	615	1.62602	378225	232608375	24.7992
561	1.78253	314721	176558481	23.6854	616	1.62338	379456	233744896	24.8193
562	1.77936	315844	177504328	23.7065	617	1.62075	380689	234885113	24.8395
563	1.77620	316969	178453547	23.7276	618	I.6I8I 2	381924	236029032	24.8596
564	1.77305	318096	179406144	23.7487	619	1.6155I	383161	237176659	24.8797
565	1.76991	319225	180362125	23.7697	620	1.61290	384400	238328000	24.8998
566	1.76678	320356	181321496	23.7908	621	1.61031	385641	239483061	24.9199
567	1.76367	321489	182284263	23.8118	622	I. 60772	386884	240641848	24.9399
568	1.7605^{6}	322624	183250432	23.8328	623	I. 60514	388129	241804367	24.9600
569	I. 75747	323761	184220009	23.8537	624	1.60256	389376	242970624	24.9800
570	I. 75439	324900	185193000	23.8747	625	1. 60000	390625	244140625	25.0000
571	1.75131	326041	186r694II	23.8956	626	I. 59744	391876	245314376	25.0200
572	I.74825	327184	187149248	23.9165	627	I. 59490	393129	246491883	25.0400
573	1.74520	328329	188132517	23.9374	628	r. 59236	394384	247673152	25.0599
574	1.74216	329476	189119224	23.9583	629	1.58983	395641	248858189	25.0799
575	1.73913	330625	190109375	23.9792	630	1.58730	396900	250047000	25.0998
576	1.73611	331776	191102976	24.0000	631	1. 58479	39816I	251239591	25.1197
577	I.73310	332929	192100033	24.0208	632	I. 58228	399424	252435968	25.1396
578	1.73010	334084	193100552	24.0416	633	1. 57978	400689	253636137	25.1595
579	1.72712	335241	194104539	24.0624	634	1.57729	401956	254840104	25.1794
580	1.72414	336400	195112000	24.0832	635	1.57480	403225	256047875	25.1992
581	1.72117	337561	196122941	24.1039	636	1. 57233	404496	257259456	25.2190
582	1.71821	338724	197137368	24.1247	637	1. 56986	405769	258474853	25.2389
583	1.71527	339889	198155287	24.1454	638	I. 56740	407044	259694072	25.2587
584	1.71233	341056	199176704	24.1661	639	1.56495	408321	260917119	25.2784
585	I. 70940	342225	200201625	24.1868	640	1. 56250	409600	262144000	25.2982
586	1.70648	343396	201230056	24.2074	641	I. 56006	410881	263374721	25.3180
587	1.70358	344569	202262003	24.2281	642	1.55763	412164	264609288	25.3377
588	1.70068	345744	203297472	24.2487	643	1.55521	413449	265847707	25-3574
589	1.69779	346921	204336469	24.2693	644	1.55280	414736	267089984	25.3772
590	1. 69492	348100	205379000	24.2899	645	1.55039	416025	268336125	25-3969
591	1.69205	349281	206425071	24.3105	646	1. 54799	417316	269586136	25.4165
592	1.68919	350464	207474688	24.3311	647	1.54560	418609	270840023	25.4362
593	1. 68634	351649	208527857	24.3516	648	1.5432I	419904	272097792	25-4558
594	1.68350	352836	209584584	24.3721	649	1.54083	421201	273359449	25.4755
595	1. 68067	354025	210644875	24.3926	650	1. 53846	422500	274625000	25.4951
596	1. 67785	355216	211708736	24.4131	651	1.53610	423801	275894451	25.5147
597	1.67504	356409	212776173	24.4336	652	1.53374	425104	277167808	25.5343
598	1.67224	357604	213847192	24.4540	653	1.53139	426409	278445077	25.5539
599	1.66945	358801	214921799	24.4745	654	1.52905	427716	279726264	25.5734
600	1.66667	360000	216000000	24.4949	655	1.52672			
601	1.66389	361201	217081801	24.5153	656	1. 52439	430336	282300416	25.6125
602	I. 66113	362404	218167208	24.5357	657	1.52207	431649	283593393	25.6320
603 604	1.65837	363609 364816	219256227 220348864	24.5561 24.5764	658	I. 51976	432964	284890312	25.6515
	1.6550	36481	220348864	24.5764	659	1.51745	43428I	286191179	25.6710
605	1.65289	366025	221445125	24.5967	660	1. 51515	435600	287496000	25-6905
606	1.65017	367236	222545016	24.6171	661	1.51286	436921	288804781	25.7099
607 608	1.64745 1.64474	368449 360664	223648543	24.6374	662	1. 51057	438244	290117528	25.7294
608	1. 644474	369664	224755712	24.6577	663	1. 50830	439569	291434247	25.7488
609	1.64204	370881	225866529	24.6779	664	1.50602	440896	292754944	25.7682
610	1.63934	372100	226981000	24.6982	665	1.50376	442225	294079625	25.7876
611	1. 63666	373321	228099131	24.7184	666	1.50150	443556	295408296	25.8070
612	1.63399	374544	229220928	24.7386	667	1.49925	444889	296740963	25.8263
613	1.63132	375769	230346397	24.7588	668	I. 49701	446224	298077632	25.8457
614	1.62866	376996	231475544	24.7790	669	1.49477	447561	299418309	25.8650

Smithsonian Tables.

VALUES OF RECIPROCALS, SQUARES, CUBES, AND SQUARE ROOTS OF NATURAL NUMBERS.

n	1000. $\frac{1}{n}$	n^{2}	n^{8}	\sqrt{n}	n	1000. $\frac{1}{n}$	n^{2}	n^{3}	n
670	1.49254	448900	300763000	25.8844	725	1.3793I	525625	381078125	26.9258
671	1.49031	45024 I	302111711	25.9037	726	1.3774	527076	382657176	26.9444
672	I. 488 IO	451584	303464448	25.9230	727	1. 37552	528529	384240583	26.9629
673	I. 48588	452929	304821217	25.9422	728	1.37363	529984	385828352	26.9815
674	1.48368	454276	306182024	25.9615	729	1.37174	531441	387420489	27.0000
675	1.48148	455625	307546875	25.9808	730	1.36986	532900	389017000	27.0185
676	1.47929	456976	308915776	26.0000	731	I. 36799	534361	390617891	27.0370
677	1.47710	458329	310288733	26.0192	732	1.36612	535824	392223168	27.0555
678	I. 47493	459684	$3^{11665752}$	26.0384	733	1.36426	537289	393832837	27.0740
679	1.47275	461041	313046839	26.0576	734	1.36240	538756	395446904	27.0924
680	1.47059	462400	314432000	26.0768	735	1. 36054	540225	397065375	27.1109
68	I. 46843	463761	315821241	26.0960	736	1.35870	541696	398688256	27.1293
682	1. 4662	465124	317214568	26.1151	737	ז. 35685	543169	400315553	27.1477
683	[.4641	466489	318611987	26.1 343	738	I. 35501	544644	401947272	27.1662
684	1.46199	467856	320013504	26.1534	739	1.35318	546121	403583419	27.1846
685	1.45985	469225	321419125	26.1725	740	I. 35135	547600	405224000	27.2029
686	1.45773	470596	322828856	26.1916	741	I. 34953	549081	406869021	27.2213
687	1.45560	471969	324242703	26.2107	42	1.34771	550564	408518488	27.2397
688	1.45349	473344	325660672	26.2298	743	1.34590	552049	410172407	27.2580
689	1.45138	474721	327082769	26.2488	744	I. 34409	553536	411830784	27.2764
690	1.44928	476100	328509000	26.2679	745	1. 34228		413493625	27.2947
691	1.44718	477481	329939371	26.2869	746	1.34048	556516	415160936	27.3130
692	1.44509	478864	331373888	26.3059	747	I. 33869	558009	416832723	27.3313
693	1.44300	480249	332812557	26.3249	748	1.33690	559504	418508992	27.3496
694	1.44092	48×636	334255384	26.3439	749	1.33511	561001	420189749	27.3679
695	1.43	48	335	26.3	750	1.33333	562500	421875000	27.386 I
696	1. 4367	484416	337153536	26.3818	751	1.33156	564001	423564751	27.4044
697	I. 4347	485809	338608873	26.4008	752	1.32979	565504	425259008	27.4226
698	I.4326	487204	340368392	26.4197	753	1.32802	567009	426957777	27.4408
699	1.43062	488601	341532099	26.4386	754	1. 32626	568516	428661064	27.4591
700	1.42857	490000	343000000		755	1.32450	570025	430368875	27.4773
701	1.42653	491401	344472101	26.4764	756	1.32275	571536	432081216	27.4955
702	I. 42450	492804	345948408	26.4953	757	1.32100	573049	433798093	27.5136
703	I. 42248	494209	347428927	26.5141	758	1.31926	574564	435519512	27.5318 27.5500
704	I. 42045	495616	348913664	26.5330	759	1.3175^{2}	576081	437245479	27.5500
705	1.4184		35040262	26.5518	760	1.31579	577600	438976000	
706	I. 41643	498436	351895816	26.5707	761	I. 31406	579121	440711081	27.5862
707	I. 41443	499849	353393243	26.5895	762	I. 31234	580644	442450728	27.6043
708	1.41243	501264	354894912	26.6083	763	I. 312382 I. 30890	582169 583696	444194947 445943744	27.6225 27.6405
709	1.41044	502681	356400829	26.627 I	764	1.30890	583696	445943744	5
710	1.40845	504100	357911000	26.6458	765	1.30719	585225	447697125	27.6586
711	I. 40647	505521	35942543I	26.6646	766	1.30548	586756	449455096	27.6767
712	I. 40449	506944	360944128	26.6833	767	1.30378	588289	$45^{1217663}$	27.6948
713	1.40252	508369	362467097	26.7021	768	1.30208	589824	452984832 454756609	27.7128 27.7308
714	1.40056	509796	363994344	26.720	769	I. 30039	591361	454756609	27.7308
715	r. 39860	511225	36552587	26.7395	770	1.29870	592900	456533000	27.7489
716	1. 39665	512656	367061696	26.7582	771	1.29702	594441		27.7669 27.7849
717	I. 39470	514089	368601813	26.7769 26.7955	772	1.29534 I. 29366	. 595984	460099648 461889917	
718	1.39276	515524	370146232	26.7955 26.8142	773 774	1.29366 1.29199	597529 599076	$\begin{aligned} & 46188997 \\ & 463684824 \end{aligned}$	$\begin{aligned} & 27.8029 \\ & 27.8209 \end{aligned}$
719	I. 39082	516961	371694959	26.8142	774	1.29199	599076	463684824	27.8209
720	I. 38889	518400	373248000	26.8328	775	1.29032	600625	465484375	
721	1.38696	519841	374805361	26.8514	776	1. 28866	602176 603729	467288576 469097433	$\begin{aligned} & 27.8568 \\ & 27.8747 \end{aligned}$
722	I. $3_{8}^{85} 54$	521284	376367048 377933067	26.8701 26.8887	777 778	1.28700 I .28535	605284	$\begin{aligned} & 409097433 \\ & 470910952 \end{aligned}$	27.8927
723	1.38313	522729	377933067 379503424	26.8887 26.9072	778 779	1.28535 1.28370	60684 I	472729139	27.9106
724	1.38122	524176	379503424	$26.90{ }^{2}$	779	1.28370	60634		

Smithsonian Tables.

VALUES OF RECIPROCALS, SQUARES, CUBES, AND SQUARE ROOTS OF NATURAL NUMBERS.

n	$1000 \cdot \frac{1}{n}$	n^{2}	n^{3}	\sqrt{n}	n	1000. $\frac{1}{n}$	n^{2}	n^{8}	\sqrt{n}
780	1. 28205	608400	474552000	27.9285	835	1.19760	697225	582182875	28.8964
781	1.28041	609961	476379541	27.9464	836	1.19617	698896	584277056	28.9137
782	1. 27877	611524	478211768	27.9643	837	I. 19474	700569	586376253	28.9310
783	1.27714	613089	480048687	27.9821	838	I.19332	702244	588480472	28.9482
784	1.2755^{1}	614656	481890304	28.0000	839	1.19190	703921	590589719	28.9655
785	1.27389	616225	483736625	28.0179	840	1.19048	705600	592704000	28.9828
786	1.27226	617796	485587656	28.0357	841	1.18906	707281	59482332 I	29.0000
787	1.27065	619369	487443403	28.0535	842	1.18765	708964	596947688	29.0172
788	1.26904	620944	489303872	28.0713	843	1.18624	710649	599077107	29.0345
789	I. 26743	622521	491169069	28.0891	844	1.18483	712336	601211584	29.0517
790	1.26582	624100	493039000	28.1069	845	1.18343	714025	603351125	29.0689
791	1.26422	625681	494913671	28.1247	846	1.18203	715716	605495736	29.0861
792	1.26263	627264	496793088	28.1425	847	I.18064	717409	607645423	29.1033
793	1.26103	628849	498677257	28.1603	848	1.17925	719104	609800192	29.1204
794	1.25945	630436	500566184	28.1780	849	I.17786	720801	611960049	29.1376
795	1.25786	632025	502459875	28.1957	850	I.17647	722500	614125000	29.1548
796	I. 25628	633616	504358336	28.2135	851	I.17509	724201	616295051	29.1719
797	1.2547 I	635209	506261573	28.2312	852	1.17371	725904	618470208	29.1890
798	1.25313	636804	508169592	28.2489	853	1.17233	727609	620650477	29.2062
799	1.25156	638401	510082399	28.2666	854	1.17096	729316	622835864	29.2233
800	1.25000	640000	512000000	28.2843	855	I. 16959	731025	625026375	29.2404
801	1.24844	641601	513922401	28.3019	856	1.16822	732736	627222016	29.2575
802	1. 24688	643204	515849608	28.3196	857	I. 16686	734449	629422793	29.2746
803	1.24533	644809	517781627	28.3373	858	1.16550	736164	631628712	29.2916
804	1. 24378	646416	519718464	28.3549	859	1.16414	737881	633839779	29.3087
805	1.24224	648025	521660125	28.3725	860	1.16279	739600	636056000	29.3258
806	1.24069	649636	523606616	28.3901	861	1.16144	741321	638277381	29.3428
807	1.23916	651249	525557943	28.4077	862	1.16009	743044	640503928	29.3598
808 809	1.23762 I. 23609	652864	527514112	28.4253	863	1.15875	744769	642735647	29.3769
809	1. 23609	654481	529475129	28.4429	864	1.15741	746496	644972544	29.3939
810	1.23457	656100	531441000	28.4605	865	1.15607	748225	647214625	29.4109
811	1.23305	657721	533411731	28.478 I	866	I.15473	749956	649461896	29.4279
812	1.23153	659344	535387328	28.4956	867	1.15340	751689	651714363	29.4449
813 814	I. 23001	660969	537367797	28.5132	868	1.15207	753424	653972032	29.4618
814	I. 22850	662596	539353144	28.5307	869	1.15075	755161	656234909	29.4788
815	1.22699			28.5482	870	1.14943	756900		
816 817	1.22549	665856	543338496	28.5657	871	1.14811	758641	660776311	29.5127
817 818 81	1.22399	667489	545338513	28.5832	872	1.14679	760384	663054848	29.5296
818 819	1.22249	669124 670761	547343432	28.6007	873	1.14548	762129	665338617	29.5466
	1.22		549353259		74	1.14416	763876	667627624	29.5635
820	1.21951	672400	551368000	28.6356	875	I. 14286	765625	669921875	29.5804
821	1.21803	674041	553387661	28.6531	876	1.14155	767376	672221376	29.5973
822	1.21655	675684	555412248	28.6705	877	I.14025	769129	674526r33	29.6142
823 824	1.21507	677329	557441767	28.6880	878	I. 13895	770884	676836152	29.6311
824	1.21359	678976	559476224	28.7054	879	1.13766	772641	679151439	29.6479
825	1.21212	680625	561515625	28.7228	880	I. 13636	774400	681472000	29.6648
826 827	1.21065 I. 20919	682276 683929	563559976	28.7402	88 I	I.13507	776161	683797841	29.6816
827 828	1.20919 1.20773	683929 68554	565609283	28.7576 28.7750	882 883	1.13379	777924	686128968	29.6985
828 829	1.20773 1.20627	685584 687241	567663552 569722789	28.7750 28.7924	883 884	1.13250 1.13122	779689 781456	688465387 690807104	29.7153 29.7321
830	1. 20482	688900	571787000	28.8097	885	1.12994	783225		
831	1.20337	690561	573856191	28.827 I	886	1.12867	784996	695506456	29.7658
832	I. 20192	692224	575930368	28.8444	887	1.12740	786769	697864103	29.7825
833	I. 20048	693889	578009537	28.8617	888	1.12613	788544	700227072	29.7993
834	1. 19904	695556	580093704	28.8791	889	I.12486	790321	702595369	29.8161

Smithsonian Tables.

VALUES OF RECIPROGALS, SQUARES, CUBES, AND SQUARE ROOTS OF NATURAL NUMBERS.

n	1000. $\frac{1}{11}$	n^{2}	n^{8}	\sqrt{n}	n	1000. $\frac{1}{n}$	n^{2}	n^{8}	\sqrt{n}
890	1.12360	792100	704969000	29.8329	945	1.05820	893025	843908625	30.7409
891	I. 12233	793881	707347971	29.8496	946	1.05708	894916	846590536	30.7571
892	1.12108	795664	709732288	29.8664	947	1.05597	896809	849278123	30.7734
893	1.11982	797449	712121957	29.8831	948	1.05485	898704	851971392	30.7896
894	1.11857	799236	714516984	29.8998	949	1.05374	900601	854670349	30.8058
895	1.11732	801025	716917375	29.9166	950	1.05263	902500	857375000	30.8221
896	1.11607	802816	719323136	29.9333	951	1.05152	904401	86008535I	30.8383
897	1.11483	804609	721734273	29.9500	952	1.05042	906304	862801408	30.8545
898	1.11359	806404	724150792	29.9666	953	1.04932	908209	865523177	30.8707
899	I.11235	808201	726572699	29.9833	954	1.04822	910116	868250664	30.8869
900	1.11111	810000	729000000	30.0000	955	1.04712	912025	870983875	30.9031
901	I. 10988	811801	731432701	30.0167	956	1.04603	913936	873722816	30.9192
902	1.10865	81 3604	733870808	30.0333	957	1.04493	915849	876467493	30.9354
903	1.10742	815409	736314327	30.0500	95^{8}	1.04384	917764	879217912	30.9516
904	1.10619	817216	738763264	30.0666	959	1.04275	919681	881974079	30.9677
905	1.10497	819025	74121762	30.0832	960	1.04167	921600	884736000	30.9839
906	I. 10375	820836	7436774	30.099	961	1.04058	923521	887503681	31.0000
907	1.10254	822649	746142643	30.1164	962	1.03950	925444	890277128	31.0161
908	I.10132	824464	748613312	30.1330	963	1.03842	927369	893056347	31.0322
909	1.1001 1	826281	751089429	30.1496	964	1.03734	929296	895841344	31.0483
910	1.09890	828100	753571000	30.1662	965	1.03627	931225	898632125	31.0644
911	1.09769	829921	756058031	30.1828	966	1.03520	933156	901428696	31.0805
912	1.09649	831744	758550528	30.1993	967	1.03413	935089	904231063	31.0966
913	1.09529	833569 835396	761048497	30.2159	968	1.03306	937024	907039232	31.1127
914	1.09409	835396	763551944	30.2324	969	1.03199	938961	909853209	31.1288
915	1.09290	837225	76606087	30.2490	970	1.03093	940900	912673000	31.1448
916	1.09170	839056	768575296	30.2655	971	1.02987	942841	915498611	31.1609
917	1.09051	840889	771095213	30.2820	972	1.02881	944784	918330048	31.1769
918	1.08932	842724	773620632	30.2985	973	1.02775	946729	921167317	31.1929
919	1.08814	844561	776151559	30.3150	974	1.02669	948676	924010424	31.2090
920	1.08696	846400	778688000	30.331	975	1.02564	950625	926859375	31.2250
921	1.0857^{8}	848241	781229961	30.348	976	1.02459	952576	929714176	31.2410
922	1.08460	850084	78377744^{8}	30.3645	977	1.02354	954529	932574833	31.2570
923	I. 08342	851929 853776	786330467	30.3809	978	1.02249	956484	935441352	31.2730 31.2890
924	1.08225	853776	788889024	30.3974	979	1.02145	958441	938313739	31.2890
925	1.08108	855625	791453125	30.4138	980	1.02041	960400	941192000	31.3050
926	1.07991	857476	794022776	30.4302	981	1.01937	962361	944076141	31.3209
927	1.07875	859329	796597983	30.4467	982	1.01833	964324	946966168	31.3369
928	I. 07759	861184	799178752	30.4631	983	1.01729	966289	949862087	31.3528 31.3688
929	1.07643	863041	801765089	30.4795	984	1.01626	968256	952763904	31.3688
930	1.07527	864900	804357000	30.4959	985	1.01523	970225	955671625	31.3847
931	1.07411	86676I	806954491	30.5123	986	1.01420	972196	958585256	31.4006
932	1.07296	868624	809557568	30.5287	987	1.01317	974169	961504803	31.4166
933	1.07181	870489	812166237	30.5450	988	1.01215	976144	964430272 967361669	31.4325 31.4484
934	1.07066	872356	814780504	30.5614	989	1.0	978121	967361669	31.4484
935	1.06952	874225	817400375	30.577^{8}	990	1.01010	980100	970299000	31.4643
936	1.06838	876096	820025856	30.5941	991	1.00908	982081	973242271	31.4802
937	1.06724	877969	822656953	30.6105	992	1.00806	984064	976191488	31.4960 31.519
938	1.06610	879844	825293672	30.6268	993 994	1.00705 1.00604	986049 988036	979146657 982107784	31.5119 31.5278
939	1.06496	881721	827936019	30.6431	994	1.00604	988036	982107784	31.5278
940	1.06383	883600	830584000		995	1.00503	990025	985074875	31.5436
941	1.06270	88548 I	833237621	30.6757	996	1.00402	992016	988047936	31.5595 31.5753
942	1.061 57	887364	835896888	30.6920	997	1.00301	994009	991026973	31.5753
943	1.06045	889249	838561807 841232384	30.7083 30.7246	998	1.00200	996004 998001	994011992 997002999	31.5911 31.6070
944	1.05932	891136	841232384	30.7246	999	1.00100	998001	997002999	31.6070

Smithsonian Tables.

N.	0	1	2	3	4	5	6	7	8	9	10
100	0000	0004	0009	0013	0017	0022	0026	0030	0035	0039	0043
101	0043	0048	0052	0056	0060	0065	0069	0073	0077	0082	
102	0086	0090	0095	0099	0103	0.07	OIII	OII6	0120	0124	O128
103	0128	OI 33	0137	0141	0145	or 49	OI 54	OI 58	0162	0166	O170
104	O170	or 75	0179	-183	0187	OIgI	0195	0199	0204	0208	0212
105	0212	0216	0220	0224	0228	0233	0237	0241	0245	0249	0253
106	0253	0257	0261	0265	0269	0273	0278	0282	0286	0290	0294
107	0294	0298	0302	0306	0310	0314	0318	0322	0326	0330	0334
108	0334	0338	0342	0346	0350	0354	O358	0362	0366	0370	0374
109	$\bigcirc 374$	0378	$\bigcirc 0^{82}$	O386	0390	0394	0398	0402	0406	0410	0414
110	0414	0418	0422	0426	0430	04.34	0438	0441	0445	0449	0453
111	0453	0457	0461	0465	0469	0473	0477	0481	0484	0488	0492
112	0492	0496	0500	0504	0508	0512	0515	0519	0523	0527	0531
113	0531	0535	$\bigcirc 538$	0542	0546	0550	0.554	0558	0561	0565 0603	0569
114	0569	0573	0577	0580	0584	0588	0592	O596	O599	0603	0607
115	0607	0611	0615	0618	0622	0626	0630	0633	0637	0641	0645
116	0645	0648	0652	0656	0660	0663	0667	0671	0674	0678	0682
117	0682	0686	0689	0693	0697	0700	0704	0708	0711	0715	0719
118	0719	0722	0726	0730	0734	0737	0741	0745	0748	0752	0755
119	0755	0759	0763	0766	0770	0774	0777	0781	0785	0788	0792
120	0792	0795	0799	0803	0806	0810	0813	0817	0821	0824	0828
121	0828	0831	0835	0839	0842	0846	0849	0853	0856	0860	0864
122	0864	0867	0871	0874	0878	0881	0885	0888	0892	-896	0899
123	0899	0903	0906	0910	0913	0917	0920	0924	0927	0931	0934
124	0934	0938	0941	0945	0948	0952	0955	0959	0962	0966	0969
125	0969	0973	0976	0980	0983	0986	0990	0993	0997	1000	1004
126	1004	1007	1011	1014	1017	1021	1024	1028	1031	1035	1038
127	1038	1041	1045	1048	1052	1055	1059	1062	1065	1069	1072
128	1072	1075	1079	1082	1086	1089	1092	1096	1099	1103	1106
129	1106	1109	1113	II16	1119	1123	1126	1129	1133	1136	1139
130	1139	1143	1146	1149	1153	1156	I159	1163	1166	1169	$\begin{array}{r}173 \\ \hline 1206\end{array}$
131	1173	1176	1179	1183	1186	1189	I193	1196 1229	1199 1232	1202 1235	1206
132	1206	1209	1212	1216	1219	1222	1225	1229	1232	1235	1239
133	1239	1242	1245	1248	125	1255	1258	1261	1265	1268	1271
134	1271	1274	1278	I28I	1284	1287	1290	1294	1297	1300	1303
135	1303	1307	1310	1313	1316	1319	1323	1326	1329	I 332	1335
136	1335	1339	1342	1345	${ }^{1} 348$	1351	1355	1358	1361	1364	1367
137	1367	1370	1374	1377	1380	1383	1386	1389	1392	I 396	1399
138	1399	1402	1405	1408	1411	1414	1418	1421	1424	1427	1430
- 39	1430	1433	1436	1440	1443	1446	1449	1452	1455	1458	1461
140	1461	1464	1467	1471	1474	1477	1480	1483	1486	1489	1492
141	1492	1495	1498	1501	1504	1508	1511	1514	1517	1520	1523
142	${ }^{1} 523$	1526	I 529	1532	1535	1538	1541	I 544	1547	1550	1553
143	I 553	1556	1559	1562	1565	I 569	1572	1575	${ }^{1} 578$	1581	1584
144	1584	1587	- 590	1593	1596	I 599	1602	1605	1608	1611	1614
145	1614	1617	1620	1623	1626	1629	1632	1635	1638	1641	1644
146	1644	1647	1649	1652	1655	1658	1661	1664	1667	1670	1673
147	1673	1676	1679	1682	1685	1688	1691	1694	1697	1700	1703
148	1703	1706	1708	1711	1714	1717	1720	1723	1726	1729	1732
149	1732	1735	1738	1741	1744	1746	1749	1752	1755	1758	1761

Smithsonian Tables.

LOGARITHMS.

N.	0	1	2	3	4	5	6	7	8	9	10
150	1761	1764	1767	1770	1772	1775	1778	1781	1784	1787	1790
151	1790	1793	1796	1798	1801	1804	1807	1810	1813	1816	1818
152	1818	1821	1824	1827	1830	1833	1836	1838	1841	1844	1847
153	1847	1850	1853	1855	1858	1861	1864	1867	1870	1872	1875
154	1875	1878	1881	1884	1886	1889	1892	1895	1898	1901	1903
155	1903	1906	1909	1912	1915	1917	1920	1923	1926	1928	1931
156	193 I	1934	1937	1940	1942	1945	1948	1951	1953	1956	1959
157	1959	1962	1965	1967	1970	1973	1976	1978	1981	1984	1987
158	1987	1989	1992	1995	1998	2000	2003	2006	2009	2011	2014
I 59	2014	2017	2019	2022	2025	2028	2030	2033	2036	2038	2041
160	2041	2044	2047	2049	2052	2055	2057	2060	2063	2066	2068
161	2068	2071	2074	2076	2079	2082	2084	2087	2090	2092	2095
162	2095	2098	2101	2103	2106	2109	2111	2114	2117	2119	2122
163	2122	2125	2127	2130	2133	2135	2138	2140	2143	2146	2148
164	2148	2151	2154	2156	2159	2162	2164	2167	2170	2172	2175
165	2175	2177	2180	2183	2185	2188	2191	2193	2196	2198	2201
166	2201	2204	2206	2209	2212	2214	2217	2219	2222	2225	2227
167	2227	2230	2232	2235	2238	2240	2243	2245	2248	2251	2253
168	2253	2256	2258	2261	2263	2266	2269	2271	2274	2276	2279
169	2279	2281	2284	2287	2289	2292	2294	2297	2299	2302	2304
170	2304	2307	2310	2312	2315	2317	2320	2322	2325	2327	2330 2355
171	2330	2333	2335	2338	2340	2343	2345	2348	2350	2353	2355
172	2355	2358	2360	2363	2365	2368	2370	2373	2375	2378	2380
173	2380	2383	2385	2388	2390	2393	2395	2398	2400	2403	2405
174	2405	2408	2410	2413	2415	2418	2420	2423	2425	2428	2430
175	2430	2433	2435	2438	2440	2443	2445 2470	2448 2472	2450	2453 2477	
176	2455	2458	2460	2463	2465	2467	2470	2472 2497	2475	2477 2502	2480 2504
177	2480	2482	2485	2487	2490	2492	2494	2497	2499	2502 2526	
178	2504	2507	2509	2512 2536	2514 2538	2516 2541	2519 2543	2521 2545	2524 2548	2526 2550	2529 2553
179	2529	2531	2533	2536	253	2541	2543	2545		550	
180	2553	2555	2558	2560	2562	2565	2567	2570	2572	2574	2577
181	2577	2579	2582	2584	2586	2589	2591	2594	2596	2598	2601
182	2601	2603	2605	2608	2610	26 I 3	2615	2617	2620	2622	2625
183	2625	2627	2629	2632	2634	2636	2639	2641	2643	2646	2648 2672
184	2648	2651	2653	2655	2658	2660	2662	2665	2667	2669	2672
185	2672	2674	2676	2679	2681	2683	2686	2688	2690	2693	2695 2718
186	2695	2697	2700	2702	2704	2707	2709	2711	2714	2716	2718 2742
187 188	2718	2721	2723	2725 2749	2728 2751	2730 2753	2732 2755	2735 2758	2737 2760	2739 2762	2742 2765
188 189	2742 2765	2744 2767	2746 2769	2749 2772	2751 2774	2753 2776	2755 2778	2758 2781	2760 2783	2785	2788
189 190	2765 2788	2767 2790	2769	2772 2794	2774 2797	2776 2799	2801 280	2804 281	2806	2808	2810
190	2810	2813	2815	2817	2819	2822	2824	2826	2828	2831	2833 286
192	2833	2835	2838	2840	2842	2844	2847	2849	2851 2874	2853 2876	2850 2878
193	2856	2858	2860	2862	2865	2867	2869	2871	2874	2876 2898	
194	2878	2880	2882	2885	2887	2889	2891	2894	2896	2898	2900
195	2900	2903	2905	2907	2909	2911	2914	2916	2918	2920	2923
196	2923	2925	2927	2929	2931	2934	2936	2938	2940	2942 2964	2945 2967
197	2945	2947	2949	2951 2973	2953	2956 2978	2958 2980		2962	2964 2986	2989
198	2967	2969	2971	2973 2995	2975	2978 2999	2980 3002	3082	3006	3008	3010
199	2989	2991	2993	2995	2997	2999	30				

Smithsonian Tables.

Table 10.
LOGARITHMS.

N	0	1	2	3	4	5	6	7	8	9	P. P.				
											1	2	3	4	5
10	0000.	0043	0086	0128	0170	0212	0253	0294	0334	0374	4	8	12	17	21
11	0414	0453	0492	0531	0569	0607	0645	0682	0719	0755	4	8	11	15	19
12	0792	0828	0864	0899	0934	0969	1004	1038	1072	1106	3	7	10	14	17
13	1139	1173	1206	1239	1271	1303	1335	1367	1399	1430	3	6	10	13	16
14	1461	1492	1523	1553	1584	1614	1644	1673	1703	1732	3	6	9	12	15
15	1761	1790	1818	1847	1875	1903	1931	1959	1987	2014	3	6	8	11	14
16	2041	2068	2095	2122	2148	2175	2201	2227	2253	2279	3	5	8	11	13
17	2304	2330	2355	2380	2405	2430	2455	2480	2504	2529	2	5	7	10	12
18	2553	2577	2601	2625	2648	2672	2695	2718	2742	2765	2	5	7	9	12
19	2788	2810	2833	2856	2878	2900	2923	2945	2967	2989	2	4	7	9	11
20	3010	3032	3054	3075	3096	3118	3139	3160	3181	3201	2	4	6	8	11
21	3222	3243	3263	3284	3304	3324	3345	3365	3385	3404	2	4	6	8	10
22	3424	3444	3464	3483	3502	3522	3541	3560	3579	3598	2	4	6	8	10
23	3617	3636	3655	3674	3692	3711	3729	3747	3766	3784	2	4	5	7	9
24	3802	3820	3838	3856	3874	3892	3909	3927	3945	3962	2	4	5	7	9
25	3979	3997	4014	4031	4048	4065	4082	4099	4116	4133	2	3	5	7	9
26	4150	4166	4183	4200	4216	4232	4249	4265	4281	4298	2	3	5	7	8
27	4314	4330	4346	4362	4378	4393	4409	4425	4440	4456	2	3	5	6	8
28	4472	4487	4502	4518	4533	4548	4564	4579	4594	4609	2	3	5	6	8
29	4624	4639	4654	4669	4683	4698	4713	4728	4742	4757	1	3	4	6	7
30	4771	4786	4800	4814	4829	4843	4857	4871	4886	4900	I	3		6	7
3 I	4914	4928	4942	4955	4969	4983	4997	5011	5024	5038	1	3	4	6	7
32	5051	5065	5079	5092	5105	5119	5132	5145	5159	5172	I	3		5	7
33	5185	5198	5211	5224	5237	5250	5263	5276	5289	5302	I	3	4	5	6
34	5315	5328	5340	5353	5366	5378	5391	5403	5416	5428	I	3	4	5	6
35	5441	5453	5465	5478	5490	5502	5514	5527	5539	5551	1	2	4	5	6
36	5563	5575	5587	5599	5611	5623	5635	5647	5658	5670	I	2	4	5	6
37	5682	5694	5705	5717	5729	5740	5752	5763	5775	5786	I	2	3	5	6
38	5798	5809	5821	5832	5843	5855	5866	5877 5088	5888	5899	I	2	3	5	6
39	5911	5922	5933	5944	5955	5966	5977	5988	5999	6010	I	2	3	4	6
40	6021	6031	6042	6053	6064	6075	6085	6096	6107	6117	I	2	3	4	5
41	6128	61 38	6149	6160	6170	6180	6r91	6201	6212	6222	I	2	3	4	5
42	6232	6243	6253	6263	6274	6284	6294	6304	6314	6325	I	2	3	4	5
43	6335	6345	6355	6365	6375	6385	6395	6405	6415	6425	I	2	3	4	5
44	6435	6444	6454	6464	6474	6484	6493	6503	6513	6522	I	2	3	4	5
45	6532	6542						6599		6618	1	2	3	4	5
46	6628	6637	6646	6655	6665	6675	6584	6693	6702	6712	J	2	3	4	5
47	6721	$673{ }^{\circ}$	6739	6749	6758	6767	6776	6785	6794	6803	I	2	3	4	5
48	6812	6821	6830	6839	6848	6857	6866	6875	6884	6893	I	2	3	4	4
49	6902	6911	6920	6928	6937	6946	6955	6964	6972	6981	J	2	3	4	4
50	6990	6998	7007	7016	7024	7033	7042	7050	7059	7067	1	2	3	3	4
51	7076	7084	7093	7101	7110	7118	7126	7135	7143	7152	I	2	3	3	4
52	7160	7168	7177	7185 7267	7193	7202 7284	7210 7292	7218	7226 7308	$\begin{aligned} & 7235 \\ & 7216 \end{aligned}$	1	2	2	3	4
53 54	7243 7324	7251 7332	7259 7340	7267 7348	7275 7356	7284 7364	7292 7372	7300 7380	7308 7388	$\begin{aligned} & 7316 \\ & 7396 \end{aligned}$	1	2	2	3 3	4

Smithsonian Tableb,

LOGARITHMS.

N.	0	1	2	3	4	5	6	7	8	9	P. P.				
											1	2	3	4	5
55	7404	7412	7419	7427	7435	7443	7451	7459	7466	7474	1	2	2	3	4
56	7482	7490	7497	7505	7513	7520	7528	7536	7543	7551	1	2	2	3	4
57 58	7559	7566	7574	7582	7589	7597	7604	7612	7619	7627	1	2	2	3	4
58	7634	7642	7649	7657	7664	7672	7679	7686	7694 7767	7701	1	I	2	3	4
59	7709	7716	7723	773 I	7738	7745	775	7760	7767	7774	1	1	2	3	4
60	7782	7789	7796	7803	7810	7818	7825	7832	7839	7846	I	1	2	3	4
61	7853	7860	7868	7875	7882	7889	7806	7903	7910	7997	I	1	2	3	4
62	7924	793 I 8000 8	7938 8007	7945 8014	7952 8021	7959 8028	7966	7973 8045	7980 8048	7987 8055	I		2	3	3
63 64	7993	88069	8075	8082	88089	8096	8102	8109	8116	8122	I	1	2	3	3
65	8129	8 r 36	8142	8149	8 r 56	8162	8169	8176	8182	8189				3	3
66	8195	8202	8209	8215	8222	8228	8235	8241	8248	8254	I	1	2	3	3
67	826 T	8267	8274	8280	8287	8293	8299	8306 8370	8312 837	8319 8382	I	1	2	3	3
68	8325	8331	8338	8344	8351	8357	8363	8370	8376	8382 8445	I	I	2	3	3
69	8388	8395	8401	8407	8414	8420	8426	8432	8439	8445	1	1	2	3	3
70	8451	8457	8463	8470	8476	8482	8488	8494	8500	8506	I	I	2	2	3
71	8513	8519	8525	8531	8537	8543	${ }_{8549}$	8	8561	8567	I	I		2	3
72	8573	8579	8585	8591 8651	8597 865	8603	88669	8615 8675	${ }_{8681}^{8621}$	88686	I	r	2	2	3
73 74	8693	8639 86	8645 8704	8651 8710	8657 8716	862 872	8727	8733	8739	8745	1	I	2	2	3
75	87	8756	8762	8768	8774	8779	8785	8791	8797	8802	I	I		2	3
76	8808	8814	8820	8825	883 I	8837	8842	8848	8854	8859	1	I	2	2	3
77	8865	8871	8876	8882	8887	8893	8899	8904	8910	8915	I	r	2	2	3
78	8921 8976	8927 8982	8932 8987	8938 8993	8943 8998	8949 9004	8954 9009	8960 9015		897 I 9025	I	I	2	2	3
79	8976	8982	8987	8993	89	9004	909								3
80	9031	9036	9042	9047	9053	9058	9063	9069	9074	9079	1	1		2	3
81	9085	9090	9096	9roi	9106	9112	9117	9122	9128	9133	1	I		2	3
82	9138	9143	9149	9154	9159	9165	9170	9175	9180	9186	I	I	2	2	3
83	${ }^{9191}$	9196	9201	9206	9212	9217	${ }_{9222}^{922}$	9227	${ }_{9282}^{923}$	9238 9289	I	I		2	3
84	9243	9248	9253	9258	9263	9269	9274	9279		9289	1			2	3
85	9294	9299	9304	9309	9315	9320	9325	9330	9335	9340	1	I		2	3
86	9345	9350	9355	9360	9365	9370	9375	9380	9385	9390	I	I	2	2	3 2
87	9395	9400	9405	94 ro	9415	9420	9425	9430			-	I	1	2	2
88	9445	9450	9455	9460	9465	9469 9588	${ }_{9523}^{9474}$	9479	9484	94888	-	I	1	2	2
89	9494	9499	9504	9509	9513	95.	9523	95							
90	9542	9547	9552	9557	9562	9566	9571	9576		9586	-	1		2	2
91	9590	9595	9600	${ }^{9605}$	9609	${ }_{9661}^{961}$					\bigcirc	I	1	2	2
92 93	9638 9685	9643	9647 9694	9652 9699	9657 9703	${ }_{9708}^{9661}$	9666 9713	9671 975	9675 9722	96727	\bigcirc	1	I	2	2
94	973 ${ }^{\text {r }}$	9736	9741	9745	9750	9754	97.59	9763	9768	9773	-	I	1	2	2
95		9782	9786			9800	9805	9809	9814	9818	-	1	I	2	2
96	9823	9827	9832	9836	984 I	9845	9850	9854	9859	9863	\bigcirc	1	I	2	2
97	9868	9872	9877	9885	9886	9890	9894	9899	9903	9908 9952	\bigcirc	1	1	2	2
98	9912	9917	9921	9926	9930	9934 9978	9939 9983			9952 9996	-	1	1	2	2
99	9956	9961	9965	9969	9974	9978	9983	9907	999	996					2

Smithsonian Tables.

											P. P.				
	0	1	2	3	4	5	6	7	8	9	1	2	3	4	5
. 00	1000	1002	1005	1007	1009	1012	1014	1016	1019	1021	0	\bigcirc	1	1	1
. 01	1023	1026	1028	1030	1033	1035	1038	1040	1042	1045	0	0	1	1	1
. 02	1047	1050	1052	1054	1057	1059	1062	1064	1067	1069	-	0	1	1	1
. 03	1072	1074	1076	1079	1081	1084	1086	1089	1091	1094	\bigcirc	\bigcirc	1	1	1
. 04	1096	1099	1102	1104	1107	1109	1112	1114	1117	1119	\bigcirc	I	I	1	1
. 05	1122	1125	1127	1130	1132	1135	113^{8}	1140	1143	1146	0	1	1	1	1
. 06	1148	1151	1153	1156	1159	1161	1164	1167	1169	1172	\bigcirc	I	1	1	1
. 07	1175	1178	1180	1183	1186	1189	1191	1194	1197	1199	0	I	1	1	1
. 08	1202	1205	1208	1211	1213	1216	1219	1222	1225	1227	0	I	I	1	I
. 09	1230	1233	1236	1239	1242	1245	1247	1250	1253	1256	0	1	1	1	1
. 10	1259	1262	1265	1268	1271	1274	1276	1279	1282	1285	0	I	1	1	1
. 11	1288	1291	1294	1297	1300	1303	1306	1309	1312	1315	0	I	1	1	2
.12	1318	1321	1324	1327	1330	1334	1337	1340	1343	1346	\bigcirc	I	1	1	2
.13	r 349	1352	1355	1358	1361	1365	1368	1371	1374	1377	0	I	1	1	2
.14	1380	1384	1387	1390	1393	1396	1400	1403	1406	1409	\bigcirc	I	I	1	2
.15	1413	1416	1419	1422	1426	1429	1432	1435	1439	1442	0	I	1	I	2
. 16	1445	1449	1452	1455	1459	1462	1466	1469	1472	1476	0	I	1	I	
.17	1479	1483	1486	1489	1493	1496	1500	1503	1507	1510	0	1	1	1	2
. 18	1514	1517	1521	1524	1528	1531	1535	1538	1542	1545	-	1	1	1	
. 19	1549	1552	1556	1560	1563	1567	1570	1574	1578	1581	-	I	I	1	2
. 20	1585	1589	1592	1596	1600	1603	1607	1611	1614	1618	0	1	1	1	2
. 21	1622	1626	1629	1633	1637	1641	1644	1648	1652	1656	-	1	1	2	2
. 22	1660	1663	1667	1671	1675	1679	1683	1687	1690	1694	-	1	1	2	
. 23	1698	1702	1706	1710	1714	1718	1722	1726	1730	1734	\bigcirc	I	I	2	2
. 24	1738	1742	1746	1750	1754	1758	1762	1766	1770	1774	-	I	1	2	2
. 25	1778	1782	1786	1791	1795	1799	1803	1807	1811	1816	0	1	I	2	2
. 26	1820	1824	1828	1832	1837	1841	1845	1849	1854	1858	\bigcirc	1	1	2	2
. 27	1862	1866	1871	1875	1879	1884	1888	1892	1897	1901	0	1	1	2	2
. 28	1905	1910	1914	1919	1923	1928	1932	1936	1941	1945	0	1	I	2	2
. 29	1950	1954	1959	1963	1968	1972	1977	1982	1986	1991	0	1	1	2	2
. 30	1995	2000	2004	2009	2014	2018	2023	2028	2032	2037	\bigcirc	1	1	2	2
. 31	2042	2046	2051	2056	2061	2065	2070	2075	2080	2084	0	1	1	2	2
$\cdot 32$	2089	2094	2099	2104	2109	2113	2118	2123	2128	2133	\bigcirc	1	1	2	2
$\cdot 33$	2138	2143	2148	2153	2158	2163	2168	2173	2178	2183	-	1	1	2	2
- 34	2188	2193	2198	2203	2208	2213	2218	2223	2228	2234	1	1	2	2	3
. 35	2239	2244	2249	2254	2259	2265	2270	2275	2280	2286	I	I	2	2	3
. 36	2291	2296	2301	2307	2312	2317	2323	2328	2333	2339	1	1	2	2	3
$\cdot 37$	2344	2350	2355	2360	2366	2371	2377	2382	2388	2393	1	1	2	2	3
- 38	2399	2404	2410	2415	2421	2427	2432	2438	2443	2449	1	1	2	2	3
- 39	2455	2460	2466	2472	2477	2483	2489	2495	2500	2506	1	1	2	2	3
. 40	2512	2518	2523	2529	2535	2541	2547	2553	2559	2564	I	I	2	2	3
-41	2570	2576	2582	2588	2594	2600	2606	2612	2618	2624	1	1	2	2	3
. 42	2630	2636	2642	2649	2655	2661	2667	2673	2679	2685	I	I	2	2	3
43	2692	2698	2704	2710	2716	2723	2729	2735	2742	2748	I	1	2	3	3
. 44	2754	2761	2767	2773	2780	2786	2793	2799	2805	2812	1	I	2	3	3
. 45	2818	2825	2831	2838	2844	2851	2858	2864	2871	2877	I	1	2	3	3
. 46	2884	2891	2897	2904	2911	2917	2924	2931	2938	2944	I	1	2	3	3
. 47	2951	2958	2965	2972	2979	2985	2992	2999	3006	3013	I	1	2	3	3
. 48	3020	3027 3097	3034 3105	3041 3112	3048 3119	3055 3126	3062 3133	3069	3076 3148	3083 3155	I	I	2	,	4
$\cdot 49$	3090	3097	3105	3112	3119	3126	3133	3.4	314	3155	I	1	2	3	4

Smithsonian Table日.

ANTILOGARITHMS.

	0	1.	2	3	4	5	6	7	8	9	P. P.				
											1	2	3	4	5
. 50	3162	3170	3177	3184	3192	3199	3206	3214	3221	3228	I	1	2	3	4
. 51	3236	3243	3251	3258	3266	3273	3281	3289	3296	3304	I	2	-	3	4
. 52	3311	3319	3327	3334	3342	3350	3357	3365	3373	3381	1	2	2	3	4
- 53	3388	3396	3404	3412	3420	3428	3436	3443	3451	3459	1	2	2	3	
$\cdot 54$	3467	3475	3483	3491	3499	3508	3516	3524	3532	3540	1	2	2	3	4
. 55	3548	3556	3565	3573	3581	3589	3597	3606	3614	3622	I	2	2	3	4
. 56	3631	3639	3648	3656	3664	3673	3681	3690	3698	3707	1	2	3	3	4
- 57	3715	3724	3733	3741	3750	3758	3767	3776	3784	3793	I	2	3	3	4
. 58	3802 3800	3811	3819 3008	3828	3837	3846	3855	3864	3873	3882	I	2	3	4	4
. 59	3890	3899	3908	3917	3926	3936	3945	3954	3963	3972	1	2	3	4	5
. 60	3981	3990	3999	4009	4018	4027	4036	4046	4055	4064	I	2	3	4	5
. 61	4074	4083	4093	4102	4111	4121	4130	4140	4150	4159	1	2	3	4	5
. 62	4169 4266	4178 4276	4188 4285	4198	4207	4217	4227	4236	4246	4256	1	2	3	4	5
. 63	4266 4365	4276 4375	4285	4295	4305 4406	4315	4325	4335	4345	4355	I	2	3	4	5
										4457	1	2	3	4	5
. 65	4467	4477	$44^{8} 7$	4498	4508	4519	4529	4539	4550	4560	1	2	3	4	5
. 66	4571 4677	4581	4592	4603	4613	4624	4634	4645	4656	4667	1	2	3	4	5
. 67	4677 4786	4688	4699	4710	4721	4732	4742	4753	4764	4775	I	2	3	4	5
. 69	4786 4898	4797 4909	4808 4920	4819 4932	4831	4842	4853	4864	4875	4887	1	2	3	4	6
. 69	48	4909	492	4932	4943	4955	4966	4977	4989	5000	1	2	3	5	6
. 70	5012	5023	5035	5047	5058	5070	5082	5093	5105	5117	I	2	4	5	6
. 71	5129	5140	5152	5164	5176	5188	5200	5212	5224	5236	I	2	4	5	6
. 72	5248	5260	5272	5284	5297	5309	5321	5333	5346	5358	1	2	4	5	6
. 73	5370	53^{83}	5395	5408	5420	5433	5445	5458	5470	5483	1	3	4	5	6
. 74	5495	5508	5521	5534	5546	5559	5572	5585	5598	5610	I	3	4	5	6
. 75	5623	5636	5649	5662	5675	5689	5702	5715	5728	5741	1	3	4	5	7
. 76	5754	5768	5781	5794	5808	582 I	5834	5848	586I	5875	1	3	4	5	7
.77	5888 6026	5902	5916 6053	5929	5943	5957	5970	5984	5998	6012	1	3	4	5	7
.79	6 r 66	6180	6194	6209	6223	6237	6252	6266	6281	6295	I	3	4	6	7
. 80	6310	6324	6339	6353	6368	6383	6397	6412	6427	6442	1	3	4	6	7
.8I	6457	6471	6486	6501	6516	6531	6546	6561	6577	6592	2	3	5	6	8
. 82	6607	6622	6637	6653	6668	6683	6699	6714	6730	6745	2	3	5	6	8
. 83	6761	6776	6792	6808	6823	6839	6855	6871	6887	6902	2	3	5	6	8
. 84	6918	6934	6950	6966	6982	6998	7015	7031	7047	7063	2	3	5	6	8
. 85	7079	7096	7112	7129	7145	7161	7178	7194	7211	7328	2		5	7	8
. 86	7244	7261	7278	7295	7311	7328	7345	7362	7379	7396	2	3	5	7	8
. 87	7413	7430	7447	7464	7482	7499	7516	7534	7551	7568	2	3	5	7	9
. 88	7586	7603	7621	7638	7656	7674	7691	7709	7727	7745	2	4	5	7	9
. 89	7762	7780	7798	7816	7834	7852	7870	7889	7907	7925	2	4	5	7	9
. 90	7943	7962	7980	7998	8017	8035	8054	8072	8091	8iro	2	4	6	7	9
.91	8 8 28	8147	8166	8185	8204	8222	8241	8260	8279	8299	2	4	6	8	9
. 92	8318	8337	8356	8375	8395	8414	8433	8453	8472	8492	2	4	6	8	10
. 93	8511	853 I	8551	8570	8590	8610	8630	8650	8670	8690	2	4	6	8	10
. 94	8710	8730	8750	8770	8790	8810	8831	8851	8872	8892	2	4	6	8	10
. 95	8913	8933	8954	8974	8995	9016	9036	9057	9078	9099	2	4	6	8	10
. 96	9120	9141	9162	9183	9204	9226	9247	9268	9290	9311	2	4	6	8	II
. 97	9333	9354	9376	9397	9419	9441	9462	9484	9506	9528	2	4	7	9	11
. 98	9550	9572	9594	9616	9638	9661	9683	9705	9727	9750	2	4	7	9	11
. 99	9772	9795	9817	9840	9863	9886	9908	9931	9954	9977	2	5	7	9	1

Smithsonian Tables.

ANTILOGARITHMS.

	0	1	2	3	4	5	6	7	8	9	10
. 900	7943	7945	7947	7949	7951	7952	7954	7956	7958	7960	7962
.901	7962	7963	7965	7967	7969	7971	7973	7974	7976	7978	7980
. 902	7980	7982	7984	7985	7987	7989	7991	7993	7995	7997	7998
. 903	7998	8000	8002	8004	8006	8008	8009	8011	8013	8015	8017
. 904	8017	8019	8020	8022	8024	8026	8028	8030	8032	8033	8035
. 905	8035	8037	8039	8041	8043	8045	8046	8048	8050	8052	8054
. 906	8054	8056	8057	8059	8061	8063	8065	8067	8069	8070	8072
. 907	8072	8074	8076	8078	8080	8082	8084	8085	8087	8089	8091
. 908	8091	8093	8095	8097	8098	8100	8102	8104	8106	8108	8110
. 909	8110	8III	8113	8115	8117	8119	8121	8123	8125	8126	8128
. 910	8 I 28	8130	8 I 32	8134	8136	8138	8140	8141	8143	8145	8147
. 911	8147	8149	8151	81 53	8155	8 r 56	8158	8160	8162	8164	8166
. 912	8166	8168	8170	8171	8173	8175	8177	8179	8181	8183	8185
.913	8185	8187	$8 \mathrm{8r} 88$	8190	8192	8194	8196	8198	8200	8202	8204
.914	8204	8205	8207	8209	82 II	8213	8215	8217	8219	8221	8222
. 915	8222	8224	8226	8228	8230	8232	8234	8236	8238	8239	8241
. 916	8241	8243	8245	8247	8249	8251	8253	8255	8257	8258	8260
. 917	8260	8262	8264	8266	8268	8270	8272	8274	8276	8278	8279
.918	8279	8281	8283	8285	8287	8289	8291	8293	8295	8297	8299
.919	8299	8300	8302	8304	8306	8308	8310	8312	8314	8316	83 I 8
. 920	8318	8320	832 I	8323	8325	8327	8329	8331	8333	8335	8337
. 921	8337	8339	8341	8343	8344	8346	8348	8350	8352	8354	8356
. 922	8356	8358	8360	8362	8364	8366	8368	8370	8371	8373	8375
. 923	8375	8377	8379	838 I	8383	8385	8387	8389	8391	8393	8395
. 924	8395	8397	8398	8400	8402	8404	8406	8408	8410	8412	8414
. 925	8414	8416	8418	8420	8422	8424	8426	8428	8429	8431	8433
. 926	8433	8435	8437	8439	8441	8443	8445	8447	8449	8451	8453
. 927	8453	8455	8457	8459	8461	8463	8464	8466	8468	8470	8472
. 928	8472	8474	8476	8478	8480	8482	8484	8486	8488	8490	8492
. 929	8492	8494	8496	8498	8500	8502	8504	8506	8507	8509	85 II
. 930	8511	8513	8515	8517	8519	852 I	8523	8525	8527	8529	8531
. 931	8531	8533	8535	8537	8539	8541	8543	8545	8547	8549	8551
. 932	8551	8553	8555	8557	8559	8561	8562	8564	8566	8568	8570
. 933	8570	8572	8574 859	8576	8578	8580	8582	8584	8586	8588	3590
. 934	8590	8592	8594	8596	8598	8600	8602	8604	8606	8608	8610
. 935	8610	8612	8614	86.6	8618	8620	8622	8624	8626	8628	8630
. 936	8630	8632	8634	8636	8638	8640	8642	8644	8646	8648	8650
. 933	8650	8652	8654	8656	8658	8660	8662	8664	8666	8668	8670
.938 .939	8670 8690	8672 8692	8674 8694	8676 8696	8678 8698	8680 8700	8682 8702	8684	8686	8688	8690
. 939	8690	8692	8694	8696	8698	8700	8702	8704	8706	8708	8710
. 940	8710	8712	8714	8716	8718	8720	8722	8724	8726	8728	8730
. 941	8730	8732	8734	8736	8738	8740	8742	8744	8746	8748	8750
. 942	8750	8752	8754	8756	8758	8760	8762	8764	8766	8768	8770
. 943	8770	8772 8792	8774	8776	8778	8780	8782	8784	8786	8788	8790
. 944	8790	8792	8794	8796	8798	8800	8802	8804	8806	8808	8810
. 945	8810	8813	8815	8817	8819	8821	8823	8825	8827	8829	8831
. 946	8831	8833	8835	8837	8839	8841	8843	8845	8847	8849	8851
. 947	8851	8853	8855	8857	8859	8861	8863	8865	8867	8870	8872
. 9448	8872 8892	88874	8876 8896	8878 8888	8880 8900	8882 8902	8884 8904	8886 8906	8888 8908	8890 8910	8892 8913

Smithsonian Tables.

ANTILOGARITHMS.

	0	1	2	3	4	5	6	7	8	9	10
. 950	8913	8915	8917	8919	8921	8923	8925	8927	8929	8931	8933
. 951	8933	8935	8937	8939	8941	8943	8945	8947	8950	8952	8954
. 952	8954	8956	8958	8960	8962	8964	8966	8968	8970	8972	8974
. 953	8974	8976	8978	8980	8983	8985	8987	8989	8991	8993	8995
- 954	8995	8997	8999	9001	9003	9005	9007	9009	9012	9014	9016
. 955	9016	9018	9020	9022	9024	9026	9028	9030	9032	9034	9036
. 956	9036	9039	9041	9043	9045	9047	9049	9051	9053	9055	9057
-957	9057	9059	9061	9064	9066	9068	9070	9072	9074	9076	9078
.958 .959	9078 9099	9080 9101	9082 9103	9084 9105	9087 9108	9089	9091	9093	9095	9097	9099
. 959	9099	9101	9103	9105	9108	9r10	9112	9114	9r16	9118	9120
. 960	9120	9122	9124	9126	9129	9131	${ }^{1} 33$	9135	9137	9139	9141
.96I	9141	9143	9145	9147	9150	9152	9154	9156	9158	9160	9162
. 962	9162	9164	9166	9169	9171	9173	9175	9177	9179	9181	9183
. 963	9183	9185	9188	9190	9192	9194	9196	9198	9200	9202	9204
. 964	9204	9207	9209	9211	92 I3	9215	9217	9219	9221	9224	9226
. 965	9226	9228	9230	9232	9234	9236	9238	9241	9243	9245	9247
. 966	9247	9249	9251	9253	9256	9258	9260	9262	9264	9266	9268
. 967	9268 9290	9270 9292	9273		9277	9279	9281	9283	9285	9288	9290
.968 .969	9290 9311	9292 9313	9294 935	9296 9318	9298 9320	9300 9322	9303	9305 9326	9307 9328	9309 9330	93 II
. 970	9333	9335	9337	9339	9341	9343	9345	9348	9350	9352	9354
. 971	9354	9356	9358	9361	9363	9365	9367	9369	9371	9373	9376
. 972	9376	9378	9380	9382	9384	9386	9389	9391	9393	9395	9397
-973	9397	9399	9402	9404	9406	9408	9410	9412	9415	9417	9419
. 974	9419	9421	9423	9425	9428	9430	9432	9434	9436	9438	9441
. 975	9441	9443	9445	9447	9449	9451	9454	9456	9458	9460	9462
. 976	9462	9465	9467	9469	9471	9473	9475	9478	9480	9482	9484
. 977	9484	9486	9489	949I	9493	9495	9497	9499	9502	9504	9506
. 978	9506	9508	9510	9513	9515	9517	9519	952 I	9524	9526	9528
. 979	9528	9530	9532	9535	9537	9539	954I	9543	9546	9548	9550
. 980	9550	9552	9554	9557	9559	9561	9563	9565	9568	9570	9572
.981	9572	9574	9576	9579	9581	9583	9585	9587	9590	9592	9594
. 982	9594	9596	9598	9601	9603	9605	9607	9609	9612	9614	9616
. 983	9616	9618	9621	9623	9625	9627	9629	9632	9634	9636	9638
. 984	9638	9641	9643	9645	9647	9649	9652	9654	9656	9658	9661
. 985	9661	9663	9665	9667	9669	9672	9674	9676	9678	9681	9683
. 986	9683	9685	9687	9689	9692	9694	9696	9698	9701	9703	9705
. 987	9705	9707	9710	9712	9714	9716	9719	9721	9723	9725	9727
. 988	9727	9730	9732	9734	9736	9739	974I	9743	9745	9748	9750
. 989	9750	9752	9754	9757	9759	9761	9763	9766	9768	9770	9772
. 990	9772	9775	9777	9779	9781	9784	9786	9788	9790	9793	9795
-991	9795	9797	9799	9802	9804	9806	9808	98 II	9813	9815	9817
. 992	9817	9820	9822	9824	9827	9829	9831	9833	9836	9838	9840
. 993	9840	9842	9845	9847	9849	9851	9854	9856	9858	9861	9863
. 994	9863	9865	9867	9870	9872	9874	9876	9879	988I	9883	9886
. 995	9886	9888	9890	9892	9895	9897	9899	9901	9904	9906	9908
. 996	9908	9911	9913	9915	9917	9920	9922	9924	9927	9929	9931
. 997	9931	9933	9936	9938	9940	9943	9945	9947	9949	9952	9954
. 998	9954	9956	9959	9961	9963 0986	9966	9968	9970	9972	9975 9998	9977 0000
-999	9977	9979	9982	9984	9986	9988	9991	9993	9995	9998	0000

Smithsonian Tables.

CIRCULAR（TRIGONOMETRIC）FUNCTIONS．
（Taken from B．O．Peirce＇s＂Short Table of Integrals，＂Ginn \＆Co．）

官安		SINES．		COSINES．		TANGENTS．		COTANGENTS．			
		Nat．	Log．	Nat．	Log．	Nat．	Log．	Nat．	Log．		
0.0000	$0^{\circ} 00^{\prime}$	O	∞	． 0000	0.0000	． 0000	－	∞	∞	$9^{\circ}{ }^{\circ} 0^{\prime}$	1． 5708
0.0029	10	． 0029	7.4637	1.0000	． 0000	． 0029	7.4637	343.77	2.5363	50	1． 5679
0.0058	20	． 0058	． 7648	1．0000	． 0000	．0058	． 7648	171.89	． 2352	40	1.5650
0.0087	30	．0087	． 9408	1.0000	． 0000	． 0087	． 9409	114.59	． 0591	30	1.5621
0.0116	40	． 0116	8.0658	－ 9999	． 0000	． 0116	8.0658	85.940	1.9342	20	1.5592
0.0145	50	． 0145	． 1627	． 9999	． 0000	． 0145	.1627	68.750	． 8373	10	1.5563
0.0175	$\mathrm{I}^{\circ} \mathrm{OO}^{\prime}$	． 0175	8.2419	． 9998	9.9999	． 0175	8.2419	57.290	1.7581	$89^{\circ} 00^{\prime}$	1.5533
0.0204	10	． 0204	． 3088	． 9998	． 9999	． 0204	． 3089	49.104	． 6911	50	1.5504
0.0233	20	． 0233	． 3668	． 9997	． 9999	． 0233	． 3669	42.964	．633I	40	1.5475
0.0262	30	． 0262	． 4179	． 9997	－9999	． 0262	．4181	38.188	． 5819	30	1.5446
0.0291	40	． 0291	． 4637	． 9996	． 9998	．0291	． 4638	34.368	.5362	20	1．5417
0.0320	50	． 0320	． 5050	． 9995	． 9998	． 0320	． 5053	31.242	． 4947	10	1.5388
0.0349	$2^{\circ} \mathrm{O} 0^{\prime}$	． 0349	8．5428	． 9994	9.9997	． 0349	8.5431	28.636	1.4569	$88^{\circ} 00^{\prime}$	I． 5359
0.0378	10	． 0378	． 5776	． 9993	． 9997	． 0378	． 5779	26.432	． 4221	50	I． 5330
0.0407	20	． 0407	． 6097	． 9992	． 9996	． 0407	． 6101	24.542	． 3899	40	I． 5301
0.0436	30	． 0436	． 6397	． 9990	． 9996	． 0437	． 6401	22.904	． 3599	30	1.5272
0.0465	40	． 0465	． 6677	． 9989	． 9995	． 0466	． 6682	21.470	． 3318	20	1.5243
0.0495	50	． 0494	． 6940	． 9988	． 9995	． 0495	． 6945	20.206	－ 3055	10	1.5213
0.0524	$3^{\circ} 00^{\prime}$	． 0523	8.7188	． 9986	9.9994	． 0524	8.7194	19.081	1.2806	$87^{\circ} 00^{\prime}$	1.5184
0.0553	10	． $055{ }^{2}$	． 7423	． 9985	． 9993	． 0553	． 7429	18.075	.2571	50	1.5155
0.0582	20	．0581	． 7645	． 9983	． 9993	． 0582	． 7652	17.169	． 2348	40	1.5126
0.0611	30	．0610	．7857	． 998 ［	． 9992	． 0612	.7865	16.350	． 2135	30	1.5097
0.0640	40	． 0640	． 8059	．9980	． 9991	． 0641	． 8067	15.605	． 1933	20	I． 5068
0.0669	50	． 0669	． 8251	． 9978	． 9990	． 0670	． 8261	14.924	． 1739	10	I． 5039
0.0698	$4^{\circ} 00^{\prime}$	． 0698	8.8436	． 9976	9.9989	． 0699	8.8446	14.301	1.1554	86 ${ }^{\circ} 00^{\prime}$	1.5010
0.0727	10	． 0727	．8613	． 9974	.9989	． 0729	． 8624	13.727	． 1376	50	1.4981
0.075	20	． 0756	． 8783	． 9971	． 9988	． 0758	． 8795	13.197	． 1205	40	I． 4952
0.0785	30	． 0785	． 8946	． 9969	． 9987	． 0787	．8960	12.706	． 1040	30	1.4923
0.0814	40	．0814	． 9104	． 9967	． 9986	． 0816	． 9118	12.251	． 0882	20	1.4893
0.0844	50	． 0843	． 9256	． 9964	． 9985	． 0846	． 9272	11.826	． 0728	10	I． 4864
0.0873	$5^{\circ} 0^{\prime}$	． 0872	8.9403	． 9962	9.9983	． 0875	8.9420	11.430	1.0580	$85^{\circ} 00^{\prime}$	I． 4835
0.0902	10	．0901	． 9545	． 9959	． 9982	． 0904	． 9563	11.059	． 0437	50	I． 4806
0.0931	20	－0929	． 9682	． 9957	．9981	． 0934	． 9701	10.712	． 0299	40	1.4777
0.0960	30	－0958	． 9816	． 9954	． 9980	． 0963	． 9836	10.385	． 0164	30	1．4748
0.0989	40	． 0987	． 9945	． 9951	． 9979	． 0992	． 9966	10．078	． 0034	20	1.4719
0.1018	50	． 1016	9.0070	． 9948	－9977	． 1022	9.0093	9.7882	0.9907	10	1.4690
0.1047	$6^{\circ} 00$	． 1045	9.0192	． 9945	9.9976	． 1051	9.0216	9.5144	0.9784	$84^{\circ} \mathrm{oo}^{\prime}$	1.4661
0.1076	10	． 1074	．03II	． 9942	． 9975	． 1080	．0336	9.2553	． 9664	50	I． 4632
0.1105	20	． 1103	． 0426	． 9939	． 9973	－1110	． 0453	9.0098	． 9547	40	1.4603
0.1134	30	． 1132	． 0539	． 9936	． 9972	． 1139	． 0567	8.7769	． 9433	30	1.4574
0.1164	40	．1161	． 0648	． 9932	.9971	．1169	．0678	8.5555	． 9322		I． 4544
0.1193	50	． 1190	． 0755	． 9929	． 9969	．1198	． 0786	8.3450	． 9214	10	1．4515
0.1222	$7{ }^{\circ} \mathrm{oo}$	． 1219	9.0859	． 9925	9.9968	． 1228	9.0891	8.1443	0.9109	$83^{\circ} 00^{\prime}$	I． 4486
0.1251	10	． 1248	． 0961	． 9922	． 9966	． 1257	． 0995	7.9530	． 9005	50	1.4457
0.1280	20	． 1276	． 1060	． 9918	． 9964	． 1287	．ro96	7.7704	． 8904	40	I． 4428
0.1309	30	． 1305	． 1157	． 9914	． 9963	． 1317	． 1194	7.5958	． 8806	30	I． 4399
0.1338	40	． 1334	． 1252	．9911	． 9961	． 1346	． 1291	7.4287	． 8709	20	1.4370
0.1367	50	.1363	． 1345	． 9907	． 9959	． 1376	．1385	7.2687	．86I 5	J	1.4341
0.1396	$8^{\circ} 0^{\prime}$	． 1392	9.1436	． 9903	9.9958	． 1405	9.1478	7.1154	0.8522	$82^{\circ} 00^{\prime}$	$1.43{ }^{12}$
0.1425	10	． 1421	． 1525	． 9899	． 9956	． 1435	． 1569	6.9682	． 8431	50	1.4283
0.1454	20	． 1449	．1612	． 9894	． 9954	． 1465	．1658	6.8269	． 8342	40	1.4254
0.1484	30	． 1478	.1697	． 9890	． 9952	． 1495	.1745	6.6912	．8255	30	1.4224
0.1513	40	． 1507	． 1781	． 9888	． 9950	． 1524	.1831	6.5606	． 8169	20	1.4195
0.1542	50	.1536	． 1863	．9881	． 9948	．1554	.1915	6.4348	． 8085	10	1.4166
0.1571	$9^{\circ} \mathrm{oo}{ }^{\prime}$	． 1564	9.1943	． 9877	9.9946	． 1584	9.1997	6.3138	0.8003	$81^{\circ} 0^{\prime}$	1.4137
		Nat．	Log．	Nat．	Log．	Nat．	Log．	Nat．	Log．		
		COS	ES．	SIN	ES．	COT	$\begin{aligned} & \text { TAN- } \\ & \text { NTS. } \end{aligned}$	TANGE	NTS．	Q号	乐安

TABLE 13 (continued).
CIRCULAR (TRIGONOMETRIC) FUNCTIONS.

		SINES.	COSINES.	TANGENTS.	COTANGENTS.	$81^{\circ} 0{ }^{\prime}$	
		Nat. Log.	Nat. Log.	Nat. Log.	Nat. Log.		
0.157 0.1600	$9^{\circ} 00^{\prime}$	${ }^{.1564} 90.1943$.9877 9.9946	.1584 9.1997	6.31380 .8003		
0.1600	10	$.1593 \quad .2022$. 9872	.1614 4	$6.1970 \quad .7922$	50	1.4108
0.1629	20	. 1622.2100	. 9868 . 9942	. 1644 . 2158	6.0844 . 7842	40	1.4079
0.1658	30	. 1650.2176	. 9863 . 9940	.1673	5.9758	30	I. 4.4050
0.1687 0.1716	40	.1679 .2251 .1708	. 9858	$.1703-2313$	$5.8708 \quad .7687$	20	1.402 I
0.1716	50	.1708 . 2324	. 9853 . 9936	.1733 .2389	$5.7694 \quad .7611$	IO	1. 3992
0.1745	$10^{\circ} 00^{\prime}$	17366 172397	. 98488	. 17639.2463	5.67130 .7537	$80^{\circ} 00^{\prime}$	1.3963
0.1774 0.1804	10	$\begin{array}{ll}.1765 & .2468 \\ .1794 & .253\end{array}$. 9843	.1793 .2536	$\begin{array}{ll}5.5764 & .7464\end{array}$	50	1. 3934
0.1804 0.1833	20	$\begin{array}{rr}.1794 & .2538 \\ .1822 & 2606\end{array}$.9838 69929	.1823 6609	$5.4845 \quad .7391$	40	I. 3904
0.1833 0.1862	30	$\begin{array}{ll}.1822 & .2606 \\ .1851 & .2674\end{array}$	$\begin{array}{ll}.9833 & .9927 \\ .9827 & .9924\end{array}$. 1853	$\begin{array}{ll}5.3955 & .7320\end{array}$	30	I. 3875
0.1862	40 50	$\begin{array}{ll}.1851 \\ .1880 & .2674 \\ .2740\end{array}$	$\begin{array}{ll}.9827 & .9924 \\ .9822 & .9922\end{array}$. 1883 . 2750	$5.3093 \quad .7250$	20	1.3846
0.1920	$11^{\circ} \mathrm{OO}^{\prime}$. 19089.2806	.9816 9.9919	.1944 9.2887	5.1446 0.7113	$79^{\circ} 00^{\prime}$	
0.1949	Io	. 1937.2870	.9811 $\quad .9917$	$\begin{array}{ll}.1974 & .2953\end{array}$	$5.0658 \quad .7047$	50	1.388 I. 3759
0.1978	20	. 1965 . 2934	. 9805.9914	. 2004 -3020	4.9894 . 6980	40	1.3739 1.3730
0.2007	30	. 1994.2997	. 9799 .9912	. 2035 -3085	$4.9152 \quad 6915$	30	1.3701
0.2036	40	. 2022.3058	.9793 69909	.2065	4.8430 .685I	20	1.3672
0.2065	50	.2051 -3119	.9787	. 2095 .3212	$4.7729 \quad .6788$	10	1.3643
0.2094	$12^{\circ} 00^{\prime}$. 2079 9.3179	.9781 9.9904	.2126 9.3275	4.70460 .6725	$78^{\circ} \mathrm{oo}{ }^{\prime}$	1.3614
0.2123	10	. 21086	. 9775 .901	.2156	$4.6382 \quad .6664$	50	I. 3584
0.2153	20	.2136 .3296	. 9769 . 9899	$\begin{array}{ll}.2186 & .3397\end{array}$	4.5736	40	1.3555
0.2182	30	.2164	. 9763 .9896	. 2217 -3458	$4.5107 \quad .6542$	30	1.3526
0.2211	40 50	$\begin{array}{ll}.2193 & .3410 \\ .2221 & .3466\end{array}$. 975750	.2247	$4.4494 \quad .6483$	20	I. 3497
0.226		$\begin{array}{rr}.2221 & \cdot 3466 \\ .2250 & 0.3521\end{array}$. 9750.9890	. 2278 -3576	4.3897 . 6424	10	1.3468
0.2298	10	9.352	$\begin{array}{lll}.9744 & 9.9887\end{array}$. 2309 9.3634	4.33150 .6366	$77^{\circ} \mathrm{O} 0^{\prime}$	1.3439
0.2327	20	$\begin{array}{ll}.2306 & .3575 \\ .23064 & .369\end{array}$.9737 6.98884	. 2339 .3691	$4.2747 \quad .6309$	50	1.3410
0.2356	30	. 2334 . 3682	. $9724 \quad .9878$. 2401 . 3804	4.1653 . 6196	30	1.3352
0.2385	40	.2363 -3734	. $9717 \quad .9875$. 2432 . 3859	4.1526 .6141	20	1.3323
0.2414	50	. 2391 -3786	. $9710 \quad .9872$. 2462 . 3914	4.0611 .6086	10	I. 3294
0.2443	$14^{\circ} \mathrm{OO}$	$\begin{array}{lll}.2419 & 9.3837\end{array}$.97039 .9869	. 24939.3968	4.01080 .6032	$76^{\circ} 00^{\prime}$	1. 3265
0.2473	10	$\begin{array}{ll}2447 & .3887\end{array}$. 9696.9866	. 2524 .4021	$3.9617 \quad .5979$	50	1. 3235
0.2502	20	. 2476	. 9689 . 9863	. 2555 .4074	$3.9136 \quad .5926$	40	1. 3206
0.2531	30	. 2504 -3986	. 968 I . 9859	. 2586	$3.8667 \quad .5873$	30	I. 3177
0.2560	40	. 2532 .4035	. 9674 . 9856	. 2617 .4178	$\begin{array}{ll}3.8208 & .5822\end{array}$	20	I.3148
0.2589	50	. 2560.4083	. 9667 . 9853	.2648 .4230	3.7760 .5770	10	1.31 19
0.2618	$15^{\circ} 00^{\prime}$.258869 .4130	. 965989.9849	. 2679 9.428I	3.73210 .5719	$75^{\circ} 00^{\prime}$	1.3090
0.2647 0.2676	10 20	.2616	. 9652.9846	. 2711	$3.6891 \quad .5669$	50	I. 3061
0.2676	20	.2644 -4223	. $9644 \quad .9843$. 2742 -4381	3.6470 . 5619	40	1.3032
0.2705	30	.26720 .4269	$.9636 \quad .9839$. 2773 .4430	3.6059 -5570	30	I. 3003
0.2734	40	.2700	. 9628 . 9836	. 2805 . 4479	3.5656	20	I. 2974
0.2763	50	. 2728 .4359	. 9621.9832	.2836 .4527	$3.5261 \quad .5473$	10	1. 2945
0.2793	$16^{\circ} 00^{\prime}$	$\begin{array}{lll}.2756 & 9.4403\end{array}$	$\begin{array}{ll}9613 & 9.9828\end{array}$. 28679.4575	$\begin{array}{lll}3.4874 & 0.5425\end{array}$	$74^{\circ} 00^{\prime}$	1. 2915
0.2822	10	. 2784	. 9605	. 2899.4622	$3.4495 \quad .5378$	50	1.2886
0.2851	20	. 2812 .4491	. 9596 .982I	.293I .4669	$3.4124-5331$	40	1.2857
0.2880	30 40	.2840	.9588 6.9817	. 2962.4716	$\begin{array}{lll}3.3759 & .5284\end{array}$	30	I. 2828
0.2909	40	. 2868 . 4576	.9580 $\quad .9814$. 2994 .4762	$3 \cdot 3402 \quad .5238$	20	1. 2799
0:2938	50	. 2896 .4618	. 9572 .9810	. 3026 .4808	$3.3052 \quad .5192$	10	1.2770
0.2967	$17^{\circ} \mathrm{OO}$. 29249.4659	. 956319.9806	. 305719.4853	3.27090 .5147	$73^{\circ} 00$	I. 2741
0.2996	10	. 2952.4700	.9555 .9802	. 3089 .4898	$3.237 \mathrm{I} \quad .5102$	50	1.2712
0.3025	20	. 2979 .4741	. 9546	. 312 I . 4943	3.2041	40	1.2683
0.3054	30	-3007 304781	. 9537 .9794	-3153	$3.1716 \quad .5013$	30	1. 2654
0.3083	40	. 3035 -4821	. 9528 .9790	. 3185	3.1397 4969	20	1.2625
0.3113	50	. 3062 .486I	.9520 9.9786	. 3217 . 5075	$3.1084 \quad .4925$	10	1.2595
0.3142	$18^{\circ} 00^{\prime}$. 30909.4900	.9511 9.9782	. 3249 9.5118	$3.0777 \quad 0.4882$	$72^{\circ} 00^{\prime}$	1.2566
		Nat. Log.	Nat. Log.	Nat. Log.	Nat. Log.		
		COSINES	SINES.	COTANGENTS.	TANGENTS	A	~

Smithsonian Tables.

CIRCULAR (TRIGONOMETRIC) FUNCTIONS.

		SINES.		COSINES.		TANGENTS.		COTANGENTS.		$72^{\circ} 00^{\prime}$	1.2566
		Nat.	Log.	Nat.	Log.	Nat.	Log.	Nat.	Log.		
0.3142	$18^{\circ} \mathrm{oo}^{\prime}$	-3090	9.4900	. 9511	9.9782	- 3249	9.5118	3.0777	0.4882		
0.3171	10	. 3118	. 4939	. 9502	. 9778	. 3281	. 5161	3.0475	. 4839	50	1.2537
0.3200	20	-3145	. 4977	. 9492	. 9774	. 3314	.5203	3.0178	. 4797	40	I. 2508
0.3229	30	. 3173	. 5015	. 9483	. 9770	. 3346	. 5245	2.9887	. 4755	30	1.2479
0.3258	40	- 3201	. 5052	. 9474	.9765	- 3378	. 5287	2.9600	. 4713	20	1.245°
0.3287	50	- 3228	.5090	. 9465	.9761	-3411	. 5329	2.9319	.4671	10	1.2421
0.3316	$19^{\circ} 00^{\prime}$. 3256	9.5126	. 9455	9.9757	. 3443	9.5370	2.9042	0.4630	$71^{\circ} 00^{\prime}$	1.2392
0.3345	10	. 3283	. 5163	. 9446	. 9752	. 3476	. 5411	2.8770	.4589	50	1.2363
0.3374	20	-3311	. 5199	. 9436	. 9748	-3508	-5451	2.8502	. 4549	40	1.2334
0.3403	30	. 3338	. 5235	. 9426	. 9743	-3541	. 5491	2.8239	. 4509	30	1.2305
0.3432	40	. 3365	. 5270	. 9417	. 9739	- 3574	.553I	2.7980	. 4469	20	1.2275
0.3462	50	. 3393	. 5306	. 9407	. 9734	. 3607	-557I	2.7725	. 4429	10	1.2246
0.3491	$20^{\circ} 00^{\prime}$	- 3420	9.5341	. 9397	9.9730	. 3640	9.5611	2.7475	0.4389	$70^{\circ} 00^{\prime}$	1.2217
0.3520	10	. 3448	. 5375	. 9387	. 9725	. 3673	. 5650	2.7228	. 4350	50	1.2188
0.3549	20	. 3475	. 5409	. 9377	. 9721	. 3706	. 5689	2.6985	.43II	40	I.2159
0.3578	30	. 3502	. 5443	. 9367	. 9716	. 3739	. 5727	2.6746	. 4273	30	I. 2130
0.3607	40	.3529	. 5477	. 9356	.971 I	. 3772	. 5766	2.6511	. 4234	20	1.2101
0.3636	50	- 3557	. 5510	. 9346	. 9706	. 3805	. 5804	2.6279	. 4196	10	1.2072
0.3665	$21^{\circ} 00^{\prime}$. 3584	9.5543	. 9336	9.9702	$.3^{88} 39$	9.5842	2.6051	0.4158	$69^{\circ} 00^{\prime}$	1.2043
0.3694	10	. 3611	. 5557	. 9325	. 9697	$\cdot 3872$. 5879	2.5826	. 4121	50	1.2014
0.3723	20	-3638	. 5609	. 9315	. 9692	- 3906	. 5917	2.5605	. 4083	40	I. 1985
0.3752	30	-3665	- 5641	. 9304	. 9687	. 3939	. 5954	2.5386	. 4046	30	I. 1956
0.3782	40	-3692	. 5673	. 9293	. 9682	. 3973	. 5991	2.5172	. 4009	20	1.1926
0.3811	50	. 3719	. 5704	. 9283	. 9677	. 4006	. 6028	2.4960	. 3972	Io	1.1897
0.3840	$22^{\circ} 00$. 3746	9.5736	. 9272	9.9672	. 4040	9.6064	2.4751	0.3936	$68^{\circ} 00^{\prime}$	1.1868
0.3869	10	. 3773	. 5767	.9261	. 9667	. 4074	. 6100	2.4545	. 3900	50	1.1839
0.3898	20	-3800	. 5798	. 9250	. 9661	. 4108	.6ı36	2.4342	. 3864	40	1.1810
0.3927	30	-3827	. 5828	. 9239	. 9656	. 4142	. 6172	2.4142	. 3828	30	1.1781
0.3956	40	. 3854	. 5859	. 9228	.9651	. 4176	. 6208	2.3945	.3792	20	1.1752
0.3985	50	.3881	. 5889	. 9216	. 9646	. 4210	. 6243	2.3750	$\cdot 3757$	10	1.1723
0.4014	$23^{\circ} 00^{\prime}$. 3907	9.5919	. 9205	9.9640	. 4245	9.6279	2.3559	0.3721	$67^{\circ} 0^{\prime}$	1. 1694
0.4043	10	. 3934	. 5948	. 9194	. 9635	. 4279	. 6314	2.3369	. 3686	50	1.1665
0.4072	20	-3961	. 5978	. 9182	. 9629	. 4314	. 6348	2.3183	$\cdot 3652$	40	1.1636
0.4102	30	. 3987	. 6007	.9171	. 9624	- 4348	.6383	2.2998	- 3617	30	1.1606
0.4131	40	. 4014	. 6036	-9159	.96I8	-4383	. 6417	2.2817	$.35^{8} 3$	20	1. 1577
0.4160	50	.404I	. 6065	. 9147	.9613	. 4417	. 6452	2.2637	. 3548	10	1.1548
0.4189	$24^{\circ} \mathrm{O} 0^{\prime}$. 4067	9.6093	.9135	9.9607	. 4452	9.6486	2.2460	0.3514	$66^{\circ} 00^{\prime}$	1.1519
0.4218	10	. 4094	.6121	.9124	. 9602	. 4487	. 6520	2.2286	. 3480	50	1.1490
0.4247	20	. 4120	. 6149	.9112	. 9596	. 4522	. 6553	2.2113	. 3447	40	1.1461
0.4276	30	.4147	. 6177	.9100	-9590	. 4557	. 6587	2.1943	. 3413	30	1.1432
0.4305	40	. 4173	. 6205	. 9088	. 9584	. 4592	. 6620	2.1775	.3380	20	1.1403
0.4334	50	. 4200	. 6232	. 9075	. 9579	. 4628	. 6654	2.1609	. 3346	10	1.1374
0.4363	$25^{\circ}{ }^{\circ} 0^{\prime}$. 4226	9.6259	. 9063	9.9573	. 4663	9.6687	2.1445	0.3313	$65^{\circ} 0^{\prime}$	1.1345
0.4392	10	.4253	. 6286	. 9051	. 9567	. 4699	. 6720	2.1283	-3280	50	1.1316
0.4422	20	. 4279	.6313	.9038	.9561	. 4734	. 6752	2.1123	$\cdot 3248$	40	I.1286
0.4451	30 40	:4305	. 6340	. 9026	. 9555	. 4770	.6785	2.0965	$\cdot 3215$	30	1.1257
0.4480 0.4509	40	.433I	. 6366	.9013	. 9549	. 4806	.6817	2.0809	.3183	20	1.1228
0.4509	50	. 4335^{8}	. 6392	. 9001	. 9543	.4841	. 6850	2.0655	. 3150	10	1.1199
0.4538	$26^{\circ} 00^{\prime}$.4384	9.6418	. 8988	9.9537	. 4877	9.6882	2.0503	0.3118	$64^{\circ} 00^{\prime}$	1.1170
0.4567 0.4596	10	. 4410	.6444 .6470	. 89975	. 95350	. 4913	. 6914	2.0353	. 3086	50	I.1141
0.4	20	. 44362	. 6479	. 89649	. 9524	. 4950	. 6946	2.0204	. 3054	40	1.1112
0.4654	40	. 4488	. 6421	. 8939	. 95	- 4986	. 6977	2.0057	. 3023	30	1.1083
0.4683	50	. 4514	. 6546	. 8923	.9505	. 5059	. 7040	1.9768	. 2960	10	1.1054
0.4712	$27^{\circ} 00^{\prime}$. 4540	9.6570	. 8910	9.9499	. 5095	9.7072	1.9626	0.2928	$63^{\circ} 00^{\prime}$	1.0996
		Nat.	Log.	Nat.	Log.	Nat.	Log.	Nat.	Log.		
		CoS	INES.	SINES.		COTAN- GENTS.		TANGENTS.			

Smithsonian Tables.

Table 13 (continued).
CIRCULAR (TRIGONOMETRIC) FUNCTIONS.

	品	SINES.	COSINES.	TANGENTS.	COTANGENTS.	$63^{\circ} 00^{\prime}$	
		Nat. Log.	at. Lo	Nat. Log	Nat. Log.		
0.4712	$27^{\circ} 00^{\prime}$. 45409.6570	. 89109.9499	. 50959.7072	$\begin{array}{ll} 1.9626 & 0.2928 \end{array}$		
0.4741	Io	. 4566.6595	.8897 88.9492	$\begin{array}{lll}.5132 & .7103\end{array}$	$\begin{array}{r} 1.9486 \quad 2897 \\ \end{array}$		1.0966
0.4771	20	4592.6620	.8884 6.9486	.5169 6.7134	I. 9347	40	1. 0937
0.4800	30	.4617	.8870 98479	$\begin{array}{ll}.5206 & .7165\end{array}$	I. $9210 \quad .2835$	30	1.0908
0.4829	40	. 4643 . 6668	. 8857	.5243 6.7196	$\begin{array}{ll}1.9074 & .2804 \\ \text { I }\end{array}$	20	
0.4858	50	. 4669.6692	. 8843 . 9466	$\begin{array}{ll}.5280 & .7226\end{array}$	1.8940 .2774	10	1.0850
0.4887	280 ${ }^{\circ} 0^{\prime}$. 46959.6716	. 88299.9459	$\begin{array}{lll}.5317 & 9.7257\end{array}$	$\begin{array}{lll}1.8807 & 0.2743\end{array}$	$62^{\circ} 0^{\prime}$	1.0821
0.49 r 6	10	.4720 $\quad .6740$.8816 6.9453	.5354 .7287 508	${ }^{1} .8676{ }^{\text {a }}$. 2713	50	1.0792
0.4945	20	-4746 $\quad .6763$.8802	-5392	$\begin{array}{ll}1.8546 & .2683\end{array}$	40	1.0763
0.4974	30	.4772 6.6787	. 8788 -9439	. 5430	$\begin{array}{ll}1.8418 & .2652\end{array}$	30	1.0734
0.5003 0.5032	40	$\begin{array}{ll}.4797 & .6810 \\ .4823 & .6833\end{array}$	$\begin{array}{ll}.8774 & .9432 \\ .8760 & .9425\end{array}$	$\begin{array}{ll}.5467 & .7378 \\ .5505 \\ .7408\end{array}$	1.8291 1.8165 .2622 1892	10	1.0705 1.0676
0.5032 0.5061	50 $29^{\circ} 00^{\prime}$	$\begin{array}{ll}.4823 & .6833 \\ .4848 & 9.6856\end{array}$	8760 .9425 .8746 9.9418 8	.5505 $\cdot 7408$.5543 9.7438	$\begin{array}{rrr}1.8165 & .2592 \\ 1.8040 & 0.2562\end{array}$	$\begin{array}{r}10 \\ 610 \\ \hline 1\end{array}$	1.0676
0.5	29	. 4874	.8732 8.941 II		1.7917	50	1.0617
0.5	20	. 4899.6901	.8718 .9404	.5619 $\quad .7497$	$1.7796{ }^{.2503}$	40	1.0588
0.5149	30	. 4924.6923	.8704 .9397 880	.5658 .7526 569	1.7675 .2474 1755	30	${ }^{1.0559}$
0.517	40	. 4950.6946	.8689 6.9390	. $5696 \quad .7556$	I. 7556 I 743744	20	${ }^{1.0530}$
0.5207	50	-4975 . 6968	$\begin{array}{ll}.8675 & .9383\end{array}$. 5735 -7585	1.7437 . 2415	10	1.0501
0.523	$30^{\circ} 00^{\prime}$. 50009.6990	. 86609.937	. 57749.7614	$\begin{array}{ll}1.7321 & 0.2386 \\ 1\end{array}$	$60^{\circ} 00^{\prime}$	1.0472
0.526	10	. 5025 .7012	.8646	. 5812	$\begin{array}{ll}1.7205 & .2356 \\ 17009\end{array}$	50	1.0443
0.5294	20	.5050	.8631 .9361 8616 835	$\begin{array}{cc}.5851 & .7673 \\ 5800\end{array}$	1.7090 r .69727 1.2209	40	1.0414
0.5323	30	.5075	.8616 860353	$\begin{array}{ll}\text {.5890 } & .7701 \\ .5930 & .7730\end{array}$	$\begin{array}{ll}\text { 1. } 6977 \\ \text { 1. } 6864 & .22299 \\ \text {. } 2270\end{array}$	30 20	
0.53 0.538	40 50	.5100 .7076 .5125 .7097 150	.8601 .9346 .8587 .9338 8	.5930 6.7730	1.6864 .2270 1.6753 .2241 1.663	10	1.0356 1.0327 1.0
0.54	$31^{\circ} 00^{\prime}$.5150 9.7118	. 85729.9331	. 6009 9.7788	1.66430 .2212	$59^{\circ} 00^{\prime}$	97
0.5440	,	$\begin{array}{ll}.5175 & .7139\end{array}$	$\begin{array}{ll}.857 & .9323\end{array}$.6048 .7816 688 685	1.6534 .2184 1 6426 155	50	
0.5469	20	$\begin{array}{cc}.5200 & .7160 \\ .7225 & 781\end{array}$	$\begin{array}{ll}.8542 & .9315 \\ .8526 & .9308 \\ .851\end{array}$	$\begin{array}{ll}.6088 & .7845 \\ .6128 & .7873\end{array}$	$\begin{array}{ll}1.6426 & .2155 \\ 1.6319 & .2127 \\ 1.6212\end{array}$	40	39
0.5498 0.5527	30 40	.5225 .7181 .5250 .7201 27	$\begin{array}{ll}.8526 & .9308 \\ .8511 & .9300\end{array}$.6128 6.7873	$\begin{array}{ll}1.6319 & .2127 \\ \text { 1.6212 } & .2098 \\ 1.64\end{array}$	30	1.0181
0.555	50	. 5275	.8496 $\quad .9292$. 6208.7930	1.6107 . 2070	10	1.0152
0.558	$32^{\circ} 00^{\prime}$.5299 9.7242	.8480 9.92884	. 62499.7958	1.60030 .2042	$5^{\circ}{ }^{\circ} 00^{\prime}$	1.0123
0.5614	10	.5324 .7262 .5348 .7282	$\begin{array}{ll}.8465 & .9276 \\ .8450 & .9268\end{array}$.6289 .798 .6330 801	$\begin{array}{ll}1.5900 \\ 1.5798 & .2014 \\ 1986\end{array}$	50 40 0	I. 0094 1.0065
0.5643 0.5672	30	.5348 .7282 .5373 .7302 . 83	.8450 6.9268	$\begin{array}{ll}.6330 & .8014 \\ .6371 & .8042\end{array}$		30	1.0036
0.5701	40	. 5398	. 8418 .9252	. $6412 \quad .8070$	1. 5597 . 1930	20	1.0007
0.5730	50	$\begin{array}{cc}.5422 & .7342\end{array}$. 8403 .9244	. 6453 . 8097	1.5497 .1903	10	77
0.57	$33^{\circ 00}$. 5446 9.7361	. 83870.9236	. 64949.8125	$\begin{array}{lll}1.5399 & 0.1875\end{array}$	$57^{\circ} 00^{\prime}$	0.9948 0.9919
0.578	10	.5471 7380 50	.8371 8355 .9228 .9219	$\begin{array}{ll}.6536 & .8153 \\ .677 & .8180\end{array}$	1.5301 1.5204 .1847 1820	50 40	0.9919 0.9890
0.5 0.5	30	$\begin{array}{ll}.5495 & 7400 \\ .5519 & .7419\end{array}$.8355 6.9219	. 65778	1.5204 1.5108 .1820	$3{ }^{\circ}$	-0.9861
0.58 0.58 0.58	30 40	.5519 .7419 .5544 .7438	$\begin{array}{ll}.8339 & .9211 \\ .8323 & .9203\end{array}$.6661 .8235 68	$\begin{array}{lll}1.5013 & .1765\end{array}$	20	
0.5905	50	. 55568	. 8307 .9194	. 6703 .8263	1.4919 .1737	10	. 9803
0.	$34^{\circ}{ }^{\circ} 0^{\prime}$.5592 9.7476	.8290 9.9186	. 67459.8290	1.4826 0.17710	$56^{\circ} 00^{\prime}$	
0.5963	10	$\begin{array}{ll}.5616 & .7494 \\ .6640 & .7513\end{array}$	$\begin{array}{ll}.8274 & .9177 \\ .8258 & .9169\end{array}$	$\begin{array}{ll}.6787 & .8317 \\ .6830 & .8344\end{array}$	$\begin{array}{ll}\text { 1.4733 } \\ \text { I.4641 } & .1683 \\ \text {.1656 }\end{array}$	${ }_{40}{ }^{\circ}$	16
0.599	20 30	.5640 .5664 .7513 .7531	$\begin{array}{ll}.8258 \\ .8241 & .9169\end{array}$.6873 80.8371	1.4550 . 1629	30	0.9687
	40	. 5688	.8225 .9151	. 6916	1.4460 r .13702 1675	20	
0.6080	50	$\begin{array}{ll}.5712 & .7568\end{array}$. 8208 . 9142	. 6959 .8425	r.4370 .r 575	10	28
0.6	$35^{\circ} 00^{\prime}$.5736 9.7586	.8192 9.9134 8175 8125	$\begin{array}{lll}.7002 & 9.8452 \\ .7046 & .8479\end{array}$	$\begin{array}{rr}1.4281 & 0.1548 \\ 1.4193 \\ 1.1521\end{array}$	$55^{\circ} 00^{\prime}$ 50	$\begin{aligned} & 0.9599 \\ & 0.9570 \end{aligned}$
0.6138 0.6167	$\begin{aligned} & \text { 10 } \\ & 20 \end{aligned}$	$\begin{array}{ll}.5760 & .7604 \\ .5783 & .7622\end{array}$	$\begin{aligned} & .8175 \quad .9125 \\ & .8158 \quad .9116 \end{aligned}$.7046 .7089 .8479 806	$\begin{array}{ll}1.4193 \\ 1.4106 & .1521 \\ \text { 1494 }\end{array}$	40	-0.9541
0.6	$\begin{aligned} & 20 \\ & 30 \end{aligned}$	$\begin{array}{ll}.5783 \\ .5807 & .7622 \\ .7640\end{array}$.8541	$\begin{array}{ll}.7133 & .8533\end{array}$	r.4019 $\quad .1467$	30	.9512
0.6225	40	. 5831	. 8124	$\begin{array}{ll}.7177 & .85 \\ .7221\end{array}$.1441 1414	2	0.9483
0.6254	50	. 5854	.8107 . 9089	.7221 .8586 7265 0.8613	1. 3848 I. 3764 .1414 0.1387		0.9454 0.9425
0.6283	$36^{\circ} 00^{\prime}$	$\begin{array}{ll}.5878 & 9.7692\end{array}$. 80909.9080	$\begin{array}{ll}.7265 & 9.8613\end{array}$	1.3764 0.1387	$54^{\circ} 00^{\prime}$	0.9425
		Nat. Log.	Nat. Log	Nat. Log	Nat. Lo		
		COSINES.	SINES.	COTAN- GENTS.	TANGENTS.		

Smithsonian Tables.

TABLE 13 (continued).
CIRCULAR (TRIGONOMETRIC) FUNCTIONS.

		SINES.	COSINES.	TANGENTS.	COTANGENTS.		
		Nat. Log.	Nat. Log.	Nat. Log.	Nat. Log.		
0.6283	$3^{6} 00^{\prime}$.5878 9.7692	. 80909.9080	.72659 .8613	1.37640 .1387	$54^{\circ} 0^{\prime}$	0.9425
0.6312		.5901 .7710	. 8073.9070	.7310 8.8639	I.3680 -1361		0.9396
0.6341	20	. 5925 .7727	. 8050.9061	.7355 68666	I. 3597 . 1334	40	0.9367
0.6370	30	. 5948 . 7744	. 8039 . 9052	$\cdot 7,400 \quad .8692$	$1.3514 \quad .1308$	30	0.9338
0.6400	40	. 5972 .7761	. 8021.9042	.7445 .8718	1.3432 . 1282	20	0.9308
0.6429	50	. 5995 .7778	. 8004.9033	. 7490.8745	1.3351 . 1255	10	0.9279
0.6458	$37^{\circ} 00^{\prime}$. 60189.7795	. 7986	.7536 9.8771	1.32700 .1229	$53^{\circ} 00^{\prime}$	0.9250
0.6487	37	.6041 $\quad .7811$. 7969.9014	.7581	1.3190 .1203	50	0.9221
0.6516	20	. 6065 .7828	.7951 .9004	.7627	I.3III .1176	40	0.9192
0.6545	30	. 6088 .7844	. 7934.8995	.7673	1.3032 . 1150	30	0.9163
0.6574	40	.6111 $\quad .7861$. 7916 . 8985	.7720 $\quad .8876$	1.2954 . 1124	20	0.9134
0.6603	50	.6134 7877	.7898 . 8975	. 7766 .8902	1.2876 . 1098	10	0.9105
0.6632	$3^{8}{ }^{\circ} 00^{\prime}$.6157 9.7893	-7880 9.8965	.7813 9.9 .8928	1.27990 .1072	$52^{\circ} 0^{\prime}$	0.9076
0.6661	10	. 6180.7910	. 7862.8955	.7860 6.8954	1.2723 .1046	50	0.9047
0.6690	20	. $6202 \quad .7926$. 7844.8945	.7907 .8980	1.2647 . 1020	40	0.9018
0.6720	30	.6225 .7941	. 7826 . 8935	.7954 .9006	1.2572 . 0994	30	0.8988
0.6749	40	. 6248 -7957	. 7808 . 8925	. 80022.9032	1.2497 . 0968	20	0.8959
0.6778	50	. 6271 17973	. 7790.8915	. 8050.905^{8}	1.2423 . 0942	10	0.8930
0.6807	$39^{\circ} 00^{\prime}$. 63939.7989	.7771 9.8905	. 80989.9 .9084	1.2349 0.0916	$51^{\circ} \mathrm{OO}^{\prime}$	0.8901
0.6836	10	.6316 . 8004	.7753 $\quad .8895$. 8146 .9110	1.2276	50	0.8872
0.6865	20	.6338 . 8020	.7735 68884	.8195 .9135	$\begin{array}{ll}1.2203 & .0865\end{array}$	40	0.8843
0.6894	30	$.6361 \quad .8035$.7716 6.8874	. 8243 .9161	1.2131	30	0.8814
0.6923	40	. 6383 . 8050	.7698 $\quad .8864$.8292 69187	I. 2059 .0813	20	0.8785
0.6952	50	. 6406 . 8066	.7679 .8853	. 8342 .9212	1.1988 .0788	10	0.8756
0.6981	$40^{\circ} 00^{\prime}$.6428 9.8081	.7660 9.88843	.8391 9.9238	1.1918 0.0762	$50^{\circ} 00^{\prime}$	0.8727
0.7010	10	6450 . 8096	$.7642 \quad .8832$.8441 ${ }^{.81}$	I. 1847 . 0736	50	0.8698
0.7039	20	. 6472 .8III	. 7623 .8821	.8491 $\quad .9289$	1.1778 . 0711	40	0.8668
0.7069	30	. 6494 .8125	.7604 68810	.8541	1.1708 . 0685	30	0.8639
0.7098	40	. 65178	.7585	.8591 6.9341	1.1640 .0659	20	0.8610
0.7127	50	.6539 .8155	.7566 6788	. 8642 .9366	1.1571 . 0634	10	0.8581
0.7156	$41^{\circ} \mathrm{OO}{ }^{\prime}$.6561 9.8169	$\begin{array}{ll}.7547 & 9.8778\end{array}$. 86939.9392	$\begin{array}{lll}1.1504 & 0.0608\end{array}$	$49^{\circ} 00^{\prime}$	0.8552
0.7185	10	.6583 6.8184	$\begin{array}{lll}.7528 & .8767\end{array}$. 8744	1.1436 0.0583	50	0.8523
0.7214	20	.6604 6.8198	.7509 8.8756	. 8796 .9443	I.1369 0.0557	40	0.8494
0.7243	30	. 662688	.7490 8.8745	. 88847	I. 1303 . 0532	30	0.8465
0.7272	40	. 664888227	.7470 67333	. 88999.9494	I. 1237 . 0506	20	0.8436
0.7301	50	. 6670 .824I	.7451 87	.8952 .9519	1.1171 . 0481	10	0.8407
0.7330	$42^{\circ} \mathrm{OO}$	$\begin{array}{ll}6691 & 9.8255\end{array}$.7431 9.8711	. 90049.9544	I.1106 0.0456	$4^{\circ} 00^{\prime}$	0.8378
0.7359	10	. 6713 . 8269	.7412 $\quad .8699$.9057 9.9570	I.1041	50	0.8348
0.7389	20	$\begin{array}{ll}.6734 & .8283\end{array}$.7392 . 8688	.91100 .9595	1.0977	40	0.8319
0.7418	30	.6756 .8297 .6777 8315	.7373 .8676 .7353 8665	.9163	1.0913 30379	30	0.8290
0.7447	40	. 6777	$.7353-8665$.9217 9.9646	1.0850	20	0.826 I
0.7476	50	. 6799 .8324	.7333 .8653	.9271 .9671	$1.0786 \quad .0329$	10	0.8232
0.7505	$43^{\circ} 00^{\prime}$. 6820 9.8338	.7314 9.86641	.9325 9.9697	1.0724	$47^{\circ} \mathrm{O} 0^{\prime}$	0.8203
0.7534	10	.6841 6.8351	. 7294.8629	.9380	1.06615	50	0.8174
0.7563	20	$\begin{array}{ll}.6862 & .8365 \\ .6884 & .8378\end{array}$. 727418618	. 94350.9747	1.0599	40	0.8145
0.7592 0.7621	30	.6884 6.8378	.7254 .8606 .7234	.9490	1.0538 . 0228	30	0.8116
0.7621	40	.6905 63391	. 7234 . 8594	$.9545 \quad .9798$	1.0477 . 0202	20	0.8087
0.7650	50	.6926 .8405	. 7214 .8582	.9601 .9823	1.0416 . 0177	10	0.8058
0.7679	$44^{\circ} 00^{\prime}$. 69479.8418	.7193 9.8569	$\begin{array}{lll}.9657 & 9.9848\end{array}$	1.0355	$46^{\circ} 00^{\prime}$	0.8029
0.7709	10	. 6967 .8431	$.7173 \quad .8557$. 97 I3 9.9874	1.0295 . 0126	50	0.7999
0.7738	20	. 6988	.7153 818545	.9770	1.0235 . 0101	40	0.7970
0.7767	30	$\begin{array}{ll}.7009 & .8457 \\ .7030 & 8469\end{array}$	$.7133 \quad .8532$. 98878	1.01766	30	0.7941
0.7796 0.7825	40	$.7030 \quad 8469$	$.7112 \quad .8520$. 9884	$\begin{array}{ll}1.0117 & .0051 \\ 1005\end{array}$	20	0.7912
0.7825	50	.7050 .8482	.7092 6507	. 9942 2 9975	1.005^{8}.0025	10	0.7883
0.7854	$45^{\circ} \mathrm{O}{ }^{\prime}$.7071 9.8495	.7071 9.8495	1.00000 .0000	1.00000 .0000	$45^{\circ} 0^{\prime}$	0.7854
		Nat. Log.	Nat Log.	Nat. Log.	Nat. Log.		
		COSINES.	SINES.	COTANGENTS.	TANGENTS.	0	¢ 4

Smithsonian Tables.

Table 14.
CIRCULAR (TRIGONOMETRIC) FUNCTIONS.

	SINES.		COSINES.		TANGENTS.		COTANGENTS.		
	Nat.	Log.	Nat.	Log.	Nat.	Log.	Nat.	Log.	
0.00	0.00000	- ∞	1.00000	0.00000	- ∞	- ∞	∞	∞	$00^{\circ} \mathrm{or}^{\prime}$
. 01	. 01000	7.99999	0.99995	9.99998	0.01000	8.00001	99.997	1.99999	0034
. 02	. 02000	8.30100	. 99980	. 99991	. 02000	. 30109	49.993	.69891	0109
. 03	. 03000	.47706	. 99955	. 99980	. 03001	. 47725	33.323	. 52275	OI 43
. 04	. 03999	.60194	. 99920	. 99965	. 04002	. 60229	24.987	-3977I	0218
0.05	0.04998	8.69879	0.99875	9.99946	0.05004	8.69933	19.983	1.30067	$0^{02} 5^{\prime \prime}$
. 06	. 05996	. 77789	. 99820	. 99922	. 06007	. 77867	16.647	. 22133	0326
. 07	. 06994	. 84474	. 99755	. 99894	. 07011	. 8458 I	14.262	.15419	04 OI
. 08	. 0799 I	. 90263	. 99680	. 99861	. 08017	.90402	12.473	. 09598	0435
. 09	.08988	. 95366	. 99595	. 99824	. 09024	.95542	11.081	. 04458	0509
0.10	0.09983	8.99928	0.99500	9.99782	0.10033	9.00145	9.9666	0.99855	$05^{\circ} 44^{\prime}$
. 11	. 10978	9.04052	. 99396	. 99737	.11045	. 04315	9.0542	. 95685	0618
. 1	. 11971	. 07814	. 99281	. 99687	. 12058	08127	8.2933	. 91873	0653
. 13	. 12963	. 11272	. 99156	. 99632	. 13074	. 11640	7.6489	. 88360	0727
. 14	. 13954	. 14471	. 99022	. 99573	. 14092	. 14898	7.0961	.85102	0801
0.15	0.14944	9.17446	0.98877	9.99510	0.15114	9.17937	6.6166	0.82063	$08^{\circ} 3^{6 \prime}$
. 16	. 15932	. 20227	. 98723	. 99442	.16138	. 20785	6.1966	. 79215	0910
. 17	. 16918	. 22836	. 98558	. 99369	. 17166	. 23466	5.8256	. 76534	O9 44
. 18	.17903	. 25292	. 98384	. 99293	.18197	. 26800	5.4954	.74000	1019
. 19	. 18886	.27614	. 98200	.992II	. 19232	. 28402	5.1997	. 71598	1053
0.20	0.19867	9.29813	0.98007	9.99126	0.20271	9.30688	4.9332	0.69312	$\mathrm{JI}^{\circ} 2^{2} 8^{\prime}$
. 21	. 20846	. 31902	. 97803	. 99035	. 21314	$\cdot 32867$	4.6917	. 67133	1202
. 22	. 21823	. 33891	. 97590	. 98840	. 22362	-34951	4.4719	. 65049	1236
. 23	. 22798	. 35789	. 97367	. 98841	. 23414	$\cdot 36948$	4.2709	.63052	1311
. 24	. 23770	. 37603	. 97 I 34	. 98737	. 24472	-38866	4.0864	.61134	1345
	0.247	9-3934I	0.96891	9.98628	0.25534	9.40712	3.9163	0.59288	$14^{\circ} 19^{\prime}$
. 26	. 25708	. 41007	. 96639	. 98515	. 26602	. 4249 I	3.7592	. 57509	1454
. 27	. 26673	. 42607	. 96377	. 98397	. 27676	. 44210	3.6133	. 55790	1528
. 28	. 27636	. 44147	. 96106	. 98275	. 28755	.45872	3.4776	. 54128	$\begin{array}{ll}16 & 03 \\ 16 & 37\end{array}$
. 29	. 28595	.45629	. 95824	.98148	. 29841	. 47482	3.3511	.52518	1637
0.30	0.29552	9.47059	0.95534	9.98016	0.30934	9.49043	3.2327	0.50957	
. 31	. 30506	. 48438	. 95233	. 97879	. 32033	. 50559	3.1218	. 49441	1746
. 32	. 31457	. 49771	. 94924	. 97737	. 33139	. 52034	3.0176	. 47966	1820
. 33	- 32404	. 51060	. 94604	. 97591	. 34252	. 534668	2.9195 2.8270	.46531	1854 1929
. 34	. 33349	. 52308	. 94275	. 97440	. 35374	-54868	2.8270	-45132	1929
0.35	0.34290	9.53516	0.93937	9.97284	0.36503	9.56233		0.43767	$20^{\circ} \mathrm{O}^{\prime}$
. 36	. 35227	. 54688	. 93590	. 97123	.37640 .38786	.57565 .58868	2.6567 2.5782	$\begin{aligned} & .42435 \\ & .41132 \end{aligned}$	$\begin{array}{lll} 20 & 38 \\ 21 & 12 \end{array}$
. 37	. 36162	. 56825	. 93233	. 96957	. 38786	. 68868	2.5782 2.5037	. 41132	21 21 21 12
. 38	. 37092	-56928	. 92866	. 96786	-39941	. 60142	2.5037	-39858	2146 2221
. 39	. 38019	. 58000	.92491	. 96610	.41105	. 61390	2.4328	. 38610	2221
0.40	0.38942	9.59042	0.92106	9.96429	0.42279	9.62613	2.3652	0.37387	$22^{\circ} 55^{\prime}$
. 41	. 39861	. 60055	. 91712	. 96243	.43463	. 63812	2.3008	. 36188	23 23 24 4
. 42	. 40776	.61041	. 91309	. 9605 I	. 44657	. 64989	2.2393	. 35011	2404 2438
. 43	. 41687	. 62000	. 90897	.95855 .95653	.45862 .47078	.66145 .67282	2.1804 2.1241	. 338518	$\begin{array}{ll} 24 & 38 \\ 25 & 13 \end{array}$
. 44	. 42594	. 62935	. 90475	.95653	-47078	. 67282	2.1241	-32718	2513
	0.43497	9.63845	0.80045	9.95446	0.48306	9.68400 .69500	2.0702 2.0184	0.31600 .30500	$\begin{aligned} & 25^{\circ} 47^{\prime} \\ & 26 \quad 21 \end{aligned}$
. 46	. 44395	.64733 .6599	.89605 .89157	.95233 .95015	.49545 .50797	.69500 .70583	2.0184 1.9686	$\begin{array}{r} .30500 \\ .29417 \end{array}$	$\begin{aligned} & 2621 \\ & 2656 \end{aligned}$
. 47	. 45289	. 65599	.89157 .88699	.95015	. 50797	.70583 .71651	1.9686 1.9208	$\begin{array}{r} .29417 \\ .28349 \end{array}$	26 27 3
. 49	.47063	. 67268	. 88233	.94563	. 53339	.72704	1. 874^{8}	. 27296	2804
050	0.47943	9.68072	0.8775^{8}	9.94329	0.54630	9.73743	1.8305	0.26257	$28^{\circ} 39^{\prime}$

Smithsonian Tableg.

TABLE 14 (continued).
CIRCULAR (TRIGONOMETRIC) FUNCTIONS.

$\begin{aligned} & \text { 盆 } \\ & \stackrel{4}{A} \\ & \underset{\sim}{4} \\ & \hline \end{aligned}$	SINES.		COSINES.		TANGENTS.		COTANGENTS.		
	Nat.	Log.	Nat.	Log.	Nat.	Log.	Nat.	Log.	
0.50	0.47943	9.68072	0.87758	9.94329	0.54630	9.73743	1.8305	0.26257	$28^{\circ} 39^{\prime}$
.51	. 48818	. 68858	. 87274	. 94089	. 55936	. 74769	. 7878	. 2523 I	2913
. 52	. 49688	. 69625	. 86782	. 93843	. 57256	. 75782	.7465	. 24218	2948
- 53	- 50553	. 70375	.86281	.93591	. 58592	. 76784	. 7067	. 23216	3022
. 54	. 51414	.71108	. 85771	. 93334	. 59943	. 77774	. 6683	. 22226	3056
0.55	0.52269	9.71824	0.85252	9.93071	0.61311	9.78754	1.6310	0.21246	$31^{\circ} 3 \mathrm{I}^{\prime}$
. 56	. 53119	.72525	. 84726	.92801	. 62695	.79723	-5950	. 20277	3205
. 57	. 53963	-73210	. 84190	.92526	.64097	. 80684	. 5601	. 19316	3240
. 58	. 548802	.73880	. 83646	.92245	. 65517	.81635	. 5263	.18365	3314
. 59	. 55636	.74536	. 83094	. 91957	. 66956	. 82579	. 4935	. 17421	3348
0.60	0.56464	9.75177	0.82534	9.91663	0.68414	9.83514	1.4617	0.16486	$34^{\circ} 23^{\prime}$
.61	. 57287	.75805	. 81965	. 91363	. 69892	. 84443	. 4308	. 15557	3457
. 62	. 58104	. 76420	. 81388	. 91056	.71391	. 85364	. 4007	. 14636	35 31
. 63	. 58914	.77022	. 80803	-90743	.72911	. 86328	. 3715	. 13720	3606
. 64	-59720	.77612	. 80210	. 90423	. 74454	.87189	-343I	.128II	3640
0.65	0.60519	9.78189	0.79608	9.90096	0.76020	9.88093	1.3154	0.11907	$37^{\circ} 15^{\prime}$
. 66	. 61312	.78754	. 78999	. 89762	.77610	. 88992	. 2885	.11008	3749
. 67	. 63099	. 79308	.78382	. 89422	. 79225	. 89586	. 2622	.10114	3823
. 68	.62879 .63654	.79851	.77757 .77125	.89074	. 80866	.90777	. 2366	. 09223	3858
. 69	. 63654	. 80382	.77125	. 88719	. 82534	.91663	. 2116	. 08337	3932
0.70	0.64422	9.80903	0.76484	9.88357	0.84229	9.92546	1. 1872	0.07454	$40^{\circ} 06^{\prime}$
. 71	. 65183	. 81414	.75836	. 87988	. 85953	. 93426	. 1634	. 06574	4041
. 72	. 65938	.81914	.75181	. 87611	. 87707	. 94303	.1402	. 05697	4115
. 73	. 66687	.82404	. 74517	. 87226	. 89492	.95178	. 1174	. 04822	4150
. 74	. 67429	. 82885	. 73847	. 86833	.91309	.96051	. 0952	. 03949	4224
$\begin{array}{r}0.75 \\ \hline 76\end{array}$	0.68164	9.83355	0.73169	9.86433	0.93160	9.96923	1.0734°	0.03077	$42^{\circ} 5^{\prime}$
. 76	. 68892	. 83817	. 72484	. 86024	. 95045	. 97793	. 0532	. 02207	4333
. 77	. 69614	. 842729	.71791	. 85607	. 96967	.98662	.0313	. 01338	4407
. 78	.70328	. 84713	.71091	.85182	. 98926	$9.9953{ }^{1}$	1.0109	. 00469	4441
. 79	. 71035	. 85147	. 70385	. 84748	1.0092	0.00400	0.99084	9.99600	4516
0.80	0.71736	9.85573	0.69671	9.84305	1.0296	0.01268	0.97121	9.98732	
.81	. 72429	. 85991	. 68950	. 83853	. 0505	. 02138	. 95197	. 97862	4625
.82	.73115	. 866800	. 68222	.83393	. 0717	.03008	. 93309	. 96992	4659
.83	.73793	. 86802	. 67488	. 82922	. 0934	.03879	. 91455	.96121	4733
. 84	. 74464	.87195	. 66746	.82443	. 1156	. 04752	. 89635	. 95248	48
0.85	0.75128	9.87580	0.65998	9.81953	1.1383	0.05627	0.87848	9.94373	$48^{\circ}{ }^{\circ} 2^{\prime}$
.86 .87	.75784 .76433	.87958 .8858 885	. 65244	.81454	. 1616	.06504	. 86091	. 93496	4916
. 87	.76433 .77074	. 883688	. 643483	. 80944	. 1853	. 07384	. 84365	. 92616	49 51
. 88	.77074 .77707	. 88691	.63715 .62941	.80424 .79894	. 2097	. 08266	. 82668	.91734	5025
. 99	.77707	. 89046	. 62941	.79894	. 2346	. 09153	. 80998	.90847	5100
0.90	0.78333	9.89394	0.62161	9.79352	1. 2602	0.10043	0.79355	9.89957	$51^{\circ} 34^{\prime}$
. 91	. 78950	. 89735	. 61375	. 78799	. 2864	.10937	. 77738	. 89063	5208
. 92	. 79560	. 90070	. 60582	.78234	. 3133	.11835	.76146	. 88165	5243
.93 .94	.80162 .80756	.90397 .90717	. 59783	. 77658	-3409	. 12739	. 74578	. 87261	5317
. 94	. 80756	.90717	. 58979	. 77070	. 3692	. 3648	. 73034	. 86352	5351
0.95	0.81342	9.91031	0.58168	9.76469	1.3984	0.14563	0.71511	9.85437	$54^{\circ} 26^{\prime}$
. 96	.81919	.91339	. 57352	.75855	.4284	. 5484	.70010	. 84516	5500
.97 .98	.82489 .83050	.91639 .91934	.56530 .55702	.75228 .74587	. 4592	. 16412	. 6853 I	. 83588	5535
. 98	.83050 .83603	.91934 .92222	. 557802	.74587 .73933	. 4910	.17347 .18289	.67071 .65631	. 82653	5609
			5	.	5	-	. 6	. 8171	5643
1.00	0.84147	9.92504	0.54030	9.73264	1.5574	0.19240	0.64209	9.80760	$57^{\circ} 18^{\prime}$

Smithsonian Tables.

TABLE 14 (continued).
CIRCULAR (TRIGONOMETRIC) FUNCTIONS.

	SINES.		COSINES.		TANGENTS.		COTANGENTS.		
	Nat.	Log.	Nat.	Log.	Nat.	Log.	Nat.	Log.	
1.00	0.84147	9.92504	0.54030	9.73264	1. 5574	0.19240	0.64209	9.80760	$57^{\circ} 18^{\prime}$
. 01	. 84683	. 92780	. 53186	. 72580	. 5922	. 20200	. 62806	. 79800	5752
. 02	. 852 II	. 93049	. 52337	. 71881	. 6281	.21169	. 61420	.78831	5827
. 03	. 85730	. 93313	. 51482	.71165	. 6652	. 22148	. 60051	.77852	59 O1
. 04	. 86240	. 93351	. 50622	.70434	.7036	.23137	-58699	.76863	5935
1.05	0.86742	9.93823	0.49757	9.69686	1.7433	0.24138	0.57362	9.75862	$60^{\circ} 10^{\prime}$
. 06	. 87236	. 94069	. 48887	. 68920	. 7844	. 25150	. 56040	. 74850	6044
. 07	. 87720	. 94310	-48012	.68135	. 8270	.26175	- 54734	-73825	6118
. 08	.88196	. 94545	. 47133	. 67332	.8712	.27212	. 53441	.72788	6153
. 09	. 88663	. 94774	-46249	.66510	.9171	. 28264	. 52162	.71736	6227
1.10	0.89121	9.94998	0.45360	9.65667	1.9648	0.29331	0.50897	9.70669	$63^{\circ} \mathrm{O2}$
. 11	. $8957{ }^{\circ}$.95216	. 44466	. 64803	2.0143	-30413	-49644	. 69587	5336
. 12	. 90010	. 95429	. 43568	. 63917	. 0660	. 31512	. 48404	. 68488	6410
.13	. 90441	. 95637	. 42666	. 63008	.1198	. 32628	-47175	.67372	6445
.14	. 90863	.95839	.41759	. 62075	. 1759	. 33763	-45959	. 66237	6519
1.15	0.91276	9.96036	0.40849	9.61118	2.2345	0.34918	0.44753	9.65082	$65^{\circ} 53^{\prime}$ 6628
. 16	. 91680	. 96228	- 39934	. 60134	. 2958	. 36093	. 43558	. 63907	
. 17	. 92075	. 96414	. 39015	. 59123	. 3600	.37291	.42373	. 62709	6702
. 18	. 92461	. 96596	$\cdot 38092$	-58084	-4273	-38512	-41199	. 61488	6737
. 19	. 92837	.96772	. 37166	. 57015	. 4979	-39757	. 40034	. 60243	68 II
1.20	0.93204	9.96943	0.36236	9.55914	2.5722	0.41030	0.38878	9.58970	$68^{\circ} 45^{\prime}$
. 21	. 93562	. 97110	. 35302	. 54780	. 6503	. 42330	. 37731	. 57670	6920
. 22	. 93910	. 9727 I	. 34365	. 53611	. 7328	. 43660	- 36593	. 56340	5954
.23	. 94249	. 97428	. 33424	. 52406	.8198	-45022	-35463	-54978	7028
. 24	. 94578	. 97579	. 32480	.51161	.9119	-46418	-3434	-53582	7103
I. 25	0.94898	9.97726	0.31532	9.49875	3.0096	0.47850 .49322	0.33227 .32121	9.52150 .50678	$71^{\circ} 37^{\prime}$ 7212
. 26	.95209 .95510	.97868 .98005	.30582 .29628	.48546 .47170	.1133 .2236	.49322 .50835	. 32121	.50678 .49165	7212 7246
.27 .28	.95510 .95802	.98005	. 29688	. 471770	. 2236	. 50835	. 31021	. 491765	7246 7320
. 29	. 96084	. 98865	. 27712	. 44267	. 4672	- 53998	. 28842	.46002	7355
1.30	0.96356	9.98388	0.26750	9.42732	3.6021	0.55656	0.27762 .26687	9.44344	$74^{\circ} 29^{\prime}$ 7503
. 31	. 96618	. 98506	.25785 .24818	. 411137	.7471	.57369 .59144	.26687 .25619	. 42631	7503 7538
. 32	. 96872	. 986820	.24818 .23848	. 39476	.9033 4.0723	. 59144	. 25619	. 40856	7538 7612
. 33	. 97115	.98729 .98833	.23848 .22875	. 37744	4.0723 .2556	. 609884	. 2435498	.39016	7612 7647
$\cdot 34$.97348	. 988	. 228	. 3593					
1.35	0.97572	9.98933	0.21901	9.34046	4.4552	0.64887	0.22446	9.35113 .33035	$77^{\circ} 21^{\prime}$
. 36	. 97786	. 99028	. 20924	- 32064	. 6734	. 66964	. 21398	-33036	7755 7830
. 37	.97991	. 99119	. 19945	. 29983	.9131 5.1774	.69135	. 20354	. 38858	7830 7904
. 38	.98185 .98370	.99205 .99286	.18964	. 27793	5.1774 .4707	.71411 .73804	.19315 .18279	. .265196	79 79 8
. 39	. 98370	-99280	.17981	. 25482	-4707	73804	-		
I. 40	0.98545	9.99363	0.16997	9.23036	5.7979	0.76327	0.17248	9.23673	$80^{\circ} 13^{\prime}$
1.401 .41	. 987 IO	. 99436	.16010	. 20440	6.1654 6.5811	.78996 .81830	.16220 .15195	.21004	8047 8122
.42	-98865	. 999504	.15023 .14033	.17674 .14716	6.5811 7.0555	. 818853	.15195 .14173	. 15147	81 56
. 43	. 99010	.99568 .99627	.14033 .13042	.14716 .11536	7.0555 7.6018	. 888092	. 13155	. 11908	8230
		9.99682	0.12050	9.08100	8.2381	0.91583	0.12139	9.08417	$83^{\circ} \mathrm{O} 5^{\prime}$
1.45 .46	0.99271 .99387	9.99682 .99733	. 11057	. 043364	8.9886	. 95369	.11125	.04631	8339
. 47	. 99492	. 99779	. 10063	. 800271	9.8874	. 99508	. 10114	. 8.00492	8413 8448
. 48	. 99588	. 9982 II	. 09067	8.95747	10.983	1.04074 .09165	.09105 .08097	8.95926 .90834	8448 8522
. 49	. 99674	.99858	. 08071	$\cdot 90692$	12.350	. 091	. 0809		85
1.50	0.99749	9.99891	0.07074	8.84965	14.101	1.14926	0.07091	8.85074	$85^{\circ} 57^{\prime}$

CIRCULAR FUNCTIONS AND FACTORIALS.
TABLE 14 (continued), - Oircular (TIIgonometric) Functions.

	SINES.		COSINES.		TANGENTS.		COTANGENTS.		
	Nat.	Log	Nat.	Log	Nat.	Log.	Nat.	Log.	
1.50	0.99749	9.99891	0.07074	8.84965	14.101	1. 14926	0.07091	8.85074	$85^{\circ} 57^{\prime}$
. 51	.99815	. 99920	. 06076	. 78361	16.428	. 21559	.06087	.78441	8631
. 52	. 99871	. 99944	. 05077	. 70565	19.670	. 29379	. 05084	. 70621	8705
. 53	. 99917	. 99964	. 04079	.61050	24.498	-38914	. 04082	. 61086	8740
- 54	. 99953	. 99979	. 03079	. 48843	32.461	.51136	.03081	-48864	8814
I. 55	0.99978	9.99991	0.02079	8.31796	48.078	1.68195	0.02080	8.31805	$88^{\circ} 49^{\prime}$
. 56	0.99994	9.99997	. 01080	8.03327	92.62 I	1. 9667 I	. 01080	8.03329	8923
. 57	1.00000	0.00000	. 00080	6.90109	1255.8	3.09891	. 00080	6.90109	8957
. 58	0.99996	9.99998	-.00920	7.96396 n	108.65	2.03603	-.00920	7.96397n	9032
- 59	0.99982	9.99992	-. 01920	8.2833611	52.067	1.71656	-.0192I	$8.28344 n$	91 06
I. 60	0.99957	9.99981	-0.02920	8.46538 n	34.233	1. 53444	-0.02921	8.46556 n	$91^{\circ} 40^{\prime}$

$90^{\circ}=1.5707963$ radians.
table 15. - Logarithmic Factorials.
Logarithms of the products $1.2 .3 . \ldots \ldots n, n$ from 1 to 100.
See Table 17 for Factorials I to 20.
See Table 3I for log. $\Gamma(n+1)$, values of n between I and 2 .

n.	$\log (n!)$	n.	$\log (n!)$	\cdots	$\log (n)$	n.	$\log (n!)$
1	0.000000	26	26.605619	51	66.190645	76	III 275425
2	0.301030	27	28.036983	52	67.906648	77	113.161916
3	0.778 r 51	28	29.484141	53	69.630924	78	115.054011
4	1.380211	29	30.946539	54	71.363318	79	116.951638
5	2.079181	30	32.423660	55	73.103681	80	118.854728
6	2.857332	31	33.915022	56	74.851869	81	120.763213
7	3.702431	32	35.420172	57	76.607744	82	122.677027
8	4.605521	33	36.938686	58	78.371172	${ }_{8}^{8} 3$	124.596105
9	5.559763	34	38.470165	59	80.142024	84	I 26.520384
10	6.559763	35	40.014233	60	81.920175	85	128.449803
11	7.601156	36	41.570535	61	83.705505	86	130.384301
12	8.680337	37	43.138737	62	85.497896	87	132.323821
13	9.794280	38	44.718520	63	87.297237	88	134.268303
14	10.940408	39	46.309585	64	89.103417	89	136.217693
15	12.116500	40	47.911645	65	90.916330	90	138.171936
16	13.320620	41	49.524429	66	$92.735^{8} 74$	91	140.130977
17	14.551069	42	51.147678	67	94.561949	92	142.094765
18	15.806341	43	52.781147	68	96.394458	93	144.063248
19	17.085095	44	54.424599	69	98.233307	94	146.036376
20	18.386125	45	56.077812	70	100.078405	95	I48.014099
21	19.708344	46	57.740570	71	101.929663	96	149.996371
22	21.050767	47	59.412668	72	103.786996	97	151.983142
23	22.412494	48	61.093909	73	105.650319	98	I 53.974368
24	23.792706	49	62.784105	74	107.519550	99	155.970004
25	25.190646	50	64.483075	75	109.394612	100	157.970004

Smithsonian Tables.

Table 16.
HYPERBOLIC FUNCTIONS.

u	sinh. u		cosh. u		tauh. u		coth. u		gd u
	Nat.	Log.	Nat.	Log.	Nat.	Log.	Nat.	Log.	
0.00	0.00000	-	1.00000	. 00000	0.00000	-	∞	∞	$0^{\circ} 00^{\prime}$
. 01	. 01000	8.00001	. 00005	. 00002	. 01000	7.99999	100.003	2.00001	- 34
. 02	. 02000	. 30106	. 00020	. 00009	. 02000	8.30097	50.007	1. 69903	109
. 03	. 03000	. 47719	. 00045	. 00020	. 02999	. 47699	33.343	1.52301	143
. 04	. 04001	. 60218	. 00080	. 00035	. 03998	. 60183	25.013	1.39817	217
0.05	0.05002	8.69915	1.00125	0.00054	0.04996	8.69861	20.017	1.30139	
. 06	. 06004	.77841	. 00180	. 00078	. 05993	.77763	16.687	. 22237	326
. 07	. 07006	. 84545	. 00245	. 010106	. 06989	. 84439	14.309	. 15561	400
. 08	. 08009	. 90355	.00320	. 00139	. 07983	. 90216	12.527	. 09784	435
. 09	. 09012	. 95483	. 00405	. 00176	. 08976	. 95307	11.14I	. 04693	509
0.10	0.10017	9.00072	1.00500	0.00217	0.09967	8.99856	10.0333	1.00144	543
11	. 11022	. 04227	. 00606	. 00262	. 10956	9.03965	8.1275	$\begin{array}{r}0.96035 \\ \hline 0290\end{array}$	617 652
. 12	.12029 .13037	. 08022	. 00721	.00312	.11943 .12927	. 077110	8.3733 7.7356	. 882880	652 726
.13	. 130378	.11517 .14755 1	. 000846	. 00424	-13909	$.1433{ }^{\circ}$	7.1895	85670	800
0.15	0.15056	9.17772	1.01127	0.00487	0.14889	9.17285	6.7166	0.82715	34
.16	. 16068	. 20597	.01283	. 00554	. 18865	. 20044	6.3032	.79956	908
. 17	. 17882	. 23254	. 01448	. 00625	. 16838	. 222629	5.9389	.73371	942
. 18	.18097	.25762 .28136	.01624	. 0070779	. 178775	. 27357	5.3154 5.3263	774938 72643	10 10 10 19
0.20	0.20134	9.30392	1.02007	0.00863	0.19738	9.29529	5.0665	0.7047 I	1123
$\stackrel{.21}{ }$. 2115	${ }_{.} .3254 \mathrm{I}$. 02213	.0095I	. 20697	.31590	4.8317	. 68410	1157
. 22	. 22178	. 34592	. 02430	.01043	. 21652	. 33549	4.6186	. 6645 r	1230
. 23	. 23203	. 36555	. 02657	.or139	. 22603	- 35416	4.4242 4.2464	.64584 .62802	$\begin{array}{ll}13 & 04 \\ 13 & 37\end{array}$
. 24	. 24231	$\cdot 38437$. 02894	. 01239	. 23550	-37198	4.2464		1337
0.25	0.25261	9.40245	1.03141	0.01343	0.24492	9.38902	4.0830	0.61098	1411
. 26	. 26294	. 41986	. 03399	. 01452	. 25430	. 40534	3.9324	. 59466	1444
. 27	. 27329	.43663	. 03667	.01564	. 26362	. 42099	3.7933 3.6643	. 57901	1517 15 150
. 28	. 2836708	. 4548828	. 0394235	.01681	.27291 .28213	. 436015	3.6643 3.5444	. 549395	1550
. 29	. 29408	. 46847	. 04235						
0.30	0.30452	9.48362	1.04534	0.01926	0.29131	9.46436	3.4327	0.53564	1656
. 31	. 31499	. $4983{ }^{3}$. 04844	. 02054	- 30044	. 47775	.3285 .2309	. 52225	$\begin{array}{ll}17 & 29 \\ 18 & 02\end{array}$
- 32	. 32549 ,	. 51254	. 05164	. 02187	. 30951	. 49067	$\begin{array}{r}.2309 \\ . \\ \hline 195\end{array}$. 509683	18 18 18
. 34	.33602 .34659	. 526987	.05495	. 0232363	- 32748	. 5151518	. 0535	. 48482	1907
	0.35719	9.55290	1.06188	0.02607	0.33638	9.52682	2.9729	0.47318	1939
. 36	${ }^{-36783}$	${ }^{.56564}$. 06550	. 02755	. 34521	. 53809	. 8968	.46191	2012
. 37	- 37850	. 57807	. 06923	. 02907	. 35399	. 54899	. 8249	. 45101	2044
. 38	. 38921	. 59019	. 07307	. 03063	. 36271	. 55956	. 7578	. 44044	2116
. 39	. 39996	. 60202	. 07702	. 03222	. 37136	. 56980	. 6928	. 43020	2148
0.40	0.41075	9.61358	1.08107	0.03385	0.37995	9.57973	2.6319	0.42027	2220
. 41	. 42158	. 62488	. 08523	. 03552	- 38847	. 58936	. 5742	. 41064	22 23 23 23
. 42	-43246	. 63594	. 080950	. 03723	. 39693	. 590781	. 51672	. 301220	23 23 23 2
. 43	. 4453337	. 6467778	. 09.9888	. 038975	. $4053{ }^{15} 4$. 61663	. 4175	. 383327	
			I. 102970	. 04256	0.42190	9.6252 I	2.3702	0.37479	
0.45 .46	- 0.47650	9.67797	. 10768	.0444 ${ }^{\text {I }}$. 43008	. 63355	. 3251	. 36645	2528
. 47	. 48750	. 68797	. 11250	. 04630	. 43882	. 64167	. 2821	. 35833	2559
. 48	. 49865	. 69779	. 11743	. 04822	. 44624	. 64957	. 2409	. 354243	26 27
. 49	. 50984	70744	. 12247	. 05018	. 45422	. 65726	. 2016	. 34274	27 O1
0.50	0.52110	9.71692	1.12763	0.05217	0.46212	9.66475	2.1640	0.33525	2731

Table 16 (continued).
HYBERBOLIC FUNCTIONS.

u	sinh. u		cosh. u		tanh. u		coth. u		gd u
	Nat.	Log.	Nat.	Log.	Nat.	Log.	Nat.	Log.	
0.50	0.52110	9.71692	1.12763	0.05217	0.46212	9.66475	2.1640	0.33525	$27^{\circ} 3 \mathrm{I}^{\prime}$
. 51	. 53240	. 72624	. 13289	.05419	. 46995	. 67205	. 1279	. 32795	$28 \quad 02$
. 52	- 54375	. 73540	. 13827	. 05625	. 47770	. 67916	. 0934	. 32084	2832
. 53	- 55516	. 74442	. 14377	. 05834	-48538	. 68608	. 0602	-31392	2902
. 54	$\cdot 56663$. 75330	. 14938	. 06046	. 49299	. 69284	. 0284	. 30716	2932
0.55	0.57815	9.76204	1.15510	0.06262	0.50052	9.69942	1.9079	0.30058	$30 \quad 02$
. 56	. 58973	. 77065	. 16094	. 06481	. 50798	. 70584	. 9686	. 29416	3032
. 57	. 60137	.77914	. 16690	. 06703	. 515.36	. 71211	. 9404	. 28789	3101
. 58	. 61307	. 78751	. 17297	. 06929	. 52267	. 71822	. 9133	.28178	3131
. 59	. 62483	.79576	. 17916	. 07157	. 52990	.72419	. 8872	. 2758 I	3200
0.60	0.63665	9.80390	1.18547	0.07389	0. 53705	9.73001	1.8620	0.26999	3229
.6I	. 64854	.81194	. 19189	.07624	. 54413	. 73570	. 8378	. 26430	32 28
. 62	. 66049	. 81987	. 19844	. 07861	.55113	.74125	.8145	.25875	3327
63	. 67251	. 82770	. 20510	. 08102	. 55805	.74667	. 7919	. 25333	3355
. 64	. 68459	. 83543	.21189	. 08346	. 56490	.75197	.7702	. 24803	3424
0.65	0.69675	9.84308	1.21879	0.08593	0.57167	9.75715	J. 7493	0.24285	3452
. 66	.70897	. 85063	. 22582	. 08843	. 57836	. 76220	.7290	. 23780	3520
. 67	. 72126	. 85809	. 23297	. 09095	. 58498	. 76714	. 7095	. 23286	3548
. 68	.73363	. 86548	. 24025	. 09351	- 59152	.77197	. 6906	. 22803	3616
. 69	. 74607	. 87278	. 24765	. 09609	- 59798	.77669	. 6723	.2233I	3644
0.70	0.75858	9.88000	1.25517	0.09870	0.60437	9.78130	1.6546	0.21870	3711
. 71	.77117	. 88715	. 26282	.10134	. 61068	.78581	. 6375	.21419	373^{8}
. 72	. 78384	. 89423	. 27059	.10401	.61691	. 79022	. 6210	. 20978	3805
. 73	. 79659	. 90123	. 27849	. 10670	. 62307	. 79453	. 6050	. 20547	3832
.74	. 80941	.90817	. 28652	.10942	.62915	. 79875	.5895	.20125	3859
0.75	0.82232	9.91504	1.29468	0.11216	0.63515	9.80288	1.5744	0.19712	3926
. 76	. 83530	. 92185	. 30297	. 11493	. 64108	. 80691	. 5599	. 19309	3952
. 77	. 84838	. 92859	-31139	.11773	.64693	.81086	. 5458	.18914	4019
. 78	.86153	. 93527	. 31994	. 12055	.6527 I	.81472	. 5321	.18528	4045
. 79	. 87478	. 94190	-32862	. 12340	. 6584 I	.81850	. 5188	.18150	4111
0.80	0.88811	9.94846	1.33743	0.12627	0.66404	9.82219	1.5059	0.17781	4137
.81	. 90152	. 95498	- 34638	. 12917	. 66959	. 82585	. 4935	. 17419	4202
. 82	. 91503	. 966144	- 35547	. 13209	. 67507	. 82935	.4813	.17065	4228
. 83	. 92863	.96784	-36468	.13503	. 68048	. 83281	-4696	.16719	4253
. 84	. 94233	. 97420	-37404	. 13800	.6858I	. 83620	.4581	.16380	43 I8
0.85	0.95612	9.98051	1. 38353	0.14099	0.69107	9.83952	1.4470	0.16048	4343
. 86	. 97000	. 98677	- 39316	. 14400	. 69626	. 84277	. 4362	. 15723	4408
. 87	. 98398	. 99299	-40293	. 14704	. 70137	. 84595	. 4258	. 15405	4432
. 88	. 99806	. 99916	. 41284	. 15009	. 70642	. 84906	. 4156	- 15094	4457
. 89	I.OI224	0.00528	.42289	. 15317	.71139	.852II	. 4057	.14789	4521
0.90	1.02652	0.01137	1.43309	0.15627	0.71630	9.85509	1.3961	0.14491	4545
. 91	. 04090	. 01741	. 44342	. 55939	. 72113	. 85801	. 3867	. 14199	4609
. 92	. 05539	. 02341	. 45390	. 16254	. 72590	. 86088	. 3776	. 13912	4633
. 93	. 06998	. 02937	. 46453	. 16570	. 73059	. 86368	. 3687	.13632	4656
. 94	. 08468	. 03530	. $4753{ }^{\circ}$.16888	.73522	. 86642	. 3601	. 13358	4720
0.95	1. 09948	0.04119	1.48623	0.17208	0.73978	9.86910	1.3517	0.13090	
. 96	. 11440	. 04704	. 49729	. 17531	. 74428	. 87173	. 3436	. 12827	4806
. 97	. 12943	.05286	. 50851	. 17855	. 74870	. 8743 I	. 3356	. 12569	4829
. 98	. 14457	. 05864	- 51988	.18181 .18509		. 87683	-3279	.12317 .12070	48 51
.99	. 15983	.06439	. 53141	. 18509	.75736	. 87930	-3204	. 12070	4914
1.00	1.17520	0.07011	1. 54308	0.18839	0.76159	9.88172	1.3130	0.11828	4936

Smithsonian Tables.

Table 16 (continued).
HYPERBOLIC FUNCTIONS.

\square	sinh. u		cosh. u		tanh, u		$\operatorname{coth} \mathrm{u}$		gd u
	Nat.	Log.	Nat.	Log.	Nat.	Log.	Nat.	Log.	
1.00	1.17520	0.07011	I. 54308	0.18839	0.76159	9.88172	1.3130	0.11828	$49^{\circ} 33^{\prime}$
. 01	. 19069	. 07580	. 55491	.19171	. 76576	. 888409	. 3059	. 11591	4958
. 02	. 20630	. 08146	. 56689	. 19504	. 76987	. 88642	. 2989	. 11358	5021
. 03	. 22203	. 08708	. 57904	. 19839	.77391	. 88869	. 2921	.1113I	5042
. 04	. 23788	. 09268	. 59134	.20176	. 77789	. 89092	. 2855	.10908	5104
1.05	1. 25386	0.09825	I. 60379	0.20515	0.78181	9.89310	1.2791	0.10690	5126
. 06	. 26996	. 10379	.61641	. 20855	. 78566	. 89524	. 2728	. 10476	5147
. 07	. 28619	. 10930	. 62919	.21197	. 78946	. 89733	. 2667	. 10267	5208
. 08	. 30254	. 11479	. 64214	. 21541	. 79320	. 89938	. 2607	.10062	5229
. 09	. 31903	. 12025	. 65525	.21886	. 79688	.90139	. 2549	.09861	5250
1.10	1.33565	0.12569	1. 66952	0.22233	0.80050	9.90336	I. 2492	0.09664	53 II
. 11	. 35240	.13111	.68196	. 22588	. 80406	. 90529	. 2437	. 09471	5331
.12	. 36929	. 13649	. 69557	. 22931	. 80757	. 90718	.2383	. 09282	5352
.13	.38631	. 14186	.70934	.23283	.81102	. 90903	. 2330	.09097	5412
.14	. 40347	.14720	. 72329	.23636	. 81441	.91085	. 2279	.08915	5432
1.15	1.42078	- 0.15253	1.7374 I	0.23990	0.81775	9.91262	I. 2229	0.08738	5452
. 16	. 43882	.15783	.75171	. 24346	.82104	.91436	. 2180	. 08564	55 II
. 17	-45581	.163II	.766r8	. 24703	. 82427	. 91607	. 2132	. 08393	5531
. 18	-47355	.16836	. 78083	. 25062	. 82745	.91774	. 2085	. 08226	5550
. 19	.49143	. 17360	. 79565	. 25422	. 83058	. 91938	. 2040	. 08062	5^{609}
1.20	1. 50946	0.17882	1.81066	0.25784	0.83365	9.92099	1.1995	0.07901	5629
. 21	. 52764	. 18402	. 82584	. 26146	. 83668	. 92256	. 1952	. 07744	5647
. 22	. 54598	. 18920	. 84121	.26510	. 83965	. 92410	. 1910	. 07590	5706
.23	. 56447	. 19437	. 85676	. 26876	. 84258	. 92561	. 1868	.07439	5725
. 24	. 58311	.19951	. 87250	. 27242	. 84546	. 92709	. 1828	. 07291	5743
1.25	1.60192	0.20464	1.88842	0.27610	0.84828	9.92854	1.1789	0.07146	588
. 26	. 62088	. 20975	. 90454	. 27979	. 85106	. 92996	. 1750	. 07004	5820
. 27	. 64001	. 21485	. 92084	. 28349	. 85380	. 93135	. 1712	. 06865	58
. 28	. 65930	. 21993	. 93734	. 28721	. 85648	. 93272	. 1676	. 06728	585
. 29	. 67876	. 22499	. 95403	. 29093	. 85913	. 93406	. 1640	. 06594	5913
1. 30	1. 69838	0.23004	r. 97091	0.29467	0.86172	9.93537	1.1605	0.06463	5931
$\cdot 31$. 71818	. 23507	. 98800	. 29842	. 864288	. 93665	1570 .1537	. 06335	59 60 60 60
. 32	.73814	. 24009	2.00528	-30217	. 86678	.93791	. 1537	.06209	60 60 60
. 33	.75828	. 24509	. 02276	-30594	. 86925	.93914	. 1504		6039
. 34	. 77860	.25008	. 04044	$\cdot 30972$. 87167	. 94035	. $147{ }^{2}$. 05965	6039
I. 35	r. 79909	0.25505	2.05833	0.31352	0.87405 87639	9.94154	I.144I	0.05846 .05730	60 615 61 13
. 36	.81977	. 26002	. 07643	-31732	.87639 8889	.94270 .94384	.1410 .1381	. 05730	$\begin{array}{lll}61 & 1 \\ 61 \\ 69\end{array}$
. 37	. 84062	. 264996	.09473 .11324	.32113	.87869 .88095	.94384 .94495	. 1381	. 055105	61 45
. 39	. 88289	. 27482	.13196	. 32878	. 88317	. 94604	. 1323	. 05396	6202
I. 40	1.90430	0.27974	2.15090	0.33262	0.88535	9.94712	I. 1295	0.05288	62 I 8
. 41	. 92591	. 28464	. 17005	. 33647	. 88749	. 94817	. 1268	.05183	$\begin{array}{lll}62 & 34 \\ 62 & 49\end{array}$
. 42	. 94770	. 28952	. $1894{ }^{2}$. 34033	. 88960	. 94919	. 1241	. 05081	6249 63
. 43	. 96970	. 29440	. 20900	- 34420	. 89167	. 95020	. 1215	.04980	6305 6320
. 44	.99188	.29926	.22881	.34807	. 89370	.95119	.1189	. 04881	6320
I. 45	2.01427	0.30412	2.24884	0.35196	0.89569	9.95216	1.1165	0.04784	$\begin{array}{ll} 63 & 36 \\ 63 & 5 \end{array}$
. 46	. 03686	. 30896	. 26910	. 35585	. 89765	. 9531 I	.II40 .1156	. 04689	$\begin{aligned} & 6351 \\ & 6406 \end{aligned}$
. 47	.05965 .08265	.31379 .31862	.28958 .31029	.35976 .36367	.89958 .90147	.95404 .95495	.1116 .1093	. 04596	$\begin{aligned} & 6406 \\ & 6421 \end{aligned}$
. 48	. .10586	. 312348	.31029 .33123	.36367 .3675	. 903037	. 95584	. 1070	. 04416	643^{6}
1.50	2.12928	0.32823	2.35241	0.37151	0.90515	9.95672	1.1048	0.04328	64 51

Smithsonian tables.

HYPERBOLIC FUNCTIONS.

u	sinh. u		cosh. u		tanh. u		coth. u		gd. u
	Nat.	Log.	Nat.	Log.	Nat.	Log.	Nat.	Log.	
1. 50	2.12928	0.32823	2.35241	0.37151	0.90515	9.95672	1.1048	0.04328	$64^{\circ} 55^{\prime}$
. 51	. 15291	. 33303	. 37382	. 37545	. 90694	. 95758	. 1026	. 04242	$65 \quad 05$
. 52	. 17676	. 3378 r	. 39547	. 37939	. 90870	. 95842	. 1005	. 04158	$65 \quad 20$
. 53	. 20082	. 34258	. 41736	. 38334	. 91042	. 95924	. 0984	. 04076	$65 \quad 34$
- 54	. 22510	-34735	-43949	-38730	. 91212	. 96005	.0963	. 03995	6548
I. 55	2.24961	0.35211	2.46186	0.39126	0.91379	996084	1.0943	0.03916	6602
. 56	. 27434	. 35686	. 48448	. 39524	.91542	. 96162	. 0924	. 03838	6616
- 57	. 29930	-36160	. 50735	-39921	.91703	. 96238	. 0905	. 03762	6630
. 58	-32449	.36633	- 53047	. 40320	. 91860	. 96313	. 0886	. 03687	$66 \quad 43$
. 59	-34991	$\cdot 37105$	-55384	. 40719	. 92015	. 96386	. 0868	.03614	6657
1.60	2.37557	0.37577	2.57746	0.41119	0.92167	9.96457	1.0850	0.03543	67 10
. 6 ¢	40146	. 38048	. 60135	. 41520	.92316	. 96528	. 0832	. 03472	$67 \quad 24$
. 62	. 42760	. 38518	. 62549	. 41921	. 92462	. 96597	.0815	. 03403	$67 \quad 37$
. 63	. 45397	-38987	. 64990	. 42323	. 92606	. 96664	. 0798	. 03336	$67 \quad 50$
. 64	-48059	-39456	. 67457	. 42725	. 92747	. 96730	. 0782	. 03270	$68 \quad 03$
1.65	2.50746	0.39923	2.69951	0.43129	0.92886	9.96795	1.0766	0.03205	6815
. 66	. 53459	. 40391	. 72472	. $4353{ }^{2}$. 93022	. 96858	. 0750	.03142	$68 \quad 28$
. 67	.56196	. 40857	. 75021	. 43937	. 93155	. 9692 I	. 0735	. 03079	68 4I
. 68	. 58959	.41323	. 77596	-44341	. 93286	. 96982	. 0720	.03018	$68 \quad 53$
. 69	. 61748	. 41788	. 80200	. 44747	. 93415	. 97042	. 0705	. 02958	$69 \quad 05$
1.70	2.64563	0.42253	2.82832	0.45153	0.93541	9.97100	1.0691	0.02900	69 18
. 71	. 67405	. 42717	. 85491	-45559	. 93665	. 97158	. 0676	. 02842	6930
. 72	. 70273	. 43180	.88180	-45966	. 93786	.97214	. 0663	. 02786	6942
.73	.73168	. 43643	. 90897	. 46374	. 93906	. 97269	. 0649	. 02731	$69 \quad 54$
. 74	.76091	. 44105	. 93643	; 46782	. 94023	$\cdot 97323$.0636	. 02677	$70 \quad 05$
1.75	2.79041	0.44567	2.96419	0.4719 I	0.9413^{8}	9.97376	1.0623	0.02624	$70 \quad 17$
.76	. 82020	. 45028	. 99224	. 47600	. 94250	. 97428	. 0610	. 02572	$70 \quad 29$
. 77	. 85026	. 45488	3.02059	. 48009	. 94361	. 97479	. 0598	. 02521	$70 \quad 40$
.78	.8806I	. 45948	. 04925	. 48419	. 94470	. 97529	. 0585	. 02471	$70 \quad 51$
.79	.91125	. 46408	. 0782 I	.48830	. 94576	. 97578	. 0574	. 02422	7103
1.80	2.94217	0.46867	3.10747	0.49241	0.94681	9.97626	1.0562	0.02374	71
.8I	. 97340	. 47325	. 13705	. 49652	. 94783	. 97673	. 0550	. 02327	7125
. 82	3.00492	. 47783	. 16694	- 50064	. 94884	. 97719	. 0539	.02281	7136
. 83	. 03674	.4824I	. 19715	- 50476	-94983	. 97764	. 0588	.02236	7146
. 84	. 06886	. 48698	. 22768	. 50889	. 95080	. 97809	. 0518	.02191	7157
I. 85	3.10r29	0.49154	3.25853	0.51302	0.95175	9.97852	1.0507	0.02148	$\begin{array}{ll}72 & 08\end{array}$
. 86	. 13403	.496т0	. 28970	.51716	. 95268	. 97895	. 0497	.02105	72 18
-87	. 16709	. 50066	. 32121	. 52130	. 95359	. 97936	. 0487	. 02064	$\begin{array}{ll}72 & 29\end{array}$
. 88	. 20046	. 50521	.35305	- 52544	. 95449	. 97977	. 0477	. 02023	7239
. 89	. 23415	. 50976	$\cdot 3^{8} 522$. 52959	. 95537	. 98017	. 0467	. 01983	7249
1.90	3.26816	0.51430	3.41773	0.53374	0.95624	9.98057	1.0458	0.01943	$72 \quad 59$
. 91	. 30250	. 51884	. 45058	. 53789	. 95709	. 98095	. 0448	. 01905	$73 \quad 09$
. 92	-33718	. 52338	. 48378	-54205	. 95792	.98133	. 0439	. 01867	7319
. 93	. 37218	-52791	. 51733	. 54621	. 95873	.98170	. 0430	.or8.30	7329
. 94	. 40752	. 53244	.55123	. 55038	. 95953	.98206	. 0422	.01794	7339
1.95	3.44321	0.53696	$3 \cdot 58548$	0. 55455	0.96032	9.98242	1.0413	0.01758	$73 \quad 48$
. 96	. 47923	. 54148	. 62009	. 558872	. 96109	. 988276	. 0405	.or 724	7358
. 97	.5156I	. 54600	. 65507	- 56290	. 96185	.98311	. 0397	. 01689	$74 \quad 07$
. 98	. 55234	. 55051	. 69041	. 56707	.96259	. 98344	. 0389	.01656	$74 \quad 17$
.99	-58942	. 55502	.72611	. 57126	.9633I	.98377	.038I	. 01623	$74 \quad 26$
2.00	3.62686	0.55953	3.76220	0.57544	0.96403	9.98409	1.0373	0.01591	7435

Smithsonian tables.

TABLE 16 (continued).
HYPERBOLIC FUNCTIONS.

1	sinh. u		cosh. u		tanh. u		coth. u.		gd. u
	Nat.	Log.	Nat.	Log.	Nat.	Log.	Nat.	Log.	
2.00	3.62686	0.55953	3.76220	0.57544	0.96403	9.98409	1.0373	0.01591	$74^{\circ} 35^{\prime}$
. 01	. 66466	. 56403	. 79865	. 57963	. 96473	. 98440	. 0366	.01560	7444
. 02	. 70283	. 56853	. 83549	. 58382	. 96541	. 98471	. 0358	. 01529	7453
. 03	. 741138	. 57303	. 87271	. 58802	. 96609	. 98502	.0351	. 01498	7502
. 04	. 78029	. 57753	. 91032	-5922I	. 96675	.98531	. 0344	. 01469	75 II
2.05	3.81958	0.58202	3.94832	0.59641	0.96740	9.98560	1.0337	0.01440	7520
. 06	. 85926	. 58650	. 98671	. 60061	. 96803	. 98589	. 0330	. 01411	7528
. 07	. 89932	. 59099	4.02550	. 60482	. 9686	. 98617	. 0324	. 01383	7537
. 08	. 93977	- 59547	. 06470	. 60903	. 96926	. 98644	.0317	.o1356	7545
. 09	. 98061	- 59995	.10430	.61324	. 96986	.98671	.0311	. 01329	7554
2.10	4.02186	0.60443	4.1443I	0.61745	0.97045	9.98697	1.0304	0.01303	76 oz
. 11	. 06350	. 60890	. 18474	. 62167	. 97103	. 98723	. 0298	. 01277	7610
.12	. 1055	. 61337	. 22558	. 62589	. 97159	. 98748	. 0292	. 01252	7619
. 13	. 14801	. 61784	. 26685	. 63011	. 97215	. 98773	. 0288	. 01227	$76 \quad 27$
. 14	. 19089	.6223I	- 30855	. 63433	. 97269	.98798	.028I	. 01202	7635
2.15	4.23419	0.62677	4.35067	0.63856	0.97323	9.98821	1.0275	0.01179	7643
. 16	. 27791	. 63123	. 39323	. 64278	. 97375	. 98884	. 0270	. 01155	7651
	. 32205	. 63569	. 43623	. 64701	. 97426	. 98868	. 0264	. 01132	7658
. 18	. 36663	. 64015	. 47967	. 65125	. 97477	. 98890	. 0259	. 011110	7706
. 19	. 41165	. 64460	. 52356	. 65548	. 97526	.98912	. 0254	. 01088	7714
2.20	4.457 tI	0.64905	4.56791	0.65972	0.97574	9.98934	1.0249	0.01066	7721
.21	. 50301	. 65350	. 61271	. 66396	. 97622	. 98955	. 0244	. 01045	7729
. 22	. 54936	. 65795	. 65797	. 66820	. 97668	. 98975	. 0239	. 01025	7736
.23	. 59617	. $6624{ }^{\circ}$.70370	. 67244	. 97714	. 98996	. 0234	. 01004	7744
. 24	. 64344	. 66684	. 74989	. 67668	. 97759	. 99016	. 0229	. 00984	7751
2.25	4.69117	0.67128	4.79657	0.68093	0.97803	9.99035	1.0225	0.00965	7758
. 26	.73937	. 67572	. 84372	. 68515	. 97846	. 99054	. 0220	. 00946	7805
.27	. 78804	. 68016	. 89136	. 68943	. 97888	. 99073	. 0216	. 00927	7812
. 28	. 83720	. 68459	. 93948	. 69368	. 97929	.99091	. 0211	. 00909	7819
. 29	. 88684	. 68903	. 98810	. 69794	. 97970	.99109	. 0207	.00891	7826
2.30	4.93696	0.69346	5.03722	0.70219	0.98010	9.99127	1.0203	0.00873	7833
. 31	. 9875^{8}	. 69789	. 08684	. 70645	. 98049	. 99144	. 0199	. 00885	7840
. 32	5.03870	.70232	. 13697	. 71071	. 98087	.99161	. 0195	. 00839	7846
.33	. 09032	.70675	. 18762	. 71497	. 98124	. 99178	.0191	. 00822	7853
. 34	. 14245	.71117	.23878	.71923	.98161	.99194	. 0187	. 00806	7900
2.35	5.19510	0.71559	5.29047	0.72349	0.98197	9099210	1.0184	0.00790	7906
. 36	. 24827	. 72002	. 34269	. 72776	. 98233	. 99226	. 0180	. 00774	7913
- 37	. 30196	. 72444	. 39544	.73203	. 98267	. 99241	. 0176	. 00759	7919 79
. 38	. 35618	. 72885	. 44873	.73630	. 98301	. 99256	. 0173	. 00744	7925
. 39	. 41093	.73327	. 50256	. 74056	. 98335	.9927I	. 0169	. 00729	793^{2}
2.40	5.46623	0.73769	$5 \cdot 55695$	0.74484	0.98367	9.99285	1.0166	0.00715	79 78
. 41	. 522207	.74210	. 61189	. 74911	. 98800	. 99299	. 0163	. 00701	7944
.42	. 57847	.74652	. 66739	-75338	. 98431	.99313	. 0159	. 00687	7950
. 43	. 63542	.75093	. 72346	. 75766	. 98462	. 99327	. 0156	. 00673	7956 80
. 44	. 69294	. 75534	. 78010	.76194	. 98492	. 99340	. 0153	. 00660	8002
2.45	5.75103	0.75975	5.83732	0.76621	0.98522	9.99353	1.0150	0.00647	8008
. 46	$\begin{array}{r}.80969 \\ \hline 86893\end{array}$.76415 .76856	.89512 .9532	.77049 .77477	.98551 .98579	.99366 .99379	.0147 .0144	.00634	80 80 80
. 47	. 86893	.76856	. 953352	-77477	. 98579	. 99379	. 0144	$\begin{aligned} & .00621 \\ & \hline 00609 \end{aligned}$	8026
. 48	.92876 .98918	.77296 .77737	6.01250 .07209	.77906 .78334	.98607 .98635	.99391 .99403	.0141 .0138	. 000597	8031
.49 2.50	6.05020	0.78177	6.13229	0.78762	0.98661	9.99415	1.0136	0.00585	8037

[^7]Table 16 (continued).
HYPERBOLIC FUNCTIONS.

u	sinh. u		cosh. u		tanh. 4		coth. \mathbf{x}		gd. 4
	Nat.	Log.	Nat.	Log.	Nat.	Log.	Nat.	Log.	
2.50	6.05020	0.78177	6.13229	0.78762	0.98661	9.99415	1.0136	0.00585	$80^{\circ} \quad 37^{\prime}$
. 51	.III83	.786I7	. 19310	.79191	. 98688	. 99426	. 0133	.00574	$80 \quad 42$
. 52	. 17407	.79057	. 25453	. 79619	.98714	. 99438	. 0130	. 00562	8048
- 53	.23692	.79497	.3I658	. 80048	.98739	. 99449	.OI 28	.00551	8053
- 54	.30040	. 79937	-37927	. 80477	.98764	. 99460	.OI2 5	. 00540	8059
2.55	6.36451	0.80377	6.44259	0.80906	0.98788	9.99470	1.0123	0.00530	$8 \mathrm{I} \quad 04$
. 56	. 42926	.80816	. 50656	.81335	. 98812	. 99481	. 0120	.00519	$81 \quad 10$
. 57	.49464	.81256	. 57118	.81764	.98835	. 99491	. 0118	.00509	$81 \quad 15$
. 58	. 56068	.81695	.63646	. 82194	.98858	. 99501	.OII 5	. 00499	$81 \quad 20$
. 59	.6273 ${ }^{8}$.82134	.70240	.82623	. 98881	.99511	.OII3	.00489	8125
2.60	6.69473	0.82573	6.76901	0.83052	0.98903	9.99521	I.OIII	0.00479	8 m 30
.61	. 76276	.83C12	.83629	. 83482	. 98924	. 99530	.OIO9	. 00470	8135
. 62	.83146	. 83451	.90426	. 83912	.98946	.99540	. 0107	. 00460	$8 \mathrm{I} 40$
. 63	.90085	.83890	.97292	. 84341	.98966	. 99549	. 0104	. 00451	$8 \mathrm{I} 45$
. 64	.97092	. 84329	7.04228	.84771	.98987	.99558	. 0102	. 00442	8150
2.65	7.04169	0.84768	7.11234	0.85201	0.99007	9.99566	1.0100	0.00434	8 I 55
. 66	.11317	. 85206	.183I2	. 85631	. 99026	. 99575	. 0098	.00425	8200
. 67	.18536	.85645	. 25461	.86061	. 99045	.99583	. 0096	.00417	82 05
. 68	.25827	.86083	.32683	. 86492	.99064	.99592	. 0094	.00408	8209
. 69	.33190	. 86522	. 39978	. 86922	.99083	.99600	. 0093	. 00400	$82 \quad 14$
2.70	7.40626	0.86960	7.47347	0.87352	0.99101	9.99608	1.0091	0.00392	$82 \quad 19$
. 71	.48137	. 87398	. 54791	.87783	.99118	.99615	.0089	.00385	8223
.72	. 55722	. 87836	. 62310	. 88213	.99136	.99623	. 0087	.00377	8228
.73	$.633^{83}$. 88274	. 69905	. 88644	.99153	.99631	.0085	.00369	8232
. 74	.7112	.88712	.77578	. 89074	.99170	.99638	. 0084	.00362	8237
2.75	7.78935	0.89150 8958	7.85328	0.89505	0.99186	9.99645	1.0082	0.00355	8241
.76 .77	. 86828	. 89588	8.93157	. 89936	. 99202	. 99652	. 0080	.00348	8245
.77 .78	.94799 8.02849	.90026	8.01065	.90367	.99218	.99659	.0079	.00341	8250
.78 .79	8.02849 .10980	.90463	.09053 .17122	.90798 .91229	.99233 .99248	. 99666	. 0077	. 00334	8254
.79	. 10980	.90901	.17122	.91229	.99248	.99672	. 0076	.00328	8258
2.80	8.19192	0.91339	8.25273	0.91660	0.99263	9.99679	1.0074	0.00321	8302
.81 82	. 27486	.91776	-33506	.92091	. 99278	.99685	. 0073	.00315	8307
82 83	.35862	.92213	.41823	.92522	. 99292	.99691	. 0071	.00309	83 II
.83 84	. 44322	.92651	. 50224	.92953	. 99306	.99698	. 0070	.00302	83 I5
. 84	. 52867	. 93088	.58710	.93385	. 99320	.99704	.0069	.00296	83 19
2.85	8.61497	0.93525	8.67281	0.93816	0.99333	9.99709	1.0067	0.00291	$83 \quad 23$
.86 .87	.70213	.93963	. 75940	. 94247	. 99346	. 99715	. 0066	.00285	83
.87 .88	.79016	. 94400	. 84686	.94679	. 99359	. 99721	. 0065	. 00279	83 31
.88	.87907	.94837	. 93520	.95110	. 99372	.99726	. 0063	. 00274	8314
. 89	.96887	. 95274	9.02444	. 95542	. 99384	$.9973^{2}$.0062	.00268	8318
2.90	9.05956	0.957 II	9.11458	0.95974	0.99396	9.99737	1.0061	0.00263	8342
.91	.15116	.96148	. 20564	.96405	. 99408	. 99742	. 0060	.00258	8346
.92	.24368	.96584	. 29761	.96837	. 99420	. 99747	. 0058	.00253	8350
.93	. 33712	.9702	.39051	.97269	. 99531	.99752	. 0057	. 00248	835
. 94	.43149	. 97458	. 48436	.97701	. 99443	.99757	. 0056	. 00243	8357
	9.52681	0.97895	9.57915	0.98133	0.99454	9.99762	1.0055	0.00238	8400
. 96	.62308	.9833I	.67490	.98565	. 99464	.99767	.0054	.00233	84
. 97	.72031	.98768	.77161	.98997	.99475	. 9977 I	. 0053	. 00229	848
. 98	.81851	. 99205	.86930	.99429	.99485	. 99776	. 0052	.00224	84 II
. 99	-91770	.9964r	. 96798	.9986I	. 99496	. 99780	.0051	. 00220	8415
3.00	10.01787	1.00078	10.06766	1.00293	0.99505	9.99785	1.0050	0.00215	8418

HYPERBOLIC FUNCTIONS.

u	sinh. u		cosh. u		tanh. u		coth. u		gd. u
	Nat.	Log.	Nat.	Log.	Nat.	Log.	Nat.	Log.	
3.0	10.0179	1.00078	10.0677	1.00293	0.99505	9.99785	1.0050	0.00215	$84^{\circ} \mathrm{I} 8^{\prime}$
. 1	11.0765	. 04440	11.1215	. 04616	. 99595	. 99824	. 0041	. 00176	8450
$\cdot 2$	12.2459	. 08799	12.2866	. 08943	.99668	. 99856	. 0033	. 00144	8520
$\cdot 3$	13.5379	.1355	13.5748	. 13273	. 99728	. 99882	. 0027	. 00118	8547
4	14.9654	. 77509	14.9987	. 17605	. 99777	. 99903	. 0022	. 00097	8611
$3 \cdot 5$	16. 5426	1.21860	16.5728	1.21940	0.99818	9.99921	1.0018	0.00079	
. 6	18.2855	. 26211	18.3128	. 26275	. 99885	. 99935	. 0015	. 00065	8652
. 8	20.2113 22.3304	- 30559	20.2360 22.3618	. 30612	. 998978	. 999947	. 0012	. 00053	87 I
	22.3394 24.6911	. 34907	22.3618	-34951	. 99990	. 99957	. 0010	. 00043	8726
. 9	24.6911	. 39254	24.7113	. 39290	. 99918	.99964	. 0008	.00036	8741
4.0	27.2899	1.43600	27.3082	1.43629	0.99933	9.9997 ${ }^{1}$	1.0007	0.00029	
. 1	30.1619	- 47946	30.1784	. 47970	. 99945	. 999976	. 0005	. 00024	8806
3	33.3357	. 52291	33.3507	. 52310	. 99955	. 99980	. 0004	. 00020	88 r 7
$\stackrel{.}{ } \cdot 4$	36.843 I 40.7193	. 609680	36.8567 $40.73{ }^{16}$. 660993	. 999963	.99984 .99987	.0004 .0003	.00016	88 88 88
	45.0030	1.6532	45.0141	1. 65335	0.99975	9.99989	1.0002	0.00011	
. 6	49.737 I	. 69668	49.7472	. 69677	. 99980	.99991	. 0002	.00009	88 51
. 7	54.9690	. 74012	54.9781	. 74019	. 99983	. 99999	. 0002	.00007	8857
. 8	60.7511	. 78355	60.7593	.78361	. 99986	. 99994	. 0001	. 00006	8903
. 9	67.1412	. 82699	67.1486	. 82704	. 9998	. 99995	. 0001	. 00005	8909
5.0	74.2032	1.87042	74.2099	1.87046	0.99991	9.99996	I.0001	0.00004	8914

Table 17. Factorials.
See table I 5 for logarithms of the products $\mathbf{1 . 2 . 3}$. . . n from I to $\mathbf{r o o}$.
See table 3 I for log. $(n+I)$ for values of n between 1.000 and 2.000 .

n	$\frac{I}{n}$	$n:=1.2 .3 .4 \ldots n$	n
1	1.	1	1
2	0.5	2	2
3	.16666 66666666666666666667	6	3
4	.04I66 66666666666666666667	24	4
5	.00833 33333333333333333333	120	5
6	0.001 3888888888888888888889	720	6
8	.00019 84126 98412 69841 26984	5040	7
8	.00002 48015873015873015873	40320	8
9	. 0000027557319223985890653	362880	9
10	. 0000002755731922398589065	3628800	10
11	$0.000000025052108 \quad 3854417188$	39916800	II
12	. 00000000020876756987868099	479001600	12
13	.00000 00001 60590 43836 82161	6227020800	13
14	. 00000000000114707455977297	87178291200	14
15	. 00000000000007647163731820	1307674368000	I 5
16	0.0000000000000477947733239	20922789888000	16
17	. 0000000000000028114572543	355687428096000	17
18	.00000 00000000001561920697	6402373705728000	18
19	. 00000000000000000082206352	121645100408832000	19
20	. 0000000000000000004110318	243290200 81766 40000	20

Bmithsonian Tables.

Table 18.
EXPONENTIAL FUNCTION.

x	$\log _{10}(e x)$	$e x$	e-x	x	$\log _{10}(e x)$	$e x$	e^{-x}
0.00	0.00000	1.0000	1.000000	0.50	0.21715	1. 6487	0.606531
. 01	. 00434	. 0101	0.990050	. 51	. 22149	. 6653	. 600496
. 02	. 00869	. 0202	. 980199	. 52	.22583	. 6820	. 594521
. 03	. 01303	. 0305	. 970446	. 53	. 23018	. 6989	. 588605
. 04	. 01737	. 0408	.960789	. 54	. 23452	.7160	. 582748
0.05	0.02171	1.0513	0.951229	0.55	0.23886	1.7333	0.576950
. 06	. 02606	.0618	. 941765	. 56	. 24320	. 7507	. 571209
. 07	. 03040	. 0725	. 932394	- 57	. 24755	. 7683	. 565525
. 8	. 03474	. 0833	.923II6	. 58	.25189	. 7860	- 559898
. 09	. 03909	. 0942	.91393I	. 59	.25623	. 8040	. 554327
0.10	0.04343	1.1052	0.904837	0.60	0.26058	1.8221	0.548812
. 11	. 04777	. 1163	. 895834	. 61	. 26492	. 8404	. 543351
. 12	. 05212	. 1275	. 886920	. 62	. 26926	. 8589	. 537944
.13	. 05646	. 1388	. 878095	. 63	.27361	. 8776	. 532592
. 14	. 06080	. 1503	. 869358	. 64	. 27795	. 8965	. 527292
0.15	0.06514	1.1618	0.860708	0.65	0.28229	1.9155	0.522046
.16	. 06949	. 1735	. 852144	. 66	. 28663	. 9348	. 516851
.17	. 07383	.1853	. 843665	. 67	. 29098	. 9542	. 511709
. 18	. 07817	.1972	. 835270	. 68	. 29532	- 9739	. 506617
. 19	.08252	. 2092	. 826959	. 69	. 29966	. 9937	. 501576
0.20	0.08686	1.2214	0.818731	0.70	0.30401	2.0138	0.496585
. 21	. 09120	. 2337	. 810584	. 71	. 30835	. 0340	. 491644
. 22	. 09554	.2461	. 802519	.72	. 31269	. 0544	. 486752
. 23	. 09989	. 2586	. 794534	$\cdot 73$	-31703	. 0751	-481909
. 24	. 10423	. 2712	. 786628	.74	. 32138	. 0959	.477114
0.25	0.10857	1.2840	0.778801		0.32572	2.1170	0.472367
. 26	. 11292	.2969	.771052	. 76	. 33006	.1383	. 467666
. 27	.11726	. 3100	.763379	.77	-3344I	.1598	. 463013
. 28	. 12160	. 3231	. 755784	. 78	. 33875	.1815	. 458406
. 29	. 12595	. 3364	.748264	$\cdot 79$. 34309	. 2034	. 453845
0.30	0.13029	1.3499	0.740818	0.80	0.34744	2.2255	
$\cdot 3 \mathrm{~T}$. 13463	. 3634	. 733447	.81	. 35178	. 2479	. 444858
. 32	. 3897	-3771	.726149	. 82	. 35612	. 2705	. 440432
. 33	. 14332	-3910	.718924	. 83	. 36046	. 2933	. 436049
. 34	. 14766	. 4049	.711770	. 84	.36481	. 3164	.431711
0.35	0.15200	1.4191	0.704688	0.85	0.36915	2.3396	0.427415
. 36	. 15635	. 4333	. 697676	. 86	. 37349	. 3632	.423162
. 37	. 16069	. 4477	. 690734	. 87	- 37784	. 3869	. 418952
. 38	.16503	.4623	$.68386 \pm$. 88	. 38218	.4109	. 414783
. 39	. 16937	. 4770	. 677057	. 89	. 38652	.435I	. 410656
0.40	0.17372	1.4918	0.670320	0.90	0.39087	2.4596	0.406570
. 41	. 17806	. 5068	. 663650	. 91	. 39521	. 4843	. 402524
. 42	. 18240	. 5220	. 657047	.92	. 39955	. 5093	. 398519
. 43	. 28675	. 5373	. 650509	. 93	. 40389	. 5345	. 394554
. 44	.19109	. 5527	. 644036	. 94	. 40824	. 5600	. 390628
0.45	0.19543	1. 5683	0.637628				
. 46	. 19978	. 5841	. 631284	.96	. 41692	. 6117	. 382893
. 47	. 20412	. 6000	.625002 .618783	. 97	. 42127	. 6379	. 379083
. 48	. 2081280	. 6161	.618783 .612626	. 98	.42561	. 6645	. 375311
. 49	.21280	. 6323	. 612626	. 99	. 42995	. 6912	-371577
0.50	0.21715	1.6487	0.606531	1.00	0.43429	2.7183	0.367879

Smithsonian Tables.

EXPONENTIAL FUNCTION.

x	$\log _{10}\left(e^{x}\right)$	* ${ }^{\text {c }}$	${ }^{-x}$	x	$\log _{10}\left(e^{x}\right)$	e^{x}	e^{-x}
1.0	0.43429	2.7183	0.367879	1.50	0.65144	4.4817	0.223130
. 01	. 43884	. 7456	. 364219	. 51	. 65578	- 5267	.220910
. 02	. 44298	. 7732	. 360595	. 52	. 66613	. 5782	. 218712
. 03	. $4473{ }^{2}$. 8011	-357007	. 53	. 664487	. 61826	. $21853{ }^{\text {a }}$
. 04	. 45167	. 8292	. 353455	. 54			. 214381
1.05	0.45601	2.8577	0.349938	1.55	0.67316	4.7115	0.212248
. 06	. 46035	. 8864	. 346456	. 56	. 6775°		.210136
. 07	. 46470	.9154	-343009	. 57	. 68184	. 8066	. 208045
. 08	. 46904	. 9447	-339596	. 58	. 68619	. 8550	. 205975
. 09	.47338	. 9743	. 336216	. 59	. 69053	.9037	. 203926
1.10	0.47772	3.0042	0.332871	1.60	0.69487	4.9530	0.201897
. 11	. 48207	. 0344	. 329559	.61	. 69921	5.0028	. 199888
. 1	-48641	.0649	. 326280	. 62	. 70356	.0531	. 197899
.13	. 494975	. .12958	.323033 .319819	. 63	.70790	.1039	.195930
. 14	. 49510						-
1.15	0.49944	3.1582	0.316637	1.65	0.71659	5.2070	0.192050
. 16	. 50378	. 1889	. 313486	. 66	. 72093	. 2593	.190139
. 17	. 50812	. 2220	. 310367	. 67	. 72527	. 3122	. 188247
. 18	. 51247	. 2544	. 307279	. 68	. 72961	. 3656	. 186374
. 19	. 51681	. 2871	.304221	. 69	.73396	. 4195	. 184520
1.20	0.52115	3.3201	0.301194	1.70	0.73830	5.4739	0.182684
. 21	. 52550	. 3535	.298197	. 71	. 74264	. 5290	. 180866
. 22	. 52984	-3872	. 295330	. 72	. 74699	. 5845	. 179066
. 23	. 53418	-4212	. 292293	73	.75133	. 6407	. 177284
. 24	. 53853	-4556	.289384	. 74	.75567	. 6973	. 175520
1. 25	0. 54287	3.4903	0.286505	1.75	0.76002	5.7546	0.173774
. 26	. 54721	. 5254	. 283654	. 76	. 76436	.8124 8709	. 172045
. 27	. 55555	. 56069	.280832 .278037	. 778	. 76870	.8709	.170333 .168638
. 28	. 555924	. 6328	. 275271	. 79	.77773 .7789	. 9895	.166960
1.30	0.56458	3.6693	0.272532	1.80	0.78173	6.0496	0.165299
. 31	. 56893	. 7062	. 269820	.81	. 78607	.1104	. 163654
. 32	. 57327	. 7434	. 267135	. 82	. 79042	. 1719	.162026 .160414
. 33	. 57761	.7810 8190	.264477 .261846	.83 .84	.79476 .79910	.2339 .2965	.160414 .158817
. 34	.58195	.8190	.261846	. 84	.79910	. 2965	
	0.58630	3.8574	0.259240	1.85	0.80344	6.3598	0.157237
. 36	. 59064	. 8962	. 256661		. 807779	.4237 .4883	.155673 .154124
- 37	. 59498	. 9354	. 254107	.87 .88	.81213 .81647	. .5835	.154124 .152590
. 39	. 59933	.9749 4.149	. 249075	.89	. 82082	. 6194	.151072
1.40	0.60801	4.0552	0.246597	1.90	0.82516	6.6859	0.149569
. 41	. 61236	. 0960	. 244143	.91	. 82950	.7531	. 148680
42	. 61670	.1371	. 241714	. 92	.83385 .83819	. 88895	. 1445148
. 43	. 62104	.1787 .2207	.239309 .236928	. 93	. 84253	. 9588	. 143704
	0.62973	4.2631	0.234570		0.84687	7.0287	0.142274
. 46	. 63407	. 3060	. 232236	. 96	. 85122	. 0993	. 140858
47	. $6384{ }^{1}$	-3492	. 229925	. 97	. 85556	.1707	. 139457
. 48	. 64276	. 3929	. 2227638	. 98	. 85999	. 2427	-138069
. 49	. 64710	4371	. 225373	. 99	. 86425	. 3155	$\cdot 13669$
1.50	0.65144	4.4817	0.223130	2.00	0.86859	7.3891	0.135335

SMITHSONIAN TABLES.

EXPONENTIAL FUNCTION.

x	$\log _{10}(e x)$	e^{x}	e^{-x}	- ${ }^{\text {x }}$	$\log _{10}(e x)$	e^{x}	e^{-x}
2.00	0.86859	7.3891	0.135335	2.50	1.08574	12.182	0.082085
. OI	. 87293	. 4633	. 133989	. 51	. 09008	. 305	.081268
. 02	. 87727	.5383	. 132655	. 52	. 09442	. 429	. 080460
. 03	.88162	.6141	.131336	. 53	. 09877	. 554	. 079659 ,
. 04	. 88596	. 6906	. 130029	. 54	.103II	. 680	. 078866^{\prime}
2.05	0.89030	7.7679	0.128735	2.55	1.10745	12.807	0.078082
. 06	. 89465	. 8460	. 127454	. 56	.11179	. 936	. 077305
. 07	. 89899	. 9248	. 126186	. 57	.11614	13.066	. 076536
. 08	. 90333	8.0045	. 124930	. 58	. 12048	. 197	. 075774
. 09	. 90768	. 0849	. 123687	. 59	. 12482	. 330	. 075020
2.10	0.91202	8.1662	0.122456	2.60	1.12917	13.464	0.074274
. 11	.91636	. 2482	. 121238	. 61	. 13351	- 599	. 073535
. 12	. 92070	. 3311	. 120032	. 62	.13785	. 736	. 072803
.13	. 92505	. 4149	.118837	. 63	.14219	. 874	. 072078
.14	. 92939	. 4994	.117655	. 64	. 14654	14.013	. 071361
2.15	0.93373	8.5849	0.116484	2.65	1.15088	14.154	0.070651
. 16	. 93808	. 6711	.115325	. 66	. 15522	. 296	. 069948
. 17	. 94242	. 7583	.114178	. 67	. 15957	. 440	. 069252
. 18	. 94676	. 8463	.113042	. 68	. 16391	. 585	.068563
.19	.95110	. $935{ }^{2}$.111917	. 69	.16825	. 732	. 067881
2.20	0.95545	9.0250	0.110803	2.70	1.17260	14.880	0.067206
. 21	. 95979	. 1157	.109701	. 71	. 17694	15.029	.066537
. 22	.96413	. 2073	. 108609	. 72	.18128	. 180	. 065875
. 23	. 96848	. 2999	. 107528	. 73	.18562	. 333	. 065219
. 24	.97282	. 3933	. 106459	. 74	. 18997	. 487	. 064570
2.25	0.97716	9.4877	0.105399	2.75	1.19431	15.643	0.063928
. 26	.98151	.5831	. 104350	. 76	. 19865	. 800	. 063292
. 27	. 98585	. 6794	.103312	.77	. 20300	. 959	. 062662
. 28	. 99019	. 7767	.102284	. 78	. 20734	16.119	. 062039
. 29	. 99453	. 8749	.101266	.79	.21168	.28I	.061421
2.30	0.99888	9.9742	0.100259	2.80	1.21602	16.445	0.060810
.31	1.00322	10.074	.09926I	.81	. 22037	. 610	
. 32	. 00756	. 176	. 098274	. 82	. 22471	.777	. 059606
. 33	. 01191	. 278	. 097296	. 83	.22905	. 945	. 059013
. 34	. 01625	-381	.096328	. 84	. 23340	17.116	. 058426
2.35	1.02059	10.486	0.095369	2.85	1.23774	17.288	0.057844
. 36	. 02493	. 591	. 094420	. 86	. 24208	. 462	. 057269
. 37	. 02928	. 697	. 093481	. 87	. 24643	. 637	. 056699
.38	. 03362	. 805	. 092551	. 88	. 25077	. 814	. 056135
.39	. 03796	.913	.091630	. 89	.25511	. 993	. 055576
2.40	1.0423 I	11.023	0.090718	2.90	1.25945	18.174	0.055023
. 41	. 04665	. 134	.089815	.91	. 26380	. 357	. 054476
.42	. 05099	. 246	. 0888922	. 92	.26814	-54I	. 053934
. 43	. 05534	. 359	. 088037	. 93	.27248	.728	. 053397
. 44	. 05968	. 473	.087161	. 94	.27683	. 916	. 052866
2.45	1.06402	11.588	0.086294	2.95	1.28117	19.106	0.052340
. 46	. 06836	.705	. 085435	. 96	.28551	. 298	.051819
. 47	. 07271	. 822	.084585	. 97	.28985	. 492	.051303
. 48	. 07705	. 941	.083743	. 98	.29420	. 688	. 050793
.49	.08139	12.061	.082910	. 99	. 29854	. 886	. 050287
2.50	1.08574	12.182	0.082085	3.00	1. 30288	20.086	0.049787

SMITHSONIAN TABLEE.

EXPONENTIAL FUNCTION.

π	$\log _{10}(2 x)$	ex	$e-x$	x	$\log _{10}(e x)$	cx	${ }^{-1} x$
3.00	1. 30288	20.086	0.049787	3.50	1.52003	33.115	0.030197
. 01	. 30723	. 287	.049292.	. 51	. 52437	. 488	. 029897
. 02	. 31157	-491	. 048881	. 52	. 52382	.784	. 029599
. 03	. 31591	. 697	. 048316	. 53	. 53306	34.124	. 029395
. 04	. 32026	. 905	. 047835	. 54	. 53740	$\cdot 467$. 029013
3.05	1.32460	21.115	0.047359	3.55	1.54175	34.813	0.028725
. 06	$\begin{array}{r}.32894 \\ .3328 \\ \hline\end{array}$. 328	. 0468888	. 56	. 546098	35.163	.028439 .028156
. 07	.33328 .33763	. 758	.046421	. 57	. 555477	. 8.74	. .027876
. 09	. 34197	. 977	. 045502	. 59	. 55912	36.234	. 027598
3.10	1.34631	22.198	0.045049	3.60	I. 56346	36.598	0.027324
. 11	. 35066	. 421	. 044601	. 61	. 56780	. 966	. 027052
. 12	. 35500	. 646	. 044157	. 62	. 57215	37.338	. 026783
.13	. 35934	- 874 ${ }_{23} \mathbf{8 1 0 4}$. 04337288	. 63	.57649 .58083	8.713 38.092	. 02626552
3.15	1.36803	23.336	0.042852	3.65	1.58517	38.475	0.025991
. 16	. 37237	. 571	. 042426	. 66	. 58952	. 861	. 025733
.17	. 3767 I	. 807	. 042004	. 67	. 59388	39.252	. 0254746
. 18	. 38106	24.047	. 041586	. 68	. 59820	. 646	. 025223
. 19	. 38540	. 288	. 041172	. 69	. 60255	40.045	. 024972
3.20	1.38974	24.533	0.040762	3.70	1.60689	40.447	0.024724
21	. 39409	. 779	. 040357	. 71	. 61123	. 854	. 024478
. 22	. 39843	25.028	. 039955	. 72	. 61558	41.264	. 024234
. 23	. 40277	. 280	.039557	.73	. 61.62926	.679 42.098	. 0233993
. 24	.40811	. 534	. 039164	$\cdot 74$. 023754
3.25	1.41146	25.790	0.038774	3.75	1. 62860	42.521	0.023518
. 26	. 41580	26.050	. 0388388	. 76	. 63295	.948 43.380	.023284 .023052
. 27	. 42014	. 3118	. 03878628	.77 .78	. 63729	43.386 .816	. 0222823
. 29	. 42883	. 843	. 037254	. 79	. 64598	44.256	. 022596
3.30	I. 43317	27.113	0.036883	3.80	1.65032	44.701	0.022371
.31	. 43751	. 385	. 036516		. 65466	45.150	. 022148
. 32	. 44186	. 660	. 036153	.82	. 659635	.604 46.063	. 02219170
. 34	. 445054	$\begin{array}{r}\text { \% } \\ \hline 8.219\end{array}$.035437	.84	. 66769	. 525	. 021494
					1.67203		0.021280
$\begin{array}{r}3.35 \\ \hline .36\end{array}$	1.45489 .4593	$\begin{array}{r} 28.503 \\ .789 \end{array}$	$\begin{array}{r} 0.035084 \\ .034735 \end{array}$. 86	. 67638	47.465	.021068
. 37	. 46357	29.079	. 034390	. 87	. 68072	. 942	. 020858
. 38	. 476792	. 671	. 034047	. 88	. 68506	48.424 .911	. 020659
. 39	. 47226	. 666	. 033709	. 89	. 6894 I	.911	. 020445
3.40	r. 47660	29.964	0.033373	3.90	1. 69375	49.402	0.020242
. 41	. 48094	30.265	. 033041	.91	. 69809	.899 50.400	.02004I
- 42	. 48529	. 569	. 032712	. 92	.70243	50.400 .907	. .1019844
3.45	1.49832	31.500	0.031746	3.95 .96	1.71981	52.45	0.019255 .019063
. 46	. 502600	32.137	. .031117	. 97	. 72415	. 985	. 018873
. 48	. 51134	. 460	. 030807	. 98	. 72849	53.517	.018686
. 49	. 51569	.786	. 030501	. 99	.73283	54.055	. 018500
3.50	1.52003	33.115	0.030197	4.00	1.73718	54.598	0.018316

EXPONENTIAL FUNCTION.

x	$\log _{10}(4 x)$	e^{x}	e^{-x}	x	$\log _{10}\left(e^{x}\right)$	e^{z}	e^{-x}
4.00	1.73718	54.598	0.018316	4.50	1. 95433	90.017	0.011109
. 01	. 74152	55.147	. 018 r 33	. 51	. 95867	. 922	. 010998
. 02	.74586	.701	. 017953	. 52	. 96301	91.836	. 010889
. 03	. 75021	$56.26 x$. 017774	. 53	. 96735	92.759	.010781
. 04	. 75455	. 826	. 017597	. 54	. 97170	93.691	. 010673
4.05	1.75889	57.397	0.017422	4.55	1.97604	94.632	0.010567
. 06	.76324	. 974	. 017249	.56	. 98038	95.583	. 010462
. 07	.76758	58.557	. 017077	- 57	. 98473	96.544	. 010358
. 08	. 77192	59.145	. 016907	. 58	. 98907	97.514	. 010255
. 09	.77626	. 740	. 016739	. 59	. 9934 I	98.494	. 010153
4.10	1.78061	60.340	0.016573	4.60	1.99775	99.484	0.010052
. 11	. 78495	. 947	.0i6408	.6I	2.00210	100.48	.009952
. 12	. 78929	61.559	. 016245	. 62	. 00644	101. 49	.009853
. 13	. 79364	62.178	. 016083	. 63	. 01078	102.51	. 009755
. 14	. 79798	. 803	. OI 5923	. 64	. 01513	103.54	.009658
4.15	1.80232	63.434	0.015764	4.65	2.01947	104.58	0.009562
. 16	. 80667	64.072	.015608	. 66	. 02381	105.64	. 009466
. 17	.81 101	. 715	.OI 5452	. 67	. 02816	106.70	. 009372
. 18	.8ı 535	65.366	. 015299	. 68	. 03250	107.77	. 009279
. 19	.81969	66.023	. 015146	. 69	. 03684	108.85	.009187
4.20	1.82404	66.686	0.014996	4.70	2.04118	109.95	0.009095
. 21	. 82838	67.357	. 014846	. 71	. 04553	111.05	. 009005
. 22	. 83272	68.033	. 014699	.72	. 04987	112.17	. 008915
. 23	. 83707	. 717	. 014552	.73	. 0542 I	113.30	. 008826
. 24	. 84141	69.408	. 014408	.74	. 05856	114.43	. 008739
4.25	1. 84575	70.105	0.014264	4.75	2.06290	115.58	
. 26	. 85009	.810	. 014122	. 76	. 06724	116.75	.008566
. 27	. 85444	71.522	. OI 3982	. 77	. 07158	117.92	. 008480
. 28	. 85888	72.240	.or 3843	.78	. 07593	II9.10	.008396
. 29	.86312	. 966	. 013705	. 79	. 08027	120.30	. .008312
4.30	1.86747	73.700	0.013569	4.80	2.08461	121.51	0.008230
. 31	. 87181	74.440	. 013434	.8I	. 08896	122.73	.008148
. 32	. 87615	75.189	:O1 3300	.82	. 09330	123.97	.008067
. 33	.88050	. 9444	. 013168	. 83	. 09764	125.21	. 007987
. 34	.88484	76.708	. 013037	. 84	.10199	126.47	. 007907
	1.88918	77.478	0.012907	4.85	2.10633	127.74	0.007828
. 36	. 89352	78.257	. 012778	. 86	.11067	129.02	. 007750
. 37	. 89787	79.044	. 012651	. 87	. 11501	130.32	. 007673
. 3^{8}	. 90221	79.838	. 012525	. 88	. 11936	131.63	. 007597
. 39	.90655	80.640	. 012401	. 89	. 12370	132.95	. 007521
4.40	1.91090	8 8 .451	0.012277	4.90	2.12804	134.29	0.007447
. 41	.91524	82.269	. 012155	. 91	. 13239	135.64	. 007372
. 42	-91958	83.096	. 012034	. 92	. 13673	137.00	. 007299
. 43	. 92392	. 931	.OII914	. 93	.14107	138.38	. 007227
. 44	. 92827	84.775	. 011796	. 94	.1454 ${ }^{1}$	139.77	. 007155
4.45	1.93261	85.627	0.011679	4.95	2.14976	141.17	0.007083
. 46	. 93695	86.488	. 011562	. 96	. 15410	142.59	.007013
. 47	. 94130	87.357 88.255	.OII447	. 97	. 15844	144.03	.006943
. 48	. 94564	88.235	.OII333	. 98	.16279	145.47	.006874
. 49	. 94998	89.121	.O1122I	. 99	.16713	146.94	.006806
4.50	I. 95433	90.017	0.011109	5.00	2.17147	148.41	0.00673^{8}

Smithsonian Tables.

Table 18 (continued).
EXPONENTIAL FUNCTION.

x	$\log _{10}(2 x)$	e^{x}	e^{-x}	\boldsymbol{x}	$\log _{10}\left(e^{x}\right)$	e^{x}	e^{-x}
5.00	2.17147	148.41	0.006738	5.0	2.17147	148.41	0.006738
. 01	.17582	149.90	. 006671	. 1	. 21490	164.02	. 006097
. 02	. 18016	151.41	. 006605	. 2	. 25833	181.27	. 005517
. 03	. 18450	152.93	. 006539	. 3	. 30176	200.34	. 004992
. 04	.18884	154.47	. 006474	. 4	-34519	221.41	. 004517
5.05	2. 19319	156.02	0.006409	$5 \cdot 5$	2.38862	244.69	0.004087
. 06	. 19753	157.59	. 006346	. 6	. 43205	270.43	. 003698
. 07	.20187	159.17	. 006282	. 7	. 47548	298.87	. 003346
. 08	. 20622	160.77	. 006622	. 8	. 51891	330.30	. 003028
. 09	. 21056	162.39	.006158	. 9	. 56234	365.04	. 002739
5.10	2.21490	164.02	0.006097	6.0	2.60577	403.43	0.002479
. 11	. 212924	165.67	. 006036	. 1	. 64920	445.86	. 002243
. 12	. 22359	167.34	. 005976	. 2	. 69263	492.75	. 002029
. 3	. 22793	169.02	. 005917	. 3	. 73606	544.57	. 001836
. 14	. 23227	170.72	.005858	. 4	.77948	601.85	.001662
5.15	2.23662	172.43	0.005799	6.5	2.82291	665.14	0.001503
. 16	. 24096	174.16	. 005742	. 6	. 86634	735.10	$.001360$
. 17	. 24530	175.91	. 005685	.7	. 90977	812.41	. 001231
. 18	. 24965	177.68	. 005628	. 8	. 95320	897.85	. 001114
.19	. 25399	179.47	. 005572	. 9	. 99663	992.27	.001008
5.20	2.25833	181.27	0.005517	7.0	3.04006	1096.6	0.000912
. 21	. 26267	183.09	. 005462	. 1	. 08349	1212.0	. 000825
. 22	. 26702	184.93	. 005407	. 2	. 12692	1339.4	. 000747
. 23	. 27136	186.79	. 005354	-3	. 17035	1480.3	. 000676
. 24	. 27570	188.67	. 005300	-4	. 21378	1636.0	.00061I
5.25	2.28005	190.57	0.005248		3.25721	1808.0	0.000553
. 26	. 28439	192.48	. 005195	. 6	. 30064	1998.2	$.000500$
. 27	. 28873	194.42	.005144	.7	. 34407	2208.3	. 000453
. 28	. 29307	196.37	.005092	. 8	-38750	2440.6	. 000410
. 29	. 29742	198.34	. 005042	. 9	. 43093	2697.3	.000371
$5 \cdot 30$	2.30176	200.34	0.004992	8.0	3.47436	2981.0	0.000335
. 31	. 30610	202.35	. 004942	. 1	-51779	3294.5	. 000304
. 32	. 31045	204.38	. 004893	.2	. 56121	3641.0	. 000275
. 33	-31479	206.44	. 004844	. 3	. 60464	4023.9	. 000249
. 34	.31913	208.51	. 004796	. 4	. 64807	4447.1	. 000225
$5 \cdot 35$	2.32348	210.61	0.004748		3.69150	4914.8	0.000203
. 36	. 32782	212.72	. 004701	. 6	. 73493	5431.7	. 0000184
. 37	. 33216	214.86	. 004654	$\cdot 7$.77836	6002.9	. 000167
. 38	. 33650	217.02	. 004608	. 8	. 82179	6634.2	. 000151
. 39	. 34085	219.20	. 004562	.9	. 86522	7332.0	.0001 36
$5 \cdot 40$	2.34519	221.41	0.004517	9.0	3.90865	8103.1	0.000123
.41	. 34953	223.63	. 004472	I	. 95208	8955.3	. 000112
. 42	-35388	225.88	. 004427	. 2	.99551	9897.I	.000101
.43	. 35822	228.15	. 004383	. 3	4.03894	10938.	.000091
. 44	. 36256	230.44	. 004339	. 4	. 08237	12088.	. 000083
	2.36690	232.76	0.004296	9.5	4.12580	13360.	
. 46	.37125 .37559	235.10 237.46	. 0004254	. 6	. 16923	$\begin{aligned} & 14765 . \\ & 16318 . \end{aligned}$.000068 .00006I
. 47	.37559 .37993	237.46 239.85	.004211	. 78	. 2126609	16318. 18034.	$.000061$
. 48	. 378428	239.85 2426	. 004128	.9	. 29952	$1993{ }^{\circ}$.	. 000050
$5 \cdot 50$	2.38862	244.69	0.004087	10.0	4.34294	22026.	0.000045

Smithsonian Tables.

EXPONENTIAL FUNCTIONS.
Value of $e x^{2}$ and $e^{-x^{2}}$ and their logarithms.

x	x^{2}	$\log e^{x^{2}}$	$e^{-x^{2}}$	$\log e^{-x^{2}}$
0.1	1.0101	0.00434	0.99005	I. 99566
2	1.0408	01737	96079	98263
3	I. 0942	03909	91393	96091
4	1.1735	06949	85214	93051
5	1.2840	10857	77880	89 I 43
0.6	1.4333	0.15635	0.69768	I. 84365
7	1. 6323	21280	61263	78720
8	1.8965	27795	52729	72205
9	2.2479	35178	44486	64822
1.0	2.7183	43429	36788	56571
1.1	$3 \cdot 3535$	0. 52550	0.29820	$\overline{\mathrm{I}} .47450$
2	4.2207	62538	23693	37462
3	5.4195	73396	18452	26604
4	7.0993	85122	14086	14878
5	9.4877	97716	10540	02284
1.6	1.2936×10	I.III79	$0.77305 \times 10^{2-1}$	$\overline{2} .88821$
7	1.7993 "	25511	55576	74489
8	2.5534	40711	39164	59289
2.9	3.6966 "	56780	27052	43220
2.0	$5 \cdot 4598$ "	73718	18316	26282
2.1	8.2269 "	1. 91524	$0.12155 \times$	$\overline{2} .08476$
2	1.2647×10^{2}	2.10199	79071×10^{-2}	$\overline{3}$-89801
3	1.9834 "	29742	50418 "	70258
4	3.1735 "	50154	35^{11} "،	49846
5	5.1801 "	71434	19305 "	28566
2.6	$8.6264{ }^{\text {" }}$	2.93583	0.11592	
7	1.4656×10^{3}	3.16601	- 68233×10^{-8}	4.83399
8	2.5402 "،	40487	39367 "	59513
9 3.0	4.4918 "	65242	22263 "	34758
3.0	8.1031 "	90865	12341	09135
3.1	1.4913×10^{4}	4.17357	0.67055×10^{-4}	$\overline{5} 82643$
2	2.8001 "	44718	35713 "	55282
3	$5.3637 \times{ }^{\prime \prime}$	72947	$18644 \times{ }^{\prime \prime}$	27053
4	${ }_{2.04888} \times 10{ }^{10}$	5.02044 32011	95402×10^{-5} 47851	6.97956 67989
3.6	4.2507 "	5.62846	0.23526 "	6.37154
7	8.8205 "	94549	$11337 \times$	05451
8	1.8673×10^{6}	6.27121	53553×10^{10}	$\overline{7} 72879$
9 4.0	4.0329 8.8861	60562 94871	24796 11254	39438 05129
4.1	1.9975×10^{7}	7.30049	0.50062×10^{-7}	8.69951
2	4.5809 "	66095	$21830 \times$	- 33905
3	1.0718×10^{88}	8.03010	$93303 \times 10^{10} 8$	$\overline{9 .} 96990$
4 5	2.5582 6.2296	40794 79446	$\begin{array}{ll} 39089 \\ 16052 \end{array}$	59206
5	6.2296 "	79446	16052	20554
4.6	1.5476×10^{9}	9.18967	0.64614×10^{-9}	$\overline{10.81033}$
7	3.9225×10	59357	$25494 \times{ }^{\prime \prime}$	-40643
8	${ }^{1.0142} \times 10{ }^{1010}$	10.00614 42741	98595×10^{-10}	11.99386
5.0	7.2005 "	45736	13888 "	57259 14264

Smithsonian tables.

EXPONENTIAL FUNCTIONS.
Values of $e^{\frac{\pi}{4} x}$ and $e^{-\frac{\pi}{4} x}$ and their logarthms.

\boldsymbol{x}	$e^{\frac{\pi}{4} x}$	$\log e^{\frac{\pi}{4}{ }^{2}}$	$e^{-\frac{\pi}{4} x}$	$\log e^{-\frac{\pi}{4} x}$
1	2.1933	0.34109	0.45594	İ.65891
2	4.8105	. 68219	$.20788 \times 1{ }^{-1}$	-31781
4	${ }_{2.351}^{1.0551} \times 10$	1.02328 .36438	$.94780 \times 10^{10}$	$\overline{2} .97672$.63562
4	2.3141 5.0754 1.10	. 364348	. 432214 " ${ }^{\text {¢ }}$.63562 .29453
6	1.1132×10^{2}	2.04656	0.89833×10^{-2}	3.95344
7	$2.4454{ }^{\text {5 }}$. 38766	.40958 "	${ }^{6} 61234$
8	$5.3549 \times$ "	. 72875	. $18674 \times$	-. 27125
9 10	${ }_{2.5760}^{1.1745} \times 10$	3.06985 .41094	$\begin{aligned} & .85144 \times 10_{10-8} .38820 \end{aligned}$	$\begin{array}{r} 4 \cdot 93015 \\ .58906 \end{array}$
11	5.6498 "	3.75203	0.17700	$\overline{4} .24797$
12	1.2392×10^{4}	4.09313	. 80700×10^{-4}	5.90687
13	2.7178 "	. 43422	. 36794 "	. 56578
14	5.9610 "	. 77532	. 16776 "	. 22468
15	1.3074×10^{5}	5.11641	$.76487 \times 10^{-5}$	6.88359
16	2.8675 "	5.45751	0.34873 "	6.54249
17	$6.2893 \times$ "	. 79860	.15900 "	-20140
18	1.3794 $\times 1{ }_{10}{ }^{6}$	6.13969	$.72495 \times 10^{10}$	$\overline{7} .8603 \mathrm{I}$
19 20	3.0254 6.6356	. 48079	. $\mathbf{.} 15050 \times$.51921 .17812

Table 21.

EXPONENTIAL FUNCTIONS.

Values of $e^{\frac{\sqrt{\pi}}{4} x}$ and $e^{-\frac{\sqrt{\pi}}{4} x}$ and their logarthms.

x		$\log e^{\frac{\sqrt{n}}{4} x}$	$e^{-\frac{\sqrt{\bar{n}}}{4} x}$	$\log e^{-\frac{\sqrt{4}}{4} x}$
1	1.5576	0.19244	0.64203	I. 80756
2	2.4260	. 38488	. 41221	.61512
3	3.7786	. 57733	. 26465	. 42267
4	5.8853	. 76977	.16992	. 23023
5	9.1666	. 96221	. 10909	. 03779
6	14.277	1.15465	0.070041	2. 84535
7	22.238	. 34709	. 044968	. 65291
8	34.636	. 53953	. 028881	. 46047
9	53.948	.73198	.018536	. 26802
10	84.027	. 92442	.oIIg91	. 07558
11	130.88	2.11686	0.0076408	$\overline{3} .88314$
12	203.85	. 30930	. 0049057	. 69070
13	317.50	. 50174	.0031496	. 49826
14	494.52	. 69448	. 0020222	- 30582
15	770.24	. 88663	. 0012983	. 11337
16	1199.7	3.07907	0.00083355	4. 92093
17	1868.6	. 27151	.00053517	. 72849
18	2910.4	. 46395	. 000034360	. 534605
19	4533.1	. 65689	. 00022060	- 3153117
20	7060.5	. 84883	. 00014163	.15117

TABLE 22. - Exponential Functions.
Value of e^{x} and e^{-x} and their logarithms.

x	e^{x}	$\log e^{*}$	e^{-x}	x	$e^{\boldsymbol{x}}$	$\log e^{x}$	e^{-x}
1/64	I. 0157	0.00679	0.98450	1/3	1. 3956	0.14476	0.71653
1/32	. 0317	. 01357	. 96923	1/2	. 6487	.21715	. 60653
1/16	. 0645	. 02714	. 93941	3/4	2.1170	. 32572	. 47237
I/ 10	. 1052	. 04343	. 90484	I	. 7183	. 43429	. 36788
I/9	. 1175	. 04825	. 89484	5/4	3.4903	. 54287	. 28650
$1 / 8$	1.1331	0.05429	0.88250	3/2	4.4817	0.65144	0.22313
$1 / 7$. 1536	. 06204	. 86688	7/4	5.7546	. 76002	. 17377
$1 / 6$. 1814	. 07238	. 84648	2	7.3891	. 86859	. 13534
I/5	. 2214	. 08686	. 81873	9/4	9.4877	. 97716	. 10540
1/4	. 2840	.10857	.77880	5/2	12.1825	1.08574	. 08208

TABLE 23. - Least Squares.

$$
\text { Values of } P=\frac{2}{\sqrt{\pi}} \int_{0}^{h x} e^{-(h x)^{2}} d^{\prime}(h x)
$$

This table gives the value of P, the probability of an observational error having a value positive or negative equal to or less than x when \hbar is the measure of precision, $\mathrm{P}=\frac{2}{\sqrt{\pi}} \int_{0}^{h x} e^{-(h x)^{2}}$ $d(h x)$. For values of the inverse function see the table on Diffusion.

kx	0	1	2	3	4	5	8	7	8	8
0.0		. 01128	. 02256	. 03388	. 04511	. 05637	.06762	. 07886	.09008	. 10128
. 1	. 11246	. 12362	. 13476	. 14587	. 15695	. 16800	. 17901	. 18999	. 20094	.21184
. 2	. 22270	. 23352	. 24430	. 25502	. 26570	. 27633	. 28690	. 29742	. 30788	. 31828
$\cdot 3$	- 32863	-33891	. 34913	- 35928	. 36936	. 37938	. 38933	-39921	. 40901	. 41874
. 4	. 42839	. 43797	. 44747	-45689	. 46623	. 47548	. 48466	. 49375	. 50275	. 51167
0.5	. 52050	. 52924	- 53790	. 54646	. 55494	. 56332	. 57162	. 57982	. 58792	- 59594
. 6	. 60386	.61168	. 61941	. 62705	. 63459	. 64203	. 64938	. 65663	. 66378	. 67084
$\cdot 7$. 67780	. 68467	. 69143	.69810	. 70468	. 711116	$\cdot 71754$. $7^{23} 3^{82}$.73001	.73610
. 8	. 74210	. 74800	.75381	.75952	.76514	. 77067	. 77610	.78144	. 78669	.79184
. 9	.79691	.80188	. 80677	.81156	. 81627	. 82089	. 82542	. 82987	. 83423	. 8385 I
1.0	. 84270	.84681	. 85084	. 85478	. 85865	. 86244	.86614	. 86977	. 87333	. 87680
$\cdot 1$.88021	. 88353	. 88679	.88997	. 89308	.89612	.89910	. 90200	. 90484	. 90761
$\cdot 2$.91031	. 91296	. 91553	. 91805	. 92051	. 92290	. 92524	. 92751	. 92973	. 93190
$\cdot 3$.93401	. 93606	-93807	. 94002	.94191	. 94376	. 94556	. 94731	. 94902	. 95067
$\cdot 4$. 95229	-95385	-95538	. 95686	.95830	. 95970	. 96105	. 96237	. 96365	. 96490
1.5	.96611	. 96728	.9684I	. 96952	. 97059	. 97162	. 97263	. 97360	. 97455	. 97546
. 6	. 97635	. 9772 I	. 97804	. 97884	. 97962	. 98038	.98110	. 98181	. 98249	. 98315
. 7	. 98379	. 98441	. 98500	. 98558	. 98613	. 98667	. 98719	. 98769	. 98817	. 98864
. 8	. 98909	. 98952	. 98994	. 99035	. 99074	-991II	. 99147	.99182	. 99216	. 99248
. 9	. 99279	. 99309	. 99338	. 99366	. 99392	. 99418	. 99443	. 99466	. 99489	. 99511
2.0	. 99532	. 99552	.99572	.99591	. 99609	. 99626	. 99642	. 99658	. 99673	. 99688
. 1	. 99702	. 99715	. 99728	. 99741	. 99753	. 99764	. 99775	. 99785	. 99795	. 99805
. 2	. 99814	. 99882	. 99831	. 99839	. 99846	. 99854	-99861	. 99867	. 99874	. 99880
$\cdot 3$. 998886	. 99891	. 99897	. 999902	. 99906	.9991 1	. 99915	. 99920	. 99924	. 99988
$\cdot 4$.99931	. 99935	. 99938	. 99941	-99944	. 99947	. 99950	. 99952	. 99955	. 99957
2.5	. 99959	. 99961	. 99963	. 99965	. 99967	. 99969	. 99971	. 99972	-99974	. 99975
. 6	. 99976	. 99978	. 99979	. 99980	. 9998 I	. 99982	.99983	. 99984	. 99985	. 99986
-7	. 999987	. 99987	. 99988	. 999989	. 999989	. 99990	. 99991	.99991	. 99992	. 99992
. 8	. 999992	. 999993	.99993	. 999994	. 99994	. 99994	. 99995	. 99995	. 99995	. 99996
. 9	. 99996	. 99996	-99996	. 99997	-99997	. 99997	. 99997	. 99997	. 99997	. 99998
3.0	. 99998	. 99999	. 99999	1.00000						

Taken from a paper by Dr. James Burgess 'on the Definite Integral $\frac{2}{\sqrt{\pi}} \int_{0}^{t} \sigma^{t^{2}} d t$, with Ex. tended Tables of Values.' Trans. Roy. Soc. of Edinburgh, vol. xxxix, 1900, p. 257.

LEAST SQUARES.

This table gives the values of the probability P, as defined in last table, corresponding to different values of x / r where r is the "probable error." The probable error r is equal to $0.47694 / h$.

$\frac{\boldsymbol{r}}{\boldsymbol{r}}$	0	1	2	3	4	5	6	7	8	9
0.0	. 00000	. 00538	.01076	. 01614	. 02152	. 02690	. 03228	. 03766	. 04303	. 04840
0.1	. 05378	. 05914	. 06451	. 06987	. 07523	. 08059	. 08594	. 09129	. 09663	$.10197$
0.2	. 10731	. 11264	. 11796	. 12328	. 12860	13391	. 13921	. 1445 I	. 14980	$\text { . } 5508$
0.3	. 16035	.16562	. 17088	. 17614	. 18138	. 18662	. 19185	. 19707	. 20229	$\begin{array}{r} .15508 \\ .20749 \end{array}$
0.4	. 21268	.21787	. 22304	.2282I	. 23336	.2385	. 24364	. 24876	. 25388	$.25898$
0.5	. 26407	.26915	. 27421	. 27927	. 28431	. 28934	. 29436	. 29936	- 30435	. 30933
0.6	- 31430	. 31925	. 32419	-3291	- 33402	$\cdot 33892$	- 34380	. 34866	. 35352	. 35835
0.7 0.8	. 36317	-36798	. 37277	. 37755	-38231	-38705	- 39178	- 39649	. 40118	$.40586$
0.8 0.9	. 41052	.41517 .46064	. 41979	. 42440	. 42899	- 43357	-43813	. 44267	-44719	. 45169
0.9	-45618	. 46064	. 46509	.46952	- 47393	. 47832	. 48270	. 48705	-49139	. 49570
1.0	- 50000	- 50428	. 50853	- 51277	. 51699	-52119	. 52537	- 52952	- 53366	-53778
I. 1	-54188	- 54595	. 55001	- 55404	- 55806	. 56205	- 56602	. 56998	- 57391	- 57782
1.2	. 58171	. 58558	. 58942	. 59325	. 59705	. 60083	. 60460	. 60833	. 61205	. 61575
1.3	. 61942	. 62308	. 62671	. 63032	. 63391	. 63747	. 64102	. 64454	. 64804	. 65152
1. 4	. 65498	.65841	.66182	. 6652 I	. 66858	.67193	. 67526	. 67856	. 68184	. 68510
1.5	. 68833	. 69155	. 69474	.69791	.70106	. 70419	.70729	. 71038	.71344	. 71648
1. 6	. 71949	. 72249	. 72546	. 72841	.73134	. 73425	. 73714	. 74000	.74285	. 74548
1.7 r .8	.74847 .77528 798	. 75124	. 75400	. 75674	. 75945	.76214	.76481	. 76746	. 77009	. 77270
1.8	.77528 .79999	.77785 .80235	.78039	. 78291	. 78542	.78790	.79036	.79280	.79522	.7976I
2.0	. 82266					-	. 81383	8373	. 81828	. 82048
2.1				.82907	. 8	8	. 83530	. 83734	. 83936	. 84137
2.2	. 86216	. 86394	. 86570	. 86745	. 86917	. 87088		. 85671	. 85854	. 86036
2.3	. 87918	. 88078	. 88237	. 88395	. 88550	. 88705	. 88857	. 89008	. 89157	. 89304
2.4	. 89450	. 89595	. 89738	. 89879	.90019	. 90157	. 90293	.90428	. 90562	. 90594
2.5	. 90825	. 90954	. 91082	. 91208	.91332	. 91456	. 91578	. 91698	.91817	. 91935
2.6	.92051	. 92166	. 92280	. 92392	. 92503	. 92613	. 92721	. 92828	. 92934	. 93038
2.7	. 93141	. 93243	. 93344	. 93443	.9354I	-93638	. 93734	. 93828	. 93922	. 94014
2.8	.94105	.94195	$\cdot 94284$. 94371	-94458	-94543	. 94627	.94711	-94793	. 94874
2.9	. 94954	. 95033	.951II	.95187	.95263	. 95338	. 95412	$\cdot 95484$. 95557	.95628
	0	1	2	3	4	5	6	7	8	9
3	. 95698	. 96346	. 96910	-97397	.97817	.98176	. 98482	. 98743	. 98962	. 99147
	. 99302	. 99431	. 99539	99627	. 99700	. 99760	. 99808	. 99848	. 99879	. 99905
5	. 99926	. 99943	. 99956	. 99966	. 99974	. 99980	. 99985	. 99988	.99991	. 99993

Table 25.

LEAST SQUARES.

Values of the faotor $0.6745 \sqrt{\frac{1}{n-1}}$.

Tbis factor occurs in the equation $r_{B}=0.6745 \sqrt{\frac{\sum v^{2}}{n-1}}$ for the probable error of a single observation, and other similar equations.

\boldsymbol{n}	$=$	1	2	3	4	5	6	7	8	9
00			0.6745	0.4769	0.3894	0.3372	0.3016	0.2754	0.2549	0.2385
10	0.2248	0.2133	. 2034	. 1947	.1871	. 1803	. 1742	. 1686	.1636	. 1590
20	. 1547	. 1508	.1472	.1438	. 1406	. 1377	. 1349	. 1323	. 1298	. 1275
30	. 1252	. 1231	.1211	. 1192	. 1174	. 1157	. 1140	. 1124	. 1109	. 1094
40	. 1080	. 1066	.1053	.104I	. 1029	. 1017	. 1005	. 0994	. 0984	. 0974
50	0.0964	0.0954	0.0944	0.0935	0.0926	0.0918	0.0909	0.0901	0.0893	0.0886
60	. 0878	. 0871	. 0864	. 0857	. 0850	. 0843	. 0837	.0830	. 0824	.0818
70	.0812	. 0806	. 0800	. 0795	. 0789	. 0784	. 0779	. 0774	. 0769	. 0764
80	. 0759	. 0754	. 0749	. 0745	. 0740	. 0736	. 077	. 0727	. 0723	. 0719
90	.0715	.07II	. 0707	. 0703	. 0699	. 0696	. 0692	. 0688	. 0685	.068I

Values of the isotor $0.6745 \sqrt{\frac{1}{n(n-1)}}$.
This factor occurs in the equation $r_{0}=0.6745 \sqrt{\frac{\sum v^{2}}{n(n-I)}}$ for the probable error of the arithmetic mean.

| $\boldsymbol{n}=$ | | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{4}$ | $\mathbf{5}$ | $\mathbf{6}$ | $\mathbf{7}$ | $\mathbf{8}$ | $\mathbf{9}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{0 0}$ | | | 0.469 | 0.2754 | 0.1947 | 0.1508 | 0.1231 | 0.1041 | 0.0901 | 0.0795 |
| 10 | 0.0711 | 0.0643 | .0587 | .0540 | .0500 | .0465 | .0435 | .0409 | .0386 | .0365 |
| 20 | .0346 | .0329 | .0314 | .0300 | .0287 | .0275 | .0265 | .0255 | .0245 | .0237 |
| 30 | .0229 | .0221 | .0214 | .0208 | .0201 | .0196 | .0190 | .0185 | .0180 | .0175 |
| 40 | .0171 | .0167 | .0163 | .0159 | .0155 | .0152 | .0148 | .0145 | .0142 | .0139 |
| 50 | 0.0136 | 0.0134 | 0.0131 | 0.0128 | 0.0126 | 0.0124 | 0.0122 | 0.0119 | 0.0117 | 0.0115 |
| 60 | .0113 | .0111 | .0110 | .0108 | .0106 | .0105 | .0103 | .0101 | .0100 | .0098 |
| 70 | .0097 | .0096 | .0094 | .0093 | .0092 | .0091 | .0089 | .0088 | .0087 | .0086 |
| 80 | .0085 | .0084 | .0083 | .0082 | .0081 | .0080 | .0079 | .0078 | .0077 | .0076 |
| 90 | .0075 | .0075 | .0074 | .0073 | .0072 | .0071 | .0071 | .0070 | .0069 | .0068 |

TAbLE 27.-LEAST SQUARES.
Valres of the factor $0.8453 \sqrt{\frac{1}{n(n-1)}}$.
This factor occurs in the approximate equatioo $r=0.8453 \frac{\Sigma_{v}}{\sqrt{n(n-I)}}$ for the probable error of a single observation.

$n=$		1	2	3	4	5	8	7	8	9
00			0.5978	0.3451	0.2440	0.1890	0.1543	0.1304	0.1130	0.0996
10	0.0891	0.0806	. 0736	. 0677	. 0627	. 0583	. 0546	. 0513	. 0483	. 0457
20	. 0434	. 0412	. 0393	. 0376	. 0360	. 0345	. 0332	. 0319	. 0307	. 0297
30	. 0287	. 0277	. 0268	. 0260	. 0252	. 0245	. 0238	. 0232	. 0225	. 0220
40	. 0214	. 0209	. 0204	. 0199	. 0194	. 0190	. 0186	. 0182	. 0178	. 0174
50	0.0171	0.0167	0.0164	0.0161	0.0158	0.0155	0.0152	0.0150	0.0147	0.0145
60	. 0142	. 0140	. 0137	. 0135	. 0133	. 0131	. 0129	. 0127	. 0125	. 0123
70	. 0122	. 0120	. 0118	. 0117	. 0115	. 0113	. 0112	. 0111	. 0109	. 0108
80	. 0106	. 0105	. 0104	. 0102	.oroi	. 0100	. 0099	.0098	. 0097	.0096
90	. 0094	. 0093	.0092	.0091	.0090	. 0089	. 0089	. 0088	. 0087	. 0086

TABLE 28. - LEAST SQUARES.
Values of $0.8453 \frac{1}{n \sqrt{n-1}}$.
This factor occurs io the approximate equation $r_{0}=0.8453 \frac{1}{n \sqrt{n-1}}$ for the probable error of the arithmetical mean.

$n=$		1	2	3	4	5	8	7	8	8
00			0.4227	0.1993	0.1220	0.0845	0.0630	0.0493	0.0399	0.0332
10	0.0282	0.0243	. 0212	. 0188	. 0167	. 0151	. 0136	. 0124	. 0114	. 0105
20	. 0097	. 0090	. 0084	. 0078	. 0073	. 0069	. 0065	. 0061	. 0058	. 0055
30	. 00052	. 0050	. 0047	. 0045	. 0043	. 0041	. 0040	.0038	. 0037	. 0035
40	. 0034	. 0033	. 0031	. 0030	.0029	. 0028	. 0027	.0027	. 0026	. 0025
50	0.0024	0.0023	0.0023	0.0022	0.0022	0.0021	0.0020	0.0020	0.0019	0.0019
60	. 0018	. 0018	. 0017	. 0017	. 0017	. 0016	. 0016	. 0016	. 0015	. 0015
70 80	. 0015	. 0014	. 0014	. 0014	. 0013	. 0013	. 0013	. 0013	. 0012	. 0012
80 90	.0012	. 0012	. 0011	. 00011	. 0011	. 0011	. 0011	. 0010	. 0010	. 0010
90	. 0010	. 0010	. 0010	. 0009	. 0009	. 0009	. 0009	. 0009	. 0009	. 0009

Smithsonian Tables.

Observation equations :

$$
\begin{aligned}
& a_{1} z_{1}+b_{1} z_{2}+\ldots l_{1} z_{q}=M_{1}, \text { weight } p_{1} \\
& a_{2} z_{1}+b_{2} z_{2}+\ldots l_{2} z_{q}=M_{2} \text {, weight } p_{2} \\
& a_{n} z_{1}+b_{n} z_{2}+\ldots l_{n} z_{q}=M_{n}, \text { weight } p_{n} .
\end{aligned}
$$

Auxiliary equations:

$$
\begin{aligned}
{[p a a] } & =p_{1} a_{1}^{2}+p_{2} a_{2}^{2}+\cdots p_{n} a_{n}^{2} . \\
{[p a b] } & =p_{1} a_{1} b_{1}+p_{2} a_{2} b_{2}+\cdots p_{n} a_{n} b_{n} . \\
{[p a \dot{M}] } & =\dot{p}_{1} a_{1} \dot{M}_{1}+\dot{p}_{2} a_{2} \dot{M_{2}}+\cdots p_{n} a_{n} \dot{M_{n}}
\end{aligned}
$$

Normal equations:

$$
\begin{aligned}
& {[\mathrm{paa}] z_{1}+[\mathrm{pab}] z_{2}+\cdots[\mathrm{pal}] z_{\mathrm{q}}=[\mathrm{paM}]} \\
& {[\mathrm{pab}] z_{1}+[\mathrm{pbb}] z_{2}+\cdots[\mathrm{pbl}] z_{q}=[\mathrm{pbM}]} \\
& {[\mathrm{pla}] \mathrm{z}_{1}+[\mathrm{plb}] \mathrm{z}_{2}+\cdots \cdot[\mathrm{pll}] z_{\mathrm{q}}=[\mathrm{plM}] .}
\end{aligned}
$$

Solution of normal equations in the form,

$$
\begin{aligned}
& z_{1}=\mathrm{A}_{1}[\mathrm{paM}]+\mathrm{B}_{1}[\mathrm{pbM}]+\ldots \mathrm{L}_{1}[\mathrm{plM}] \\
& \mathrm{z}_{2}=\mathrm{A}_{2}[\mathrm{paM}]+\mathbf{B}_{2}[\mathrm{pbM}]+\cdots \mathrm{L}_{2}[\mathrm{plM}] \\
& \mathbf{z}_{\mathrm{q}}=\dot{A}_{\mathrm{n}}[\mathrm{paM}]+\mathrm{B}_{\mathrm{n}}[\mathrm{pbM}]+\ldots \mathrm{L}_{\mathrm{n}}[\mathrm{plM}]
\end{aligned}
$$

gives :

$$
\begin{aligned}
& \text { weight of } z_{1}=\mathrm{p}_{z_{1}}=\left(\mathrm{A}_{1}\right)^{-1} ; \text { probable error of } z_{1}=\frac{\mathrm{r}}{\sqrt{\mathrm{pz}_{1}}} \\
& \text { weight of } z_{2}=\mathrm{pz}_{2}=\left(\mathrm{B}_{2}\right)^{-1} ; \text { probable error of } z_{2}=\frac{\mathrm{r}}{\sqrt{\mathrm{p}_{z_{2}}}} \\
& \qquad \cdot \quad \cdot \quad \cdot \quad \cdot \quad \cdot \quad \cdot \\
& \text { weight of } z_{q}=\mathrm{p}_{\mathrm{z}_{\mathrm{q}}}=\left(\mathrm{L}_{\mathrm{n}}\right)^{-1} ; \text { probable error of } z_{q}=\frac{\mathrm{r}}{\sqrt{\mathrm{pz}_{\mathrm{q}}}}
\end{aligned}
$$

wherein

$$
\begin{aligned}
\mathrm{r} & =\text { probable error of observation of weight unity } \\
& =0.6745 \sqrt{\frac{\Sigma \mathrm{pv}^{2}}{n-q}} \cdot \text { (q unknowns.) }
\end{aligned}
$$

Arithmetical mean, n observations:

$$
\begin{aligned}
& r=0.6745 \sqrt{\frac{\sum v^{2}}{n-1}}=\frac{0.8453 \Sigma v}{\sqrt{n(n-1)}} . \quad \begin{array}{r}
\text { (approx.) }=\text { probable error of ob- } \\
\text { servation of weight unity. }
\end{array} \\
& r_{0}=0.6745 \sqrt{\frac{\Sigma v^{2}}{n(n-1)}}=\frac{0.8453 \Sigma v}{n \sqrt{n-1}} . \quad \text { (approx.) = probable error } \\
& \text { of mean. }
\end{aligned}
$$

Weighted mean, n observations:

$$
r=0.6745 \sqrt{\frac{\Sigma p v^{2}}{n-1}} ; r_{0}=\frac{r}{\sqrt{\Sigma p}}=0.6745 \sqrt{\frac{\Sigma p v^{2}}{(n-I) \Sigma p}}
$$

Probable error (R) of a function (Z) of several observed quantities z_{1}, z_{2}, \ldots whose probable errors are respectively, $\mathrm{r}_{1}, \mathrm{r}_{2}, \ldots$.

$$
\begin{aligned}
& Z=f\left(z_{1}, z_{2}, \ldots\right) \\
& R^{2}=\left(\frac{\partial Z}{\partial z_{1}}\right)^{2} r_{-1}^{2}+\left(\frac{\partial Z}{\partial z_{2}}\right)^{2} r_{2}^{2}+\ldots
\end{aligned}
$$

Examples:

$$
\begin{array}{ll}
Z=z_{1} \pm z_{2}+\ldots & R^{2}=r_{1}^{2}+r_{2}^{2}+\ldots \\
Z=A z_{1} \pm A z_{2} \pm \cdots \\
Z=z_{1} z_{2} . & R^{2}=A^{2} r_{1}^{2}+B^{2} r_{2}^{2}+\cdots \\
R^{2}=z_{1} r_{2}^{2}+z_{2} r_{1}^{2}
\end{array}
$$

Smithsonian Tables.

```
Inverse * values of \(v / c=1-\frac{2}{\sqrt{\pi}} \int_{0}^{q} e^{-q^{2}} d q\).
\(\log x=\log (2 q)+\log \sqrt{\overline{k t} .} t\) expressed in seconds.
    \(=\log \delta+\log \sqrt{k t .} \quad t\) expressed in days.
    \(=\log \gamma+\log \sqrt{k t .}\) " "years.
\(k=\) coefficient of diffusion. \(\dagger\)
    \(c=\) initial concentration.
    \(v=\) concentration at distance \(x\), time \(t\).
```

v/c	$\log 2 q$	29	$\log \delta$	δ	$\log \gamma$	γ
0.00	$+\infty$	$+\infty$	$+\infty$	$+\infty$	∞	∞
. 01	0.56143	3.6428	3.02970	1070.78	4.31098	20463.
. 02	. 51719	3.2900	2.98545	967.04	. 26674	18481.
. 03	. 48699	3.0690	. 95525	902.90	. 23654	17240.
. 04	. 46306	2.9044	.93132	853.73	.21261	16316.
0.05	0.44276	2.7718	2.91102	814.74	4.19231	15571.
. 06	. 42486	2.6598	. 8931 I	781.83	. 17440	14942.
. 07	. 40865	2.5624	.87691	753.20	. 15820	14395.
. 08	. 39372	2.4758	. 86198	727.75	. 14327	13908.
. 09	- 37979	2.3977	. 84804	704.76	. 12933	13469.
0.10	0.36664	2.3262	2.83490	683.75	4.11619	13067.
. 11	. 35414	2.2602	. 82240	664.36	.10369	12697.
.12	. 34218	2.1988	.81044	646.31	.09173	12352.
. 13	. 33067	2.1413	-79893	629.40	. 08022	12029.
.14	-31954	2.0871	. 78780	613.47	. 06909	11724.
0.15	0.30874	2.0358	2.77699	598.40	4.05828	11436.
. 16	. 29821	1.9871	. 76647	584.08	. 04776	11162.
. 17	. 28793	1.9406	.75619	570.41	. 03748	Iogoi.
. 18	. 27786	1.8961	-74612	557.34	. 02741	10652.
. 19	. 26798	1.8534	.73624	544.80	. 21753	10412.
0.20	0.25825	1.8124	2.72651	532.73	4.00780	1018 r.
. 21	. 24866	1.7728	. 71692	521.10	3.99821	9958.9
. 22	. 23919	I. 7346	. 70745	509.86	. 98874	9744.I
. 23	. 22983	1.6976	. 69808	498.98	. 97937	9536.2
. 24	. 22055	1.6617	.68880	488.43	. 97010	9334.6
0.25	0.21134	1.6268	2.67960	478.19	3.96089	9138.9
. 26	. 20220	I. 5930	. 67046	468.23	. 95175	8948.5
.27	. 19312	1.5600	. 66137	458.53	. 94266	8763.2
. 28	.18407	I. 5278	.65232	449.08	.93361	8582.5
. 29	.17505	1.4964	.64331	439.85	. 92460	8406.2
0.30	0.16606	1.4657	2.63431	430.84	3.91560	8233.9
. 31	. 15708	1.4357	. 62533	422.02	.90662	8065.4
$\cdot 32$.14810	1.4064	. 61636	413.39	. 89765	7900.4
. 33	. 13912	1.3776	. 60738	404.93	. 88867	7738.8
. 34	.13014	I. 3494	. 59840	396.64	. 87969	7580.3
0.35	0.12114	1.3217	2.58939	388.50	3.87068	7424.8
. 36	.11211	1.2945	.58037	380.51	. 86166	7272.0
$\cdot 37$.10305	1.2678	. 57131	372.66	. 85260	7122.0
$\cdot 38$. 09396	1.2415	. 56222	364.93	. 84351	6974.4
- 39	. 08482	1.2157	. 55308	357.34	. 83437	6829.2
0.40	0.07563	1.1902	2.54389	349.86	3.82518	6686.2
. 41	. 06639	I. 1652	. 53464	342.49	.81593	6545.4
$\cdot 42$. 05708	1.1405	. 52533	335.22	. 80662	6406.6
. 43	. 04770	1.1161	. 51595	328.06	. 79724	6269.7
. 44	. 03824	1.0920	. 50650	320.99	. 78779	${ }^{61} 34.6$
0.45	0.02870	1.0683	2.49696	314.02	3.77825	6001.3
. 46	. 01907	1.0449	. 48733	307.13	. 76862	5869.7
. 47	. 00934	1.0217	. 47760	300.33	. 75889	5739.7
. 48	9.99951	0.99886	. 46776	293.60	.74905	5611.2
. 49	. 98956	0.97624	. 45782	286.96	.73911	5484.1
0.50	9.97949	0.95387	2.44775	280.38	3.72904	5358.4

* Kelvin, Mathematical and Physical Papers, vol. III. p. 428 ; Becker, Am. Jour. of Sci. vol. III. 1897, p. 280. \dagger For direct values see table 23.

[^8]DIFFUSION.

v / ε	$\log 29$	${ }^{2 q}$	$\log \delta$	δ	$\log \gamma$	γ
0.50	9.97949	0.95387	2.44775	280.38	3.72904	5358.4
. 51	. 96929	. 93174	. 43755	273.87	. 71884	5234.1
. 52	. 95896	. 90983	. 42722	267.43	. 70851	5111.0
. 53	. 94848	.88813	. 41674	261.06	. 69803	4989.1
. 54	. 93784	. 86665	. 40610	254.74	. 68739	4868.4
0.55	9.92704	0.84536	2.39530	248.48	3.67659	4748.9
. 56	. 91607	. 82426	. 38432	$24^{2.28}$. $6656{ }^{\text {r }}$	4630.3
. 57	. 80490	. 80335	. 37316	236.13	. 65445	4512.8
. 58	. 89354	. 78260	. 36180	230.04	. 64309	4396.3
. 59	. 88197	.76203	. 35023	223.99	. 63152	4280.7
0.60	9.87018	0.74161	2.33843	217.99	3.61973	4166.1
.61	. 85815	.72135	. 32640	212.03	. 60770	4052.2
. 62	. 845857	.70124 .68126 .614	. 31412	206.12	-59541	3939.2
. 63	. 8333382	. 686126	-.30157	200.25 194.42	. 588880	3827.0 375.6
0.65	9.80734	0.64172	2.27560	188.63	3.55689	3604.9
. 66	. 79388	. 62213	. 26214	182.87	. 54343	3494.9
. 67	. 78008	. 60266	. 24833	177.15	. 52962	3385.4
. 68	. 76590	. 5833 I	. 23416	171.46	. 51545	3276.8
. 69	.75133	. 56407	. 21959	165.80	. 50088	3168.7
0.70	9.73634	0.54493	2.20459	160.17	3.48588	306r.I
. 71	. 72089	. 52588	.18915	154.58	. 47044	2954.2
. 72	. 70495	. 50694	.17321	1 49.01	. 45450	2847.7
.73 .74	. 68749	-48808	. 15675	143.47	. 43804	2741.8
.74	. 67146	-4693 ${ }^{1}$. 3972	137.95	.42101	2636.4
0.75	9.6538 I	0.45062	2.12207	132.46	3.40336	2531.4
. 76	. 63555	. 43202	.10376	${ }^{126.99}$	- 38505	2426.9
. 78	. 61646	. 41348	. 08471	121.54	- 36600	2322.7
. 78	-59662	. 39502	. 06487	116.11	. 34616	2219.0
. 79	. 57590	-37662	. 04416	110.70	-32545	2115.7
0.80	9.55423	0.35829	2.02249	105.31	3.30378	2012.7
. 81	. 5315	. 34001	I. 99975	99.943	.28104	1910.0
. 82	. 50758	. 32180	. 97584	94.589	. 257713	1807.7
. 83	. 48235	.30363 .28552	.95061 .92389	89.250 83.926	. 23190	1705.7
0.85	9.42725	0.26745	1.89551	78.615	3.17680	1502.4
. 86	. 39695	. 24943	. 865521	73.317	. 14650	1401.2
. 87	.36445 .32940	.23145 .25350	.83271 .79766	68.032 62.757	.11400 .07895	I 300.2 I 199.4
. 89	. 29135	. 19559	.75961	57.492	3.04090	1098.7
0.90	9.24972	0.17771	1.71797	52.236	2.99926	998.31
.91	. 20374	. 15986	. 67200	46.989	. 95329	898.03
-92	. 15239	. 14203	. 62065	41.750 36.516	. 80194	797.89 69788
. 93	. 09423	. 12423	. 56249	36.516 31.289	. 877668	
. 94	9.02714	. 10645	-49539	31.289	. 77668	597.98
0.95	8.94783	0.08868	1.41609	26.067	2.69738	498.17
. 96	. 85082	. 07093	.31907 .19406	20.848	. 60036	398.44 298.78
. 97	. 72580	.05319 .03545 0	. 19406	15.633 10.421	. 4759325	298.78 199.16
. 99	. 24859	. 01773	9.71684	5.21007	1.998r3	99.57 I
1.00	$-\infty$	0.00000	-	0.00000	-	0.000

Smithsonian Tables.

Value of $\log \int_{0}^{\infty} e^{-x} x^{n-1} d x+10$.

Values of the logarithms + ro of the "Second Eulerian Integral" (Gamma function) $\int_{0}^{\infty} e^{\infty} x^{n-1} d x$ or $\log \mathrm{T}(n)+$ ro for values of n between x and 2 . When n has values not lyigg between 1 and 2 the value of the function can be readily calculated from the equatioo $\Gamma(n+\mathrm{r})=n \Gamma(n)=n(n-\mathrm{r}) \ldots(n-r) \Gamma(n-r)$.

n	0	1	2	3	4	5	6	7	8	9
1.00	9.99-	97497	95001	92512	90030	87555	85087	82627	80173	77727
1.0	75287	72855	70430	68011	65600	63196	60798	58408	56025	53648
1.02	51279	48916	46561	44212	41870	39535	37207	34886	32572	30265
1.03	27964	25671	23384	21104	18831	16564	14305	12052	09806	$\underline{07567}$
1.04	05334	03108	00889	98677	$\overline{9647 \mathrm{I}}$	94273	92080	89895	87716	85544
1.05	9.9883379	81220	79068	76922	74783	72651	70525	68406	66294	64188
1.06	62089	59996	57910	55830	53757	51690	49630	47577	45530	43489
1.07	41455	39428	37407	35392	33384	31382	29387	27398	25415	23439
1.08	21469	19506	$\underline{17549}$	$\underline{15599}$	$\underline{13655}$	$\underline{11717}$	$\underline{09785}$	$\frac{07860}{88956}$	$\frac{05941}{87100}$	${ }^{04029}$
1.09	02123	00223	98329	96442	94561	92686	90818	88956	87100	85250
1.10	9.9783407	81570	79738	77914	76095	74283	72476	70676	68882	67095
1.11	65313	63538	61768	60005	58248	56497	54753	53014	51281	49555
1.12	47834	46120	44411	42709	4 IOI 3	39323	37638	35960	34288	32622
1.13	30962	29308	27659	26017	24381	22751	21126	19508	17896	16289
1.14	14689	13094	11505	09922	08345	06774	05209	0365°	02096	00549
1.15	9.9699007	97471	95941	94417	92898	91386	89879	88378	86883	85393
1.16	83910	82432	80960	79493	78033	76578	75129	73686	72248	70816
1.17	69390	67969	66554	65145	63742	62344	60952	59566	58185	56810
1.18	55440	54076	52718	${ }_{51} 1366$	50019	48677	47341	46011	44687	43368
1.19	42054	40746	39444	$3^{81} 47$	36856	35570	34290	33016	31747	30483
1.20	9.9629225	27973	26725	25484	24248	23017	21792	20573	19358	18150
1.21	16946	I 5748	14556	13369	12188	$\underline{11011}$	09841	08675	07515	06361
1.22	05212	04068	02930	-1796	00669	99546	98430	97318	96212	95111
1.23	594015	92925	91840	90760	89685	88616	87553	86494	85441	84393
1.24	83350	82313	81280	80253	79232	78215	77204	76198	75197	74201
1.25	9.9573211	72226	71246	70271	69301	68337	67377	66423	65474	64530
1.26	63592	62658	61730	60806	59888	58975	58067	57165	56267	55374
1.27	54487	53604	52727	51855	50988	50126	49268	48416	47570	46728
1.28	45891	45059	44232	43410	42593	41782	40975	40173	39376	38585
1.29	37798	37016	36239	35467	34700	33938	33^{181}	32429	31682	30940
1.30	9.9530203	29470	28743	28021	27303	26590	25883	25180	24482	23789
1.31	23100	22417	21739	21065	20396	19732	19073	18419	17770	17125
1.32	16485	15850	15220	14595	13975	13359	12748	12142	11541	10944
1.33	10353	09766	09184	08606	08034	07466	06903	06344	05791	05242
1.34	04698	04158	03624	03094	02568	02048	O1532	O102I	00514	00012
1.35	9.9499515	99023	98535	98052	97573	97100	96630	96166	95706	95251
1.36	94800	94355	93913	93477	93044	92617	92194	91776	91362	90953
1.37	90549	90149	89754	89363	88977	88595	88218	87846	87478	87115
1.38	86756	86402	86052	85707	85366	85030	84698	84371	84049	83731
1.39	83417	83108	82803	82503	82208	81916	81630	81348	81070	80797
1.40	9.9480528	80263	80003	79748	79497	79250	79008	78770	78537	78308
1.41	78084	77864	77648	77437	77230	77027	76829	76636	76446	76261
1.42	76081	75905	75733	75565	75402	75243	75089	74939	74793	74652
1.43	74515	74382	74254	74130	74010	73894	73783	73676	73574	73476
1.44	73382	73292	73207	73125	73049	72976	72908	72844	72784	72728

[^9]Smithsonian Tables.

Table 31 (continued).
GAMMA FUNCTION.

n	0	$\boldsymbol{1}$	2	3	4	5	6	7	8	9
1.45	9.9472677	72630	72587	72549	72514	72484	72459	72437	72419	72406
1.46	72397	72393	72392	72396	72404	72416	72432	72452	72477	72506
1.47	72539	72576	72617	72662	72712	72766	72824	72886	72952	73022
1.48	73097	73175	73258	73345	73436	73531	73630	73734	73841	73953
1.49	74068	74188	74312	74440	74572	74708	74848	74992	75141	75293
1.50	9.9475449	75610	75774	75943	76 I 16	76292	76473	76658	76847	77040
1. 51	77237	77477	77642	77851	78064	78281	78502	78727	78956	79189
1.52	79426	79667	79912	80161	80414	80671	80932	81196	81465	81738
1. 53	82015	82295	82580	82868	83161	83457	83758	84062	84370	84682
1.54	84998	85318	85642	85970	86302	86638	86977	87321	87668	88019
1.55	9.9488374	88733	89096	89463	89834	90208	90587	90969	${ }^{91} 355$	91745
1.56	92139	92537	92938	93344	93753	94166	94583	95004	95429	91745 95857
1. 57	96289	96725	97165	97609	98056	98508	98963	99422	99885	0035 I
1.58	500822	01296	01774	02255	02741	03230	03723	04220	04720	05225
I. 59	05733	06245	06760	07280	07803	08330	08860	09395	09933	10475
1.60	9.9511020	11569	12122	12679	13240	13804	14372	14943	15519	16098
1.61	16680	17267	17857	18451	19048	19649	20254	20862	21475	22091
1.62	22710	23333	23960	24591	25225	25863	26504	27149	27798	28451
1.63	29107	29766	30430	31097	31767	32442	33120	33801	34486	35175
1.64	35867	36563	37263	37966	38673	39383	40097	408 I 5	41536	42260
1.65	9.9542989	43721	44456	45195	45938	46684	47434	48187	48944	49704
1.66	50468	51236	52007	52782	53560	54342	55127	55916	56708	57504
1.67	58303	59106	59913	60723	61536	62353	63174	63998	64825	65656
1.68	66491	67329	68170	69015	69864	70716	71571	72430	73293	74159
1.69	75028	75901	76777	77657	78540	79427	80317	8I2II	82108	83008
1.70	9.9583912	84820	85731	86645	87563	88484	89409	90337	91268	22203
1.71	93141	94083	95028	95977	96929	97884	98843	99805	00771	01740
1.72	602712	03688	04667	05650	06636	07625	08618	09614	10613	I1616
1.73	12622	13632	14645	15661	16681	17704	18730	19760	20793	21830
1.74	22869	23912	24959	26009	27062	28118	29178	30241	31308	32377
1.75	9.9633451	34527	35607	36690	37776	38866	39959	41055	42155	43258
1.76	44364	45473	46586	47702	48821	49944	51070	52199	53331	54467
1.77	55606	56749	57894	59043	60195	6 I 350	62509	63671	64836	66004
1.78	67176	68351	69529	70710	71895	73082	74274	75468	7666	77866
1.79	79070	80277	81488	82701	83918	85138	86361	87588	88818	90051
1.80	9.9691287	92526	93768	95014	96263	97515	98770	$\overline{00029}$	$\overline{01291}$	$\overline{02555}$
1.81	703823	05095	06369	07646	08927	10211	11498	12788	14082	15378
1.82	16678	17981	19287	20596	21908	23224	24542	25864	27189	28517
1.83	29848	31182	32520	33860	35204	36551	37900	39254	40610	41969
1.84	43331	44697	46065	47437	48812	50190	51571	52955	54342	55733
1.85	9.9757126	58522	59922	61325	62730	64139	65551	66966	68384	$\begin{aligned} & 69805 \\ & 81086 \end{aligned}$
1.86	71230 85640	72657	74087	7552 I	76957	78397	79839	81285	82734	84186
1.87	85640	87098	88559	90023	91490	92960	94433	95909	97389	98871
1.88	800356	01844	03335	04830	06327	07827	0933 I	10837	12346 27606	13859
1.89	15374	16893	18414	19939	21466	22996	24530	26066	27606	29148
1.90	9.9830693	32242	33793	35348	36905	38465 54232	40028	41595	43164 59020	44736 60621
1.91	46311 62226	47890	49471	51055 67058	52642 68675	54232 70294	55825 71917	57421	59020 75170	60621 76802
1.92	62226	63834	65445	67058	68675	70294 86651	71917 88302 888	73542	75170 91614	93275
1.93 1.94	78436 94938	80073 96605	81713 98274	83356 99946	$\frac{85002}{01621}$	$\frac{86651}{03299}$	$\frac{88302}{04980}$	$\frac{89957}{06663}$	21614	$\frac{93275}{10039}$
1.95	9.9911732	13427	15125	16826	18530	20237	21947	23659	25375	27093
1.96	28815	30539	32266	33995	35728	37464	39202	40943	42688	44435 62062
1.97	46185	47937	49693	51451	53213	54977	56744	58513	780286	620022
1.98	63840	65521	67405	69192	70982	72774	74570 92678	76368	78169 96333	$\begin{aligned} & 79972 \\ & 98165 \end{aligned}$
1.99	81779	83588	85401	87216	89034	90854	92678	94504	96333	98165

ZONAL SPHERICAL HARMONICS.*

Degrees	P_{1}	P_{2}	P_{3}	P_{4}	P_{5}	P_{6}	P_{7}
0	+ 1.0000	+1.0000	+1.0000	+1.0000	+1.0000	+1.0000	+1.0000
1	. 9998	+ 9995	. 9991	. .9985	. 9977	. 9968	. 9957
2	. 9994	. 9982	. 9963	. 9939	. 9909	. 9872	. 9830
3	. 9986	. 9959	. 9918	. 9863	.9795 .9638	.9714 .9495	. 96329
4	. 9976	. 9927	. 9854	. 9758	. 9638	. 9495	. 9329
5	+0.9962	+ 0.9886	+0.9773	+0.9623	+ 0.9437	+0.9216	+0.8962
6	. 9945	. 9836	. 9674	+ 9459	. 9194	. 8881	.8522 .8016
7	. 9925	. 9777	. 9557	. 9267	. 8981	. 8492	. 8016
8	. 9903	. 9709	. 9423	. 9048	. 85889	. 8054	.7449
9	. 9877	.9633	. 9273	. 8803	.8232	. 7570	. 6830
10	+0.9848	十0.9548	+0.9106	+0.8532	+0.7840	+0.7045	+0.6164
II	+ 98816	. 9454	+ 8.8923	+ 82388	. 7417	. 6483	. 5462
12	.9781	. 9352	. 8724	. 7920	. 6966	. 5891	. 4731
13	. 9744	. 924 I	. 8511	. 7582	. 6489	. 5273	-3980
14	. 9703	. 9122	. 8283	.7224	. 5990	. 4635	-3218
15	+0.9659	+0.8995	+0.8042	+0.6847	+0.5471	$+0.3983$	
16	+ 9613	. 8860	. 7787	+ 6454	. 4937	.3323	+ .1700
17	. 9563	.8718 8568	. 7519	. 6046	.4391	. 2661	+.0961
18	.951	.8568 .8410	.7240 .6950	. 5624	. 3236	. 2002	+..0248
20	+0.9397	+0.8245	+ 0.6649	+0.4750	+0.2715	+0.0719	-0.1072
21	- .9336	. 8074	+ .6338	+ 4.4300	+ 2156	+.0106	. 1664
22	. 9232	.7895	. 6019	. 3845	. 1602	- .0481	. 2202
23	. 9205	. 7710	. 5692	. 3386	. 1057	-..1038	. 2680
24	.9135	.7518	. 5357	.2926	. 0525	-. 155^{8}	. 3094
25	+0.9063	+0.7321	+0.5016	+0.2465	+0.0009	-0.2040	-0.3441
26	. 8988	. 7117	. 4670	. 2007	- . 0489	. 2478	. 3717
27	. 8910	. 6908	.4319	. 1553	- . 0964	. 2869	. 3922
28	. 8829	. 6694	. 3964	. 1105	-.1415	.3212	-4053
29	. 8746	. 6474	. 3607	. 0665	-. 1839	. 3502	.4113
30	+0.8660	+0.6250	+0.3248	+0.0234	-0.2233	-0.3740	-0.4102
31	. 8572	. 6021	. 2887	- .0185	.2595	. 3924	. 4022
32	. 84880	. 5788	.2527	- .0591	.2923	. 4053	. 3877
33	. 8387	. 5551	. 2167	-. 0982	. 3216	.4127	$\cdot 3671$
34	. 8290	. 5310	. 1809	-. 1357	-3473	.4147	. 3409
	+0.8192	+0.5065	+0.1454	-0.1714	-0.3691	-0.4114	-0.3096
36	. 8090	. 4818	. 1102	. 2052	. 3871	-4031	.2738
37	. 7986	. 4567	. 0755	.2370	. 4011	-3898	.2343
38	. 7880	. 4314	. 0413	. 2666	.4112	. 3719	. 1918
39	.7771	. 4059	. 0077	. 2940	.4174	- 3497	. 1470
40	+0.7660	+0.3802	-0.0252	-0.3190	-0.4197	-0.3236	-0.1006
41	. 7547	.3544	. 0574	.3416	.4181	. 2939	- . 0535
42	.743I	. 3284	. 0887	. 3616	.4128	. 2610	-. 0064
43	. 7314	. 3023	.1191	. 3791	. 4038	. 2255	$+.0398$
44	.7193	.2762	. 1485	. 3940	. 3914	. 1878	+ .0846
			-0.1768			-0.1484	
46 47	$\begin{aligned} & .6947 \\ & .6820 \end{aligned}$.2238 .1977	.2040 .2300	.4158 .4227	.3568 .3350	二. .1078	$\begin{aligned} & .1667 \\ & .2028 \end{aligned}$
47	. 6820	.1977 .1716	.2300 .2547	.4227 .4270	.3350 .3105	-. 0665	. 2028
49	.656I	. 1456	.2781	. 4286	.2836	+.016I	. 2626
50	+0.6428	+0.1198	-0.3002	-0.4275	-0.2545	+0.0564	+0.2854

* Calculated by Mr. C. E. Van Orstrand for this publication.

Smithsonian Tables.

ZONAL SPHERICAL HARMONICS.

Degrees	P_{1}	P_{2}	P_{3}	P_{4}	P_{5}	P_{5}	P_{7}
50	+0.6428	+0.1198	-0.3002	-0.4275	-0.2545	+0.0564	+0.2854
51 52	. 6293	. 09681	. 3209	-4239	. 2235	. 0954	. 303 I
52 53	.6157	. 06836	. 34501	.4178	.1910	.1326	. 3154
54	. 5878	. 0182	-3740	. 3984	. 1223	. 2077	.3221 .3234
55	+0.5736	-0.0065	-0.3886	-0.3852	-0.0868	+0.2297	+0.3191
56	. 5592	. 0310	. 4016	. 3698	- . 0.0809	$\begin{array}{r}+2.2560 \\ \hline 20\end{array}$	+0.3191 .3095
57 58	- 5446	. 0551	. 4131	. 3524	-. 0150	. 2787	. 2947
58 59	$\cdot 5299$.5550	. 07028	. 4229	. 3331	+.0206	. 2976	. 2752
59	-5750		.4310	-3119	+.0557	. 3125	. 2512
60	+0.5000	-0.1250	-0.4375	-0.2891	+0.0898	$+0.3232$	+0.223I
61	. 4848	. 1474	. 4423	. 2647	. 1229	- 3298	. 1916
62 63	. 46950	. 1694	. 44455	. 23900	.1545	. 332 I	. 1572
64	. 4384	. 21117	. 44470	. 1841	. 21244	. 33240	. 12818
	+ 0.4226	-0.2321	-0.4452	-0.1552	$+0.2381$	+0.3138	+0.0422
66 67	+ 4067 .3907	.2318 .2710	. .4439 .439	.1256 .055	+ 23815 .2885	+2.3187 .809	+
67 68	. 39746	.2710 .2895	. 43370	. 0955	. 2824	. 281906	二. 0375
69	-3584	. 3074	.4225	. 0344	. 3158	. 2362	-.1135
70	+0.3420	-0.3245	-0.4130	-0.0038	+0.328	+0.2089	-0.1485
71	- 3256	. 3468	-4021	$+.0267$. 3373	.1791	.1808
72 73	.3090 .2924	. 35688	. 3898	. 0568	. 3434	.1472	. 2099
73 74	. 2756	.3718 .3860	.3761	. .815	. 34463	.1136 .0788	.2352 .2563
75	+ 0.2588	-0.3995	-0.3449	+0.1434	+0.3427	+0.043I	-0.2730
76	. 2419	. 4122	. 3275	.1705	. 3362	$\pm .0070$. 2850
77 78	. 22079	. 42431	.3090 .2894	. 1964	.3267 .3143	二. .0290	. 2921
79	. 1908	. 4454	. 2688	. 2443	. 2990	-.0990	. 2913
80 81 81	$\begin{array}{r} 0.1736 \\ .1564 \end{array}$	$\begin{array}{r} -0.4548 \\ .4633 \end{array}$	- $\begin{array}{r}0.247 \\ .225\end{array}$	$+\begin{array}{r} 0.2659 \\ .2859 \end{array}$	$\begin{array}{r} +0.2810 \\ .2606 \end{array}$	- $\begin{array}{r}\text {-0.132I } \\ \hline .6635\end{array}$	-0.2835
82	. 1392	. 4709	. 2020	. .3040	. 2378	. 1927	. 27236
83	.1219	. 4777	.1783	. 3203	. 2129	. 2193	. 2321
84	. 1045	.4836	. 1539	. 3345	. 1861	.2435	. 2067
85 86	$+0.0872$	-0.4886	-0.1291	+0.3468	+0.1577	-0.2638	-0.1778
87	. 06923	. 49295	. 10781	.3569 .3648	.1278 .0969	. 2947	.1460
88	. 0349	. 4982	. 0522	. 3704	. 0655	. 3045	. 0755
89	. 0175	-4995	. 0262	. 3739	. 0327	. 3105	. 0381
90	+0.0000	-0.5000	-0.0000	+0.3750	+ 0.0000	-0.3125	-0.0000

Smithsonian Tableg.

ELLIPTIC INTEGRALS.

$$
\text { Values of } \int_{0}^{\frac{\pi}{2}}\left(1-\sin ^{2} \theta \sin ^{2} \phi\right)^{ \pm \frac{1}{2}} d \phi
$$

This table gives the values of the integrals between oand $\pi / 2$ of the function $\left(1-\sin ^{2} \theta \sin ^{2} \phi\right)^{ \pm 3} d \phi$ for different values of the modulus corresponding to each degree of θ between 0 and 90.

θ	$\int_{0}^{\pi} \frac{d \phi}{\left(1-\sin ^{2} \theta \sin ^{2} \phi\right)^{\frac{1}{2}}}$		$\int_{0}^{\frac{\pi}{2}}\left(1-\sin ^{2} \theta \sin ^{2} \phi\right)^{\frac{1}{2}} d \phi$		θ	$\int_{0}^{\frac{\pi}{2}} \frac{d \phi}{\left(I-\sin ^{2} \theta \sin ^{2} \phi\right)^{\frac{1}{2}}}$		$\int_{0}^{\frac{\pi}{2}}\left(2-\sin ^{2} \theta \sin ^{2} \phi\right)^{\frac{1}{2}} d \phi$	
	Number.	Log.	Number.	Log.		Number.	Log.	Number.	Log.
0°	1.5708	0.196120	1.5708	0.196120	45°	1.8541	0.268127	I. 3506	0.130541
1	5709	196153	5707	196087	6	8691	271644	3418	127690
2	5713	196252	5703	195988	7	8848	275267	3329	124788
3	5719	196418	5697	195822	8	9011	279001	3238	121836
4	5727	196649	5689	195591	9	9180	282848	3147	118836
5°	1.5738	0.196947	1.5678	0.195293	50°	1.9356	0.286811	I. 3055	0.115790
6	5751	197312	5665	194930	1	9539	290895	2963	II 2698
7	5767	197743	5649	194500	2	9729	295101	2870	109563
8	5785	198241	5632	194004	3	9927	299435	2776	106386
9	5805	198806	5611	193442	4	2.0133	303901	2681	103169
10°	1.5828	0.199438	1.5589	0.192815	55°	2.0347	0.308504	1.2587	0.099915
1	5854	200137	5564	192121	6	0571	313247	2492	096626
2	5882	200904	5537	191362	7	0804	318138	2397	093303
3	5913	201740	5507	190537	8	1047	323182	2301	089950
4	5946	202643	5476	189646	9	1300	328384	2206	086569
15°	1.5981	0.203615	1.5442	0.188690	60°	2.1565	0.333753	1.2111	0.083164
6	6020	204657	5405	187668	I	1842	339295	2015	079738
7	6061	205768	5367	186581	2	2132	345020	1920	076293
8	6105	206948	5326	185428	3	2435	350936	1826	072834
9	6151	208200	5283	184210	4	2754	357053	1732	069364
20°	1.6200	0.209522	1. 5238	0.182928	65°	2.3088	0.363384	1.1638	0.065889
1	6252	210916	5191	181580	6	3439	369940	1545	062412
2	6307	212382	5141	180168	7	3809	376736	1453	058937
3	6365	213921	5090	178691	8	4198	383787	1362	055472
4	6426	215533	5037	177150	9	4610	391112	1272	052020
25°	1.6490	0.217219	1.4981	0.175545	70°	2. 5046	0.398730	1.1184	0.048589
6	6557	218981	4924	173876	1	5507	406665	1096	045^{183}
7	6627	220818	4864	172144	2	5998	414943	1011	041812
8	6701	222732	4803	170348	3	6521	423596	0927	038481
9	6777	224723	4740	168489	4	7081	432660	0844	035200
30°	1.6858	0.226793	1.4675	0.166567	75°	2.7681	0.442176	1.0764	
1 2	6941	228943	4608	164583	6	8327	452196	0686	028819
2	7028	231173	4539	162537	7	9026	462782	0611	025740
3	7119	233485	4469	160429	8	9786	474008	0538	022749
4	7214	235880	4397	158261	9	3.0617	485967	0468	019858
35°	1.7312	0.238359		0.156031	80°	3.1534	0.498777	1.0401	0.017081
6	7415	240923	4248	I 53742	1	2553	512591	1.04018	014432
7		243575 246315	4171 4092	151393	2	3699	527613	0278	O11927
8	7633 7748	246315 249146	4092	148985	3	5004	544120	0223	009584
9	7748	249146	4013	146519	4	6519	562514	0172	007422
40°	1.7868	0.252068	1.3931	0.143995	85°	3.8317	0.583396	1.0127	0.005465
1 2	7992 8122		3849	141414	6	4.0528	607751	0036	$\infty 3740$
2	8122 8256	258197	3765	138778	7	3387	637355	0053	002278
3	8256 8396	261406 264716	3680 3594	136086 133340	8	7427 5.4349	676027	0026	001121
4	8396	264716	3594	133340	9	$5 \cdot 4349$	735192	0008	000326
45°	1.854 r	0.268127	1.3506	0.130541	90°	∞	∞	1.0000	

Smithsonian Tables.

Table 34.
MOMENTS OF INERTIA, RADII OF GYRATION, AND WEIGHTS.
In each case the axis is supposed to traverse the centre of gravity of the body. The axis is one of symmetry. The mass of a unit of volume is w.

Body.	Axis.	Weight.	Moment of Inertia $\mathrm{I}_{\text {o }}$.	Square of Radius of Gyration p_{0}^{2}.
Sphere of radius r	Diameter	$\frac{4 \pi z r^{\circ}}{3}$	$\frac{8 \pi w r^{5}}{15}$	$\frac{2 r^{2}}{5}$
Spheroid of revolution, polar axis $2 a$, equatorial diameter $2 r$	Polar axis	$\frac{4 \pi z a r^{2}}{3}$	$\frac{8 \pi w a r^{4}}{15}$	$\frac{2 r^{2}}{5}$
	Axis $2 a$	$4 \pi w a b c$	$4 \pi w a b c\left(b^{2}+c^{2}\right)$	$\frac{b^{2}+c^{2}}{5}$
Spherical shell, external ra-	Axis $2 a$	$\begin{gathered} 3 \\ 4 \pi z\left(r^{3}-r^{\prime 8}\right) \end{gathered}$	$\begin{gathered} 15 \\ 8 \pi w\left(r^{6}-r^{\prime} 5\right) \\ \hline \end{gathered}$	$\begin{aligned} & 5\left(r^{5}-r^{\prime 5}\right) \end{aligned}$
dius r, internal r^{\prime}	Diameter	$\frac{4 \pi}{3}$	15	$\frac{5}{5\left(r^{8}-r^{\prime 8}\right)}$
Ditto, insensibly thin, radius r, thickness $d r$	Diameter	$4 \pi z r^{2} d r$	$\frac{8 \pi z u r^{4} d r}{3}$	$\frac{2 r^{2}}{3}$
Circular cylinder, length $2 a$, radius r	Longitudinal axis $2 a$	$2 \pi w a r^{2}$	$\pi w a r^{4}$	$\frac{r^{2}}{2}$
Elliptic cylinder, length $2 a$, transverse axes $2 b, 2 c$	Longitudinal axis $2 a$	$2 \pi w a b c$	$\frac{\pi z a b c\left(b^{2}+c^{2}\right)}{2}$	$\frac{b^{2}+c^{2}}{4}$
Hollow circular cylinder, length $2 a$, external radius r, internal r^{\prime}	$\begin{gathered} \text { Longitudinal } \\ \text { axis } 2 a \end{gathered}$	$2 \pi w a\left(r^{2}-r^{\prime 2}\right)$	$\pi \underset{W}{ }\left(r^{4}-r^{\prime 4}\right)$	$\frac{r^{2}+r^{\prime 2}}{2}$
Ditto, insensibly thin, thickness $d r$	$\begin{aligned} & \text { Longitudinal } \\ & \text { axis } 2 a \end{aligned}$	4π wardr	$4 \pi w a r^{8} d r$	r^{2}
Circular cylinder, length $2 a$, radius r	Transverse diameter	$2 \pi z a r{ }^{2}$	$\frac{\pi \text { mar }{ }^{2}\left(33^{2}+4 a^{2}\right)}{6}$	$\frac{r^{2}}{4}+\frac{a^{2}}{3}$
Elliptic cylinder, length 2a, transverse axes $2 a, 2 b$	Transverse axis $2 b$	$2 \pi w a b c$	$\frac{\pi w a b c\left(3 c^{2}+4 a^{2}\right)}{6}$	$\frac{c^{2}}{4}+\frac{a^{2}}{3}$
Hollow circular cylinder, length $2 a$, external radius r, internal r^{\prime}	Transverse diameter	$2 \pi w a\left(r^{2}-r^{\prime 2}\right)$	$\frac{\pi w a}{6}\left\{\begin{array}{c} 3\left(r^{4}-r^{\prime 4}\right) \\ +4 a^{2}\left(r^{2}-r^{\prime 2}\right) \end{array}\right\}$	$\frac{r^{2}+r^{\prime 2}}{4}+\frac{a^{2}}{3}$
Ditto, insensibly thin, thickness $d r$	Transverse diameter	4π wardr	$\pi w a\left(2 r^{3}+\frac{4}{3} a^{2} r\right) d r$	$\frac{r^{2}}{2}+\frac{a^{2}}{3}$
Rectangular prism, dimensions $2 a, 2 b, 2 c$	Axis $2 a$	Swabc	$\frac{8 w a b c\left(b^{2}+c^{2}\right)}{3}$	$\frac{b^{2}+c^{2}}{3}$
Rhombic prism, length $2 a$, diagonals $2 b, 2 c$	Axis $2 a$	$4 w a b c$	$\begin{aligned} & \frac{2 w a b c\left(b^{2}+c^{2}\right)}{3} \\ & 2 w a b c\left(c^{2}+2 a^{2}\right) \end{aligned}$	$\frac{b^{2}+c^{2}}{6}$
Ditto	Diagonal $2 b$	$4 w a b c$	-3	$\overline{6}+\frac{1}{3}$

(Takeo from Rankine.)

Smithsonian Tables,

STRENGTH OF MATERIALS.

The strength of most materials varies so that the following figures serve only as a rough indication of the strength of a particular sample.

TABLE 35 (a). - Matals.

* Authority of Wertheim.

TABLE 36 (b). - Stones.*

Material.	Size of test piece.	Resistance to crushing in pds. per sq.in.
Marble	4 in. cubes	7600-20700
Tufa	2 " "	7700-11600
Brownstone	-- -	7300-23600
Sandstone	4 in. cubes	2400-29300
Granite	$4 "$	9700-34000
Limestone	$4^{\prime \prime}$	6000-25000

* Data furnished by the U. S. Geological Survey.

TABLE 36 (0). - Brick.*

Kind of Brick.	Resistance to crushing in pds. per sq. in.	
	Tested fatwise.	Tested on edge.
Soft burned	1800-4000	1600-3000
Medium burned	4000-6000	3000-4500
Hard burned	6000-8500	4500-6500
Vitrified	$8500-25000$	6500-20000
	1800-4000	
Brick piers laid up in 1 part Portland cement, 3 of sand, have from 20 to 40 per cent the crushing strength of the brick.		

* Data furnished by the U. S. Geological Survey.

TABLE 35 (d). - Concretes.*

Cnarse Aggregate.	Proportions by volume. Cement : sand: aggregate.	Size of test piece.	Resistance to crushing in pds. per sq. in.
Sandstone	1:5:14 to 1: $1: 5$	12 in. cube	$1550-3860$
Cinders	1:3:6 " $1: 1: 3$	12 " "	790-2050
Limestone	1:4:8 "، $1: 2: 4$	12 " ${ }^{12}$	1200-2840
Conglomerate	1:6:12 " $1: 2: 4$	12 " "	1080-3830
Trap	1:2:9 " 1:2:4	12 "	820-2960

* Data furnished by the U. S. Geological Survey.

Smithsonian Tables.

Table 36.

STRENGTH OF MATERIALS.

Average Results of Timber Tests.

The test pieces were small and selected. Endwise compression tests of some of the first lot, made when green and containing over 40 per cent moisture, showed a diminishing in strength of 50 to 75 per cent.
See also Table 37. A particular sample may vary greatly from these data, which can indicate only in a general way the relative values of a kind of timber. Note that the data below are from selected samples and therefore probably high. The upper lot are from the U. S. Forestry circular No. 15 ; the lower from the tests made for the roth U. S. Census.

\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{NAME OF SPECIES.} \& \multicolumn{2}{|l|}{TRANSVERSE
TESTS.} \& \multicolumn{2}{|l|}{COMPRESSION.} \& \begin{tabular}{l}
SHEAR- \\
ING.
\end{tabular} \\
\hline \& Modulus of rupture.
lb./sq. in. ib./sq. in. \& \begin{tabular}{l}
Modulus of \\
elasticity. \\
lbs ./sq. in
\end{tabular} \& \[
\left\lvert\, \begin{aligned}
\& \| \text { to grain. } \\
\& \text { lbs. } / \mathrm{sq} . ~ \mathrm{in} .
\end{aligned}\right.
\] \& \[
\frac{1}{1 \mathrm{tbs} . \text { togq. grain. }} \mathrm{in} .
\] \& \[
\begin{gathered}
\text { Along the } \\
\text { grain } \\
\text { 1bs./sq. in. }
\end{gathered}
\] \\
\hline Long-leaf pine \& 12,600 \& 2,070,000 \& 8,000 \& 1260 \& 835 \\
\hline Cuban pine \& 13,600 \& 2,370,000 \& 8,700 \& 1200 \& 770 \\
\hline Short-leaf pine \& 10,100 \& 1,680,000 \& 6,500 \& 1050 \& 770 \\
\hline Loblolly pine
White pine \& 11,300 \& 2,050,000 \& 7,400 \& 1150 \& 800 \\
\hline Red pine \& 7,900
9,100 \& 1,390,000 \& 5,400 \& 700 \& 400 \\
\hline Spruce pine \& 10,000 \& 1,660,000 \& 6,700
7,300 \& 1000
1200 \& 500
800 \\
\hline Bald cypress \& 7,900 \& 1,290,000 \& 6,000 \& 800 \& 500 \\
\hline White cedar \& 6,300 \& 910,000 \& 5,200 \& 700 \& 400 \\
\hline Douglass spruce \& 7.900 \& 1,680,000 \& 5,700 \& 800 \& 500 \\
\hline White oak \& 13,100 \& 2,090,000 \& 8,500 \& 2200 \& 1000 \\
\hline Overcup oak
Post oak \& 11,300
12,300 \& 1,620,000 \& 7,300 \& 1900 \& 1000 \\
\hline Post oak \& 12,300 \& 2,030,000 \& 7,100 \& 3000 \& 1100 \\
\hline Red oak \& II,
II,400 \& 1,610,000 \& 7,400 \& 1900 \& 900 \\
\hline Texan oak \& 13, 100 \& 1,970,00 \& 8,200 \& 2300
2000 \& 1100

000

\hline Yellow oak \& 10,800 \& 1,740,000 \& 7,300 \& 1800 \& 1100

\hline Water oak \& 12,400 \& 2,000,000 \& 7,800 \& 2000 \& 1100

\hline Willow oak \& 10,400 \& 1,750,000 \& 7,200 \& 1600 \& 900

\hline Spanish oak \& 12,000 \& 1,930,000 \& 7,700 \& 1800 \& 900

\hline Shagbark hickory \& 16,000 \& 2,390,000 \& 9,500 \& 2700 \& 1100

\hline Mockernut hickory \& 15,200 \& 2,320,000 \& 10,100 \& 3100 \& 1100

\hline Water hickory \& 12,500 \& 2,080,000 \& 8,400 \& 2400 \& 1000

\hline Bitternut hickory \& 15,000 \& 2,280,000 \& 9,600 \& 2200 \& 1000

\hline Nutmeg hickory \& 12,500 \& 1,940,000 \& 8,800 \& 2700 \& 1100

\hline Pecan hickory \& 15,300 \& 2,530,000 \& 9,100 \& 2800 \& 1200

\hline Pignut hickory \& 18,700 \& 2,730,000 \& 10,900 \& 3200 \& 1200

\hline White elm \& 10,300 \& 1,540,000 \& 6,500 \& 1200 \& 800

\hline Cedar elm \& 13,500
10,800 \& 1,700,000 \& 8,000 \& ${ }^{2100}$ \& 1300

\hline White ash
Green ash \& 10,800
11,600 \& 1,640,000 \& 7,200 \& 1900
1700 \& 1100
1000

\hline Sweet gum \& 9,500 \& 1,700,000 \& 7,100 \& 1400 \& 800

\hline Poplar \& 9,400 \& 1,330,000 \& 5,000 \& 1120 \&

\hline Basswood \& 8,340 \& 1,172,000 \& 5,190 \& 880 \&

\hline Ironwood \& 7,540 \& 1,158,000 \& 5,275 \& 2000 \&

\hline Sugar maple \& 16,500
14,640 \& 2,250,000
$\mathbf{1}, 800,000$ \& 8,800
6,850 \& 3600
2580 \&

\hline Box elder \& 7,580 \& 873,000 \& 4,580 \& 1580 \&

\hline Black walnut \& 11,900 \& 1,560,000 \& 8,000 \& 2680 \&

\hline Sycamore \& 7,000 \& 790,000 \& 6,400 \& 2700 \&

\hline Hemlock \& 9,480 \& 1,1 $\mathbf{3}^{8,000}$ \& 5,400 \& 1100 \&

\hline Red fir \& 13,270 \& 1,870,000 \& 7,780 \& 1750 \&

\hline Tamarack \& 13,150 \& 1,917,000 \& 7,400 \& 1480 \&

\hline Red cedar
Cottonwood \& 1 1,800
10,440 \& 938,000
$1,450,000$ \& 6,300
5,000 \& 2000 \&

\hline Beech \& 16,200 \& i,730,000 \& 6,770 \& 2840 \&

\hline
\end{tabular}

Smithsonian Tableg.

UNIT STRESSES FOR STRUCTURAL TIMBER EXPRESSED IN POUNDS PER SQUARE INCH.

Recommended by the Committee on Wooden Bridges and Trestles, American Railway Engineering Association, 1909.

KIND OF TIMBER.	BENDING.				SHEARING.			
	Extreme fibre stress.		Modulus of elasticity.		Parallel to grain.		Longitudinal shear in beams.	
	Averag ultimat			Average.	Average ultimate	$\begin{array}{c\|c} \text { Safe } & \text { Safe } \\ \text { e. } & \text { stress. } \end{array}$	Average ultimate.	Safe stress.
Douglass fir	6100	12		1,510,000	690	170	270	110
Long-leaf pine	6500	13		1,610,000	720	180	300	120
Short-leaf pine	5600	11		1,480,000	710	170	330	130
White pine	4400			1,130,000	400	100	180	70
Spruce	4800	10		1,310,000	600	150	170	70
Norway pine	4200			1,190,000	590	130	250	100
Tamarack	4600			1,220,000	670	170	260	100
Western hemlock	5800	11		1,480,000	630	160	270*	100
Redwood	5000			800,000	300	80	-	-
Bald cypress	4800			1,150,000	500	120	-	-
Red cedar	4200			860,000	-	12	-	-
White oak	5700	11		1,150,000	840	210	270	110
Kind OF TIMBER.	COMPRESSION							
	Perpendicular to grain.		Parallel to grain.			Formulas for safe stress in loog columas over 15 diameters. \dagger		
	Elastic limit.	Safe stress.	Average ultimate.	Safe e. $\begin{gathered}\text { Stress. }\end{gathered}$				
Douglass fir	630	310	3600	1200	900 I	1200(1-	/60.D)	10
Long-leaf pine	520	260	3800	1300	980	1300 (1-L	(60.D)	10
Short-leaf pine	340	170	3400	1100	830 I	1100 (1 -L	/60.D)	10
White pine	290	150	3000	1000	750	1000 (1-L	(60.D)	10
Spruce	370	180	3200	1100	830 I	1100 (1-L	(60.D)	
Norway pine	370	150	2600*	* 800	600	800 (I-L	/60.D)	
Tamarack	-	220	3200*	* 1000	750	1000 (1-L	(60.D)	-
Western hemlock	440	220	3500	1200	900	1200 (1-L	(60.D)	-
Redwood	400	150	3300	900	680	900(1-L	(60.D)	-
Bald cypress	340	170	3900	1100	830 I	$1100(1-L$	(60.D)	-
Red cedar	470	230	2800	900	680	900(1-L	/60.D)	-
White oak	920	450	3500	1300	980 I	1300 ($\mathrm{I}-\mathrm{L}$	/60.D)	12

These unit stresses are for a green condition of the timber and are to be used without increasing the liveload stresses for impact.

* Partially air-dry.
$\dagger \mathrm{L}=$ length in inches. $\mathrm{D}=$ least side io inches.

Smithsonian Tables.

TABLE 38. - Rigidity Modulus.
If to the four consecutive faces of a cube a tangential stress is applied, opposite in direction on adjacent sides, the modulus of rigidity is obtained by dividing the numerical value of the tangential stress per unit area (kg. per sq. mm.) by the number representing the change of angles on the non-stressed faces, measured in radians.

TABLE 39. - Variation of the Rigidity Modulus with the Temperature.
$n_{t}=n_{0}\left(\mathrm{I}-a t-\beta t^{2}-\gamma t^{3}\right)$, where $t=$ temperature Centigrade.

Substance.		no	a10 ${ }^{6}$	$\beta{ }^{108}$	$\gamma \mathrm{IO}^{10}$		Autbor			
		$\begin{aligned} & 2652 \\ & 3200 \\ & 3972 \\ & 3900 \\ & 8108 \\ & 6940 \\ & 6632 \\ & 2566 \\ & 8290 \end{aligned}$	$\begin{array}{r} 2158 \\ 455 \\ 2716 \\ 572 \\ 206 \\ 483 \\ 11 \mathrm{I} \\ 387 \\ 187 \end{array}$	$\begin{array}{r} 48 \\ 36 \\ -23 \\ 28 \\ 19 \\ 12 \\ 12 \\ 50 \\ 38 \\ 59 \end{array}$	$\begin{array}{r} 32 \\ - \\ 47 \\ -11 \\ -8 \\ -8 \\ -9 \end{array}$	Pisati, Nuovo Cimento, 5, 34, 1879. Kohlrausch-Loomis, Pogg. Ann. 141. Pisati, loc. cit. K and L, loc. cit. Pisati, loc. cit. K and L, loc. cit. Pisati, loc. cit. " " "				
$n_{t}^{*}=n_{15}[1-\alpha(t-15)] ;$ Horton, Philos. Trans. 204 A, 1905.										
Copper Copper (com- Iron mercial) Steel	4.37* $a=.00039$		Platinum		6.46*	$a=.00012$	Tin	I. 50 *	$a=.00416$	
			Gold		2.452.67	.0003		0.80	. 00164	
	3.80	. 00038				Cadmium	2.31	. 0058		
	8.26	. 00029	Aluminum			2.55	. 00148	Quartz	3.00	. 00012
	8.45	. 00026								

[^10]Smithsonian Tables.

ELASTIC MODULI.

Young's Modulus.

Young's Modulus $=\frac{\text { Intensity of longitudinal stress (kg. per sq. mm.). }}{\text { Elongation per unit length }}$.

Substance.	$\begin{gathered} \text { Temp. } \\ { }^{\circ} \mathrm{C} \text {. } \end{gathered}$			Substance.	Temp.		
Aluminum	20	7200	1	Nickel-steel, $5 \frac{1}{6} \% \mathrm{ni}$	-	19900	13
	12.3	7462	2	" " 25% "		18600	13
Lead, drawn .	15	1803	3	Palladinm, annealed	15	9709	3
" ${ }_{\text {" annealed }}$	15	1727	3	Phosphor-bronze		12010	11
Cadmium ${ }^{\text {- }}$	-	9194 7070	4	Platinum, drawn ${ }_{\text {annealed }}$	15	17044 15518	3
Delta metal	-	11697	6	" . .	13.2	16020	2
Iron, drawn	15	20869	3	drawn	10	15989	1
" annealed	15	20794	3	Silver, drawn . .	15	7357	3
"	0	20310	7	" annealed	15	7140	3
"	-	21740	8	Steel wire, drawn	15	188 ro	3
" cast .		11713	4	" aunealed	15	17280	3
" soft .	15.6	$1575{ }^{\circ}$	9	Steel, cast, drawn	15	19550	3
" drawn	20	19385	1	" " annealed	15	19560	3 4
Gold, drawn	15	20500 8131	1 3	" Bessemer		21136 21112	4 4
" annealed	15	5585	3	" mild. .	15.5	21700	9
" drawn	12.9	8630		" very soft		20705	13
Copper, drawn .	15	12450	3	" half soft	-	20910	13
" annealed	15	10520	3	"" hard	-	20600	13
" drawn	0	12140	7	Bismuth -	-	3190	5
" drawn ; j ${ }^{\text {c }}$	20	12550		Zinc, drawn	15	8734	3
"" electr. h'd d'n	19.5	13220	9	Tin, drawn	15	4148	3
Brass, drawn .	15	8543 9810	3 7	cast		1700 6000	13
" drawn. .	0	10220	11	Glass	-	$\left\{\begin{array}{c}6000 \\ \text { to }\end{array}\right.$	-
" • . .		9930	10			(8000	
" - . - .		10450	9			(1500	
German silver . . ${ }^{\text {c }}$		12094	4	Carbon .	-	$\{$ to	-
" " h'd d'n	-	11550	II			(2500	
" "	20	13300	9	Marbles .	-	6316	24
Nickel . . .	-	20300		Granites	-		24
" hard draw		22790	$\begin{aligned} & 12 \\ & 11 \end{aligned}$	Basic intrusives . Rocks: See Nagaoka,		8985	24
	11.5	21680	2	Philos. Mag. 1900.			
1 Slotte, Acta Soc. Fenn. 26, 1899; 29, 1900. 10 Baumeister, Wied. Ann. I8,							
3 Wertheim, Ann. chim. phys. (3) 12, 1844.12 Cantone, Wied.							
4 Pscheidl, Wien. Ber. II, 79, 1879. 13 Mercadier, C. R. II3, 1891.							
5 Voigt, Wied. Ann. 48, 1893 - I4 Katzenelsohn, Diss. Berlin, 1887.							
6 Amagat, C. R. 108, 1889. 15 Wertheim, Pogg. Ann. 78, 1849.							
7 Kohlrausch, Loomis, Pogg. Ann. 141, 1871. I6 Pisati, Nuovo Cimento, 5, 34, 1879. 8 Thomas, Drude Ann. I, 1900.							
9 Gray, etc., Proc. Roy. Soc. 67, 1900.							

Compiled partly from Landolt-Börnstein's Physikalisch-Chemische Tabellen.

Smithsonian Tables.

COMPRESSIBILITY, HARDNESS, CONTRACTION OF ELEMENTS.

table 41. - Compresalbility of the More Important Solld Elemente.

Arranged in order of the increasing atomic weights. The numbers give the mean elastic change of volume for one megabar (0.987 atm .) between 100 and 500 megabars, multiplied by 10°.

Lithium	8.8	Potassium	31.5	Selenium	11.8	Iodine	13.
Carbon	0.5	Calcium	5.5	Bromine	51.8	Cæsium	6 n.
Sodium	15.4	Chromium	0.7	Rubidium	40	Platinum	0.21
Magnesium	2.7	Manganese	0.7	Molybdium	0.26	Gold	0.47
Aluminum	1.3	Iron	0.40	Palladium	0.38	Mercury	3.71
Silicon	0.16	Nickel	0.27	Silver	0.84	Thallium	2.6
Red phosphorus	9.0	Copper	0.54	Cadınium	19	Lead	2.2
Sulphur	12.5	Zinc	1.5	Tin	1.6	Bismuth	2.8
Chlorine	95.	Arsenic	4.3	Antimony	2.2		

Stull, Zeitschr. Phys Chem 61, 1907.
TABLE 42. - Hardness.

Agate	7.	Brass	3-4.	Iridosmium	7.	Sulphur	1.5-2.5
Alabaster	1.7	Calimine	5.	Iron	4-5.	Stibnite	2.
Alum	2-2.5	Calcite		Kaolin	1.	Serpentine	3-4.
Aluminum	2.	Copper	2.5-3.	Loess (0°)	0.3	Silver	2.5-3.
Amber	2-2.5	Corundum	9.	Magnetite	6.	Steel	5-8.5
Andalusite	7.5	Diamond	10.	Marble	3-4.	Talc	J.
Anthracite	2.2	Dolomite	3.5-4.	Meerschaum	2-3.	Tin	1.5
Antimony	$3 \cdot 3$	Feldspar	3.	Mica	2.8	Topaz	8.
Apatite	5.	Flint	7.	Opal	4-6.	Tourmaline	7.3
Aragonite	$3 \cdot 5$	Fluorite	4.	Orthoclase	6.	Wax (${ }^{\circ}{ }^{\circ}$)	0.2
Arsenic	3.5	Galena	2.5	Palladium	4.8	Wood's metal	3.
Asbestos	5.	Garnet	7.	Phosphorbronze	4.		3
Asphalt	1-2.	Glass	4.5-6.5	Platinum	$4 \cdot 3$		
Augite	6.	Gold	2.5-3.	Plat-iridium	6.5		
Barite	$3 \cdot 3$	Graphite	$0.5-1$.	Pyrite	6.3		
Beryl	7.8	Gypsum	r.6-2.	Quartz			
Bell-metal	4.	Hematite	6.	Rock-salt	2.		
Bismuth	2.5	Hornblende	5.5	Ross' metal	2.5-3.0		
Boric acid	3.	Iridium	6.	Silver chloride	1.3		

From Landolt-Börnstein-Meyerhoffer Tables: Auerbachs, Winklemann, Handb. der Phys. 189ı.

TABLE 43. - Relative Hardness of the Elements.

C	10.0	Ru	6.5	Cu	3.0	Au	2.5	Sn	r. 8	Li	0.6
B	9.5	Mn	5.0	Sb	3.0	Te	2.3	Sr	1.8	P	0.5
Cr	9.0	Pd	4.8	Al	2.9	Cd	2.0	Ca	1.5	K	0.5
Os	7.0	Fe	$4 \cdot 5$	Ag	2.7	S	2.0	Ga	1.5	Na	0.4
Si	7.0	Pt	43	$\mathrm{Bi}^{\text {i }}$	2.5	Se	2.0	$\stackrel{\mathrm{Pb}}{ }$	1.5	Rb	0.3
Ir	6.5	As	3.5	Zn	2.5	Mg	2.0	In	1.2	Cs	0.2

Rydberg, Zeitschr. Phys Chem 33, 1900
TABLE 44. - Rstio, ρ, of Transverse Contraotion to Longitudinal Extension under Tensile Stress.
(Porsson's Ratio.)

Metal	Pb	Au	Pd	Pt	Ag	Cu	Al	Bi	Sn	Ni	Cd	Fe
$\boldsymbol{\rho}$	0.45	0.42	0.39	0.39	0.38	0.35	0.34	0.33	0.33	0.3^{1}	0.30	0.28

From data from Physikalisch-Technischen Reichsanstalt, 1907.
ρ for: marbles, 0.27 ; granites, 0.24 ; basic-intrusives, $0.26 ;$ glass, 0.23 . Adams-Coker, rgo6.
Smithsonian Tables.

ELASTICITY OF CRYSTALS.*

The formula were deduced from experiments made on rectangular prismatic bars cut from the crystal. These bars were subjected to cross bending and twisting and the corresponding Elastic Moduli deduced. The symbols $\alpha \beta \gamma, a_{t} \beta_{1} \gamma_{1}$ and $a_{2} \beta_{2} \gamma_{2}$ represent the direction cosines of the length, the greater and the less transverse dimensions of the prism with reference to the principal axis of the crystal. E is the modulus for extension or compression, and T is the modulus for torsional rigidity. The moduli are io grams per square centimeter.

Barite.

$$
\begin{aligned}
& \frac{10^{10}}{\mathrm{E}}=16.13 \alpha^{4}+18.51 \beta^{1}+10.42 \gamma^{4}+2\left(38.79 \beta^{2} \gamma^{2}+15.21 \gamma^{2} \alpha^{2}+8.88 \alpha^{1} \beta^{2}\right) \\
& \frac{10^{10}}{\mathrm{~T}}=69.52 \alpha^{4}+117.66 \beta^{1}+116.46 \gamma^{4}+2\left(20.16 \beta^{2} \gamma^{2}+85.29 \gamma^{2} \alpha^{2}+127.35 \alpha^{2} \beta^{2}\right)
\end{aligned}
$$

Beryl (Emerald).

$$
\begin{aligned}
& \frac{\mathrm{Io}^{10}}{\mathrm{E}^{-1}}=4.325 \sin ^{4} \phi+4.6 \mathrm{I} 9 \cos ^{4} \phi+13.328 \sin ^{2} \phi \cos ^{2} \phi \\
& \frac{\mathrm{I} 0^{10}}{\mathrm{~T}}=15.00-3.675 \cos ^{4} \phi_{2}-17.536 \cos ^{2} \phi \cos ^{2} \phi_{\mathrm{I}}
\end{aligned}\left\{\begin{array}{l}
\text { where } \phi \phi_{1} \phi_{2} \text { are the angles which } \\
\text { the length, breadth, and thickness } \\
\text { of the specimen make with the } \\
\text { principal axis of the crystal. }
\end{array}\right.
$$

Fluorspar.

$$
\begin{aligned}
& \frac{10^{10}}{E}=13.05-6.26\left(\alpha^{4}+\beta^{1}+\gamma^{4}\right) \\
& \frac{10^{10}}{\mathrm{~T}}=58.04-50.08\left(\beta^{3} \gamma^{2}+\gamma^{2} a^{2}+a^{2} \beta^{2}\right)
\end{aligned}
$$

Pyrite.

$$
\begin{aligned}
& \frac{10^{10}}{\mathrm{E}}=5.08-2.24\left(\alpha^{4}+\beta^{1}+\gamma^{4}\right) \\
& \frac{10^{10}}{\mathrm{~T}}=18.60-17.95\left(\beta^{3} \gamma^{2}+\gamma^{2} \alpha^{2}+\alpha^{2} \beta^{2}\right)
\end{aligned}
$$

Rock salt.

$$
\begin{aligned}
& \frac{1 O^{10}}{\mathrm{E}}=33.48-9.66\left(\alpha^{4}+\beta^{4}+\gamma^{4}\right) \\
& \frac{\mathrm{I} \mathrm{O}^{10}}{\mathrm{~T}}=154.5^{8}-77.28\left(\beta^{3} \gamma^{2}+\gamma^{2} a^{2}+\alpha^{2} \beta^{2}\right)
\end{aligned}
$$

Sylvine.

$$
\begin{aligned}
& \frac{10^{10}}{\mathrm{E}}=75.1-48.2\left(\alpha^{4}+\beta^{4}+\gamma^{4}\right) \\
& \frac{10^{10}}{\mathrm{~T}}=306.0-192.8\left(\beta^{2} \gamma^{2}+\gamma^{2} \alpha^{2}+\alpha^{2} \beta^{2}\right)
\end{aligned}
$$

Topaz.

$$
\begin{aligned}
& \frac{10^{10}}{\mathrm{E}}=4.341 \alpha^{4}+3.460 \beta^{4}+3.771 \gamma^{4}+2\left(3.879 \beta^{2} \gamma^{2}+2.856 \gamma^{2} \alpha^{2}+2.39 a^{2} \beta^{2}\right) \\
& \frac{10^{10}}{\mathrm{~T}}=14.88 \alpha^{4}+16.54 \beta^{4}+16.45 \gamma^{4}+30.89 \beta^{2} \gamma^{2}+40.89 \gamma^{2} \alpha^{2}+43.51 \alpha^{2} \beta^{2}
\end{aligned}
$$

Quartz.

$$
\begin{aligned}
& \frac{10^{10}}{\mathrm{E}}=\mathrm{I} 2.734\left(\mathrm{I}-\gamma^{2}\right)^{2}+16.693\left(\mathrm{I}-\gamma^{2}\right) \gamma^{2}+9.705 \gamma^{4}-8.460 \beta \gamma\left(3 \alpha^{2}-\beta^{2}\right) \\
& \left.\frac{10^{10}}{\mathrm{~T}}=19.665+9.060 \gamma_{2}^{2}+22.984 \gamma^{2} \gamma_{1}^{2}-16.920\left[\left(\gamma \beta_{1}+\beta \gamma_{1}\right)\left(3 \alpha \alpha_{1}-\beta \beta_{1}\right)-\beta_{2} \gamma_{2}\right)\right]
\end{aligned}
$$

* These formula are taken from Voigt's papers (Wied. Ann. vols. 3 r, 34, and 35).

Smithsonian Tableg.

ELASTICITY OF CRYSTALS.
Some particular values of the Elastic Moduli are here given. Under E are given moduli for extension or compression in the directions indicated by the subscripts and explained io the ootes, and under T the moduli for torsioual rigidities round the axes similarly indicated. Moduli in grams per sq. cm.
(a) Isometric System.*

Substance.	$\mathbf{E}_{\text {a }}$	$\mathrm{E}_{\mathbf{b}}$	\mathbf{E}_{0}	T_{a}	Authority.
Fluorspar .	1473×10^{6}	1008×10^{6}			
Pyrite . . .	3530×10^{6}	2530×10^{6}	2310×10^{6}	1075×10^{6}	-
Ruck salt . .	419×10^{6} 403×10^{6}	3 349×10^{6}	303×10^{6}	129×10^{6}	"
Sylvine . ${ }^{\text {- }}$	403×10^{6} 401	339×10^{6} 209×10^{8}	-	-	$\text { Koch. } \ddagger$
	372×10^{6}	196×10^{6}	-	655×10^{6}	Voigt.
Sodium chlorate	405×10^{6}	319×10^{6}	-	655×10^{8}	Koch.
Potassium alum.	181×10^{6}	199×10^{6}	-	-	Beckenkamp.§
Chromium alum Iron alum . .	161×10^{6}	177×10^{6}	-	-	

(b) Orthorhombic System.||

Substance.	E_{1}	E_{2}	E_{3}	E_{4}	E_{5}			Authority.
Barite Topaz	$\begin{array}{r} 620 \times 10^{6} \\ 2304 \times 10^{6} \end{array}$	540×10^{6} 2890×10^{6}	959×10^{6} 2652×10^{6}	${ }_{366 \times 10^{6}}^{3670 \times 10^{6}}$	702×10^{8} 2893×10^{6}	$\begin{array}{r} 740 \times 10^{6} \\ 3180 \times 10^{6} \end{array}$		Voigt.
Substance.			$\mathrm{T}_{12}=\mathrm{T}_{21}$	$\mathrm{T}_{18}=\mathrm{T}_{31}$	$\mathrm{T}_{28}=\mathrm{T}_{3} \mathbf{}$		Authority.	
Barite Topaz	- . - -	-	$\begin{array}{r} 283 \times 10^{6} \\ 133^{6} \times 10^{6} \end{array}$	$\begin{array}{r} 293 \times 10^{6} \\ 1353 \times 10^{6} \end{array}$	(121 $\times 10^{6}$		Voigt.	

In the Monoclinic System, Coromilas (Zeit. für Kryst. vol. 1) gives

$$
\begin{aligned}
& \text { Gypsum }\left\{\begin{array}{l}
\mathbf{E}_{\max }=887 \times 10^{6} \text { at } 21.9^{\circ} \text { to the principal axis. } \\
\mathrm{E}_{\min }=313 \times 10^{6} \text { at } 75.4^{\circ} \text { "" " " }
\end{array}\right. \\
& \text { Mica }\left\{\begin{array}{l}
\mathbf{E}_{\max }=2213 \times 10^{\circ} \text { in the principal axis. } \\
\mathbf{E}_{\min }=1554 \times 10^{6} \text { at } 45^{\circ} \text { to the principal axis. }
\end{array}\right.
\end{aligned}
$$

In the Hexagonal System, Voigt gives measurements on a beryl crystal (emerald). The subscripts indicate inclination in degrees of the axis of stress to the principal axis of the crystal.

$$
\begin{array}{ll}
\mathrm{E}_{0}=2165 \times 10^{6}, & \mathrm{E}_{45}=1796 \times 10^{6}, \quad \mathrm{E}_{90}=2312 \times 10^{6}, \\
\mathrm{~T}_{0}=667 \times 10^{6}, \quad \mathrm{~T}_{90}=883 \times 10^{6} .
\end{array}
$$ prism experimented on (see Table 82), was in the principal axis for this last case.

In the Rhombohedral System, Voigt has measured quartz. The subscripts have the same meaning as in the hexagonal system.

$$
\begin{array}{ll}
\mathrm{E}_{0}=1030 \times 10^{6}, & \mathrm{E}_{-45}=1305 \times 10^{6}, \quad \mathrm{E}_{+45}=850 \times 10^{6}, \quad \mathrm{E}_{90}=785 \times 10^{6} \\
\mathrm{~T}_{0}=508 \times 10^{6}, & \mathrm{~T}_{90}=348 \times 10^{6} .
\end{array}
$$

Baumgarten \mathbb{T} gives for calcite

$$
\mathbf{E}_{0}=501 \times 10^{6}, \quad \mathbf{E}_{-45}=44 \mathrm{I} \times 10^{6}, \quad \mathbf{E}_{+46}=772 \times 10^{6}, \quad \mathbf{E}_{90}=790 \times 10^{6}
$$

* Io this system the subscript a indicates that compression or extension takes place along the crystalline axis, and distortion round the axis. The subscripts b and c correspond to directions equally iacliaed to two and oormal to the third and equally inclined to all tbree axes respectively.
† Voigt, "Wied. Ann.", 3x, p. 474, p. 7or, 1887; 34, p. 981, 1888; 36, p. 642, 1888.
\ddagger Koch, "Wied. Ano." ${ }^{18}$, p. 325, 1882 .
§ Beckenkamp, "Zeit. für Kryst." vol. ro.
II The subscripts $1,2,3$ indicate that the three principal axes are the axes of stress; 4, 5, 6 that the axes of stress are in the three principal planes, at angles of 45° to the corresponding axes.

T Baumgarten, "Pogg. Ann." 152, p. 369, 1879 .

Smithsonian Tables.

COMPRESSIBILITY OF GASES.

TABLE 47. - Relative Volumes at Varioue Pressures and Temperatures, the volume at $0^{\circ} 0$ and at 1 atmosphere being taken ae 1000000.

Atm.	Oxygen.			Air.			Nitrogen.			Hydrogen.		
	\bigcirc°	$99^{\circ} .5$	$199^{\circ} \cdot 5$	0°	$99^{\circ} .4$	200\%. 4	\bigcirc	$99^{\circ} .5$	1990.6	\bigcirc	$99^{\circ} \cdot 3$	$200^{\circ} \cdot 5$
100	9265	-	-	9730	-	-	9910	-	-	-	-	-
200	4570	7000	9095	5050	7360	9430	5195	7445	9532	5690	7567	9420
300	3208	4843	6283	3658	5170	6622	3786	5301	6715	4030	5286	6520
400	2629	3830	4900	3036	4170	5240	3142	4265	5331	3207	4147	5075
500	2312	3244	4100	2680	3565	4422	2780	3655	4515	2713	3462	4210
600	2115	2867	3570	2450	3180	3883	2543	3258	3973	2387	3006 2680	3627 3212
700 800	1979	2610	3202	2288	2904	3502 3219	2374 2240	2980	3589 3300	2149	2680	3212 2900
800 900	1879 1800	2417	2929 2718	2168	2699	3219 3000	2240 2149	2775	3300 3085	1972 1832	2444	2657
1000	1735	2151		1992	2415	2828	2068		-	1720	2093	-

Amagat: C. R. 111, p. 871, 1890; And. chim. phys. (6) 29, pp. 68 and 505, 1893 -
TABLE 48. - Ethylene,
$p v$ at $0^{\circ} \mathrm{C}$ and I atm. $=\mathrm{I}$.

Atm.	0°	10°	20°	30°	40°	60°	80°	100°	$137^{\circ} .5$	$198^{\circ} .5$
46	-	0.562	0.684	-	-	-				
48	-	0.508	-	-	-	-	-	-	-	
50	0.176	0.420	0.629	0.731	0.814	0.954	1.077	1.192	1.374	1.652
52	-	0.240	0.598	-	-	-	-	-	-	-
54	-	0.229	0.561	-	-	-	-	-	-	-
56	-	0.227	0.524	-	-	-	-	-	-	-
100	0.310	0.331	0.360	0.403	0.471	0.668	0.847	1.005	1.247	1.580
150	0.441	0.459	0.485	0.515	0.551	0.649	0.776	0.924	1.178	1.540
200	0.565	0.585	0.610	0.638	0.669	0.744	0.838	0.946	1.174	1.537
300	0.806	0.827	0.852	0.878	0.908	0.972	1.048	1.133	1.310	1.628
500	1.256	1.280	1.308	1.337	1.367	1.431	1.500	1.578	1.721	1.985
1000	2.289	2.321	2.354	2.387	2.422	2.493	2.566	2.643	2.798	-

Amagat, C. R. ıir, p. 871, 1890; 116, p. 946, 1893.
TABLE 49. - Fthylene.

Pressure in meters of mercury.	Relative values of $p v$ at -									
	160.3	$20^{\circ} \cdot 3$	$30^{\circ} .1$	$40^{\circ} .0$	$50^{\circ} .0$	$60^{\circ} .0$	$70^{\circ} .0$	$79^{\circ} .9$	$89^{\circ} .9$	$100^{\circ} .0$
30	1950	2055	2220	2410	2580	2715	2865	2970	3090	3225
60	810	900	1190	1535	1875	2100	2310	2500	2680	2860
90	1065	1115	1195	1325	1510	1710	1930	2160	2375	2565
120	1325	1370	1440	1540	1660	1780	1950	2115	2305	2470
150	1590	1625	1690	1785	1880	1990	2125	2250	2390	2540
180	1855	1890	1945	2035	2130	2225	2340	2450	2565	2700
210	2110	2145	2200	2285	2375	2470	2565	2680	2790	2910
240 270	2360 2610	2395 2640	2450 2710	2540 2790	2625 285	2720	2810	2910	3015	3125
270 300	2610 2860	2640 2890	2710 2960	2790 3040	2875 3125	2965 3215	3060 3300	3150 3380	3240 3470	3345
320	3035	3065	3125	3200	3125 3285	3215 3375	3300 3470	3380 3545	3470 3625	3560 3710

Amagat, Ann. chim. phys. (5) 22, P. 353, 188r,

Smithsonian Tables.

COMPRESSIBILITY OF GASES.
TABLE 60. - Carbon Dioxide.

Pressure in metres of mercury.	Relative values of $p \tau$ at -										
	180.2	$35^{\circ} .1$	$40^{\circ} .2$		$50^{\circ} .0$	$60^{\circ} .0$	700.0	$80^{\circ} .0$		$90^{\circ} .0$	$100^{\circ} .0$
30	liquid	2360		2460	2590	2730	2870	2995		3120	3225
50		1725		1900	2145	2330	2525			2845	2980
80	625	750		825	1200	1650	1975			2440	2635
110	825	930		980	1090	1275	1550			2105	2325
140	1020	1120		1175	1250	1360	I 525			1950	2160
170	1210	1310		1360	1430	1520	1645			1975	2135
200	1405	1500		1550	1615	1705	1810			2075	2215
230	1590	1690		1730	1800	1890	1990			2210	2340
260	1770	1870		1920	1985	2070	2166			2375	2490
290	1950	2060		$\begin{aligned} & 2100 \\ & 2280 \end{aligned}$	$\begin{aligned} & 2170 \\ & 2360 \end{aligned}$	2260	$\begin{aligned} & 2340 \\ & 25^{2} 5 \end{aligned}$	$\begin{aligned} & 2440 \\ & 2620 \end{aligned}$		2550	2655
320	2135	224				2440				2725	2830
Atm.											
	Relative values of $p \nu$; $f \nu$ at $0^{\circ} \mathrm{C}$. and $\mathrm{ratm} .=1$.										
	0°	10°	20°	30°	40°	60°	80°	100°	137°	1980	2580
50	0.105	0.114	0.680	0.775	0.750	0.984	1.096	1.206	1.380	.	-
100	0.202	0.213	0.229	0.255	0.309	0.661	0.873	1.030	1.259	1.582	1.847
150	0.295	0.309	0.326	0.346	0.377	0.485	0.681	0.878	I.159	1.530	1.818
300	0.559	0.578	0.599	0.623	0.649	0.710	0.790	0.890	1. 108	1. 493	1.820
500	0.891	0.913	0.938	0.963	0.990	1.054	I.I24	1.201	1. 362	1. 678	-
1000	1. 656	1.685	1.716	I.748	1. 780	1.848	1.92 I	1. 999	I.362	1-67	-

Amagat, C. R. 111, p. 87i, $\mathbf{2 8 9 0}$; Aon. chim. phys. (5) 22, p. 353, 188ı; (6) 29, pp. 68 and 405, 1893.

TABLE 61. - Compressibility of Gases.

Gas.		$\frac{1}{p . v}$. $=a . p(p . v$. a^{\prime}.	t	$\mathrm{t} \stackrel{a}{=} \mathrm{O}$		Density. Very smail pressure.
O_{2}	1.00038	-. 000076	$11.2{ }^{\circ}$	-. 000094	32.	32.
H_{2}	0.99974	+.00052	10.7	+.00053	2.015 (160)	2.0173
N_{2}	1.0001 5	-. 000030	14.9	-.00056	28.005	28.016
CO	1.00026	-. 0005^{2}	13.8	-. 0008 I	28.000	28.003
CO_{2}	1.00279	-. 00558	15.0	-. 00668	44.268	44.014
$\mathrm{N}_{2} \mathrm{O}$	1.00327	-. 00654	11.0	-. 00747	44.285	43.996
Air	1.00026	-. 00046	11.4	-		-
NH_{3}	1.00632	-	-	-	-	-

Rayleigh, Zeitschr. Phys. Chem. 52, p. 705, 1905.

TABLE 62. - Compressiblity of Air and Oxygen between 18° and $22^{\circ} \mathbf{C}$.
Pressures in metres of mercury, ϕz, relative.

Air	$\stackrel{p}{p o}$	$\begin{array}{r} 24.07 \\ 26968 \end{array}$	$\begin{array}{r} 34.90 \\ 26908 \end{array}$	$\begin{array}{r} 45.24 \\ 26791 \end{array}$	$\begin{array}{r} 55.30 \\ 26789 \end{array}$	$\begin{array}{r} 64.00 \\ 26778 \end{array}$	$\begin{array}{r} 72.16 \\ 26792 \end{array}$	$\begin{array}{r} 84.22 \\ 26840 \end{array}$	$\begin{array}{r} 101.47 \\ 27041 \end{array}$	$\begin{aligned} & 214.54 \\ & 29585 \end{aligned}$	$\begin{aligned} & 304.04 \\ & 32488 \end{aligned}$
O_{2}	p $p v$	$\begin{array}{r} 24.07 \\ 26843 \end{array}$	34.89 26614	-	$55 \cdot 50$ 26.85	$\begin{array}{r} 64.07 \\ 26050 \end{array}$	72.15 2585	$\begin{array}{r} 84.19 \\ 25745 \end{array}$	$\begin{array}{r} 101.06 \\ 25639 \end{array}$	$\begin{gathered} 214.52 \\ 26536 \end{gathered}$	$\begin{array}{r} 303.03 \\ 28756 \end{array}$

Amagat, C. R. ${ }^{8879 .}$

RELATION BETWEEN PRESSURE, TEMPERATURE AND VOLUME OF SULPHUR DIOXIDE AND AMMONIA.*

TABLE E3.-Sulphur Dlozide.
Original volume 100000 under one atmosphere of pressure and the temperature of the experiments as indicated at the top of the different columns.

	Corresponding Volume for Experiments at Temperature -			Volume.	Pressure in Atmospheres for Experiments at Temperature -		
	580.0	$99^{\circ} .6$	1830.2		580.0	$99^{\circ} .6$	$183{ }^{\circ} .2$
10	8560	9440	-				
12	6360	7800	-	10000	-	9.60	-
14	4040	6420	-	9000	9.60	10.35	-
16	-	5310	-	8000	10.40	11.85	-
18	-	4405 4030	-	7000	I 1.45	13.05	-
24		3345	8	6000	12.30	14.70	-
28		2780	3180				-
32	-	2305	2640	5000	13.15	16.70	-
36	-	1935	2260	4000	14.00	20.15	
40	-	1450	2040	3500	14.40	23.00	-
50	-	-	1640 1375	3000	-	26.40	29.10
70	-	-	II 30	2500	-	30.15	33.25
80	-		$93{ }^{\circ}$	2000		35.20	40.95
90	-		790		-	39.60	55.20
100 120	-	-	680	15000		39.60	
120	-		545 430	1000 500	-	-	76.00 117.20
160	-		325	50			

TABLE 54.-Ammonla.
Original volume 100000 under one atmosphere of pressure and the temperature of the experiments as iodicated at the top of the differeut columns.

	Corresponding Volume for Experiments at Temperature -			Volume.	Pressure in Atmospheres for Experiments at Temperature -			
	$46^{\circ} .6$	$99^{\circ} .6$	$1833^{\circ} .6$		$30^{\circ} \cdot 2$	$46^{\circ} .6$	99 ${ }^{\circ} .6$	$183^{\circ} .0$
10	9500	-	-	10000	8.85	9.50		-
12.5	7245	7635	-	9000	9.60	10.45		_
15	5880	6305		8000	10.40	11.50	12.00	-
20 25	-	4645 3560	4875 3835	7000	11.05	13.00	13.60	-
30	-	2875	3 I 85	6000	1 I .80	14.75	I 5.55	-
35	-	2440	2680	5000	12.00	16.60	18.60	19.50
40	-	2080	2345	4000	-	18.35	22.70	24.00
45	-	1795 1490	2035 1775	3500	-	18.30	25.40	24.00 27.20
55	-	1250	1590	3000		-	29.20	31.50
60	-	975	1450	2500	-	-	34.25	37.35
70 80	-	-	1245	2000	-	-	41.45	45.50
90	-	-	1125 1035	1500	-	-	49.70	58.00
100	-	-	950	1000	-	-	59.65	93.60

* From the experiments of Roth, " Wied. Ann." vol. 11, 1880.

Smithsonian Tagles.

COMPRESSIBILITY OF LIQUIDS.

If V_{1} is the volume under pressure p_{1} atmospheres at $t^{\circ} \mathrm{C}$, and V_{2} is volume at pressure p_{2} and the same temperature, then the compressibility coefficient may be defined at that temperature as :

$$
\beta_{t}=\frac{\mathrm{I}}{V_{1}} \cdot \frac{V_{1}-V_{2}}{p_{2}-p_{1}}
$$

In absolute units (referred to megadynes) the coefficient is $\frac{1}{\text { r.0137 }} \beta_{t}$.

Substance.	t.	Pressures.	$\beta .10{ }^{6}$		Substance.	t.	Pressures.	F. $10{ }^{\circ}$	
Acetone	0 0.00		82		ho	\% 0	8.68-37.3	221	3
Acetone	0.00	500-1000	59	"	" ${ }^{\text {c }}$	18.10	-8.68-37.3	120	2
${ }^{4}$	0.00	1000-1 500	47	"	Nitric acid	20.3	1-32	338	11
"	99.5	8.94-36.5	276	3	Oils: Almond	17.	-	55	8
Benzole	5.95	${ }^{8} 5$	83	2	Olive	20.5	-	63	"
"	17.9	8	92	"	Paraffin	14.8	-	63	6
"	15.4	1-4	87	4	Petroleum	16.5	-	70	12
" ${ }^{\text {c }}$	78.8	1-4	126	"	Rock	19.4	-	75	-
Carbon bisulphide	0.00	1-500	66	"	Rape-seed	20.3	-	$\begin{aligned} & 60 \\ & 79 \end{aligned}$	"
	0.00	$500-1000$	53	"	Toluene ${ }^{\text {Turpentin }}$	19.7 10.	-	79	13
" ${ }^{6}$	0.00	1000-1500	43	"	Toluene	10. 100.	-	79 150	${ }_{16}^{13}$
"4 "	49.2	1000-1500	51			100.	-	150	
Chloroform	0. 20.	-	101	5	Xylene	10.		74 132	${ }^{1} 4$
"	40.	-	162	"	Paraffins: $\mathrm{C}_{6} \mathrm{H}_{14}$	23.	O-1	159	14
"	60.	-	204	"	$\mathrm{C}_{7} \mathrm{H}_{16}$	6	"	134	"
"	100.	8-9	211	3	$\mathrm{C}_{8} \mathrm{H}_{18}$	"	"	121	"
"	100.	19-34	206	\ldots	$\mathrm{C}_{9} \mathrm{H}_{20}$	"	"	153	"
Collodium	14.8		97	6	$\mathrm{C}_{10} \mathrm{H}_{22}$	"	"	105	"
Ethyl alcohol	28.	$150-200$	86	7	$\mathrm{C}_{12} \mathrm{H}_{28}$	"	"	82	"
" "	28.	$150-400$	81		$\mathrm{C}_{14} \mathrm{C}_{16} \mathrm{H}_{84}$	\%	*		،
" ${ }^{4}$	65.	$150-200$	110	"	Water ${ }^{\text {C16 }} \mathrm{H}_{84}$	0.	1-25	52.5	
" ${ }^{\prime}$	65.	$150-400$	100	"	Water	10.	${ }_{6}^{1-25}$	52.5 50.0	"
" "	100.	$150-200$	168	"	*	10.	"	50.0	"
" 6	100.	$150-400$	132		"	20.	25-50	59	${ }^{\prime}$
"	185.	$150-200$	320	"	"	10.	25-50	59.2	"
" "	185.	$150-400$	245	,	"	20.	"	47.6	"
"	310.	$150-200$	15200	"	"	0.	1-100	5 I .1	"
"	310.	$150-400$ $1-50$	1530 96	1	${ }^{\prime}$	10.		48.3	"
" "	\% 2.	I-50	112 12	"	"	20.	"	46.8	${ }^{\prime}$
"	40.	I-50	125	"	${ }^{\prime}$	50.	"	44.9	"
" "	0.	100-200	85	"	*	100.	"'	47.8	\cdots
" "	0.	300-400	73	"	*	0.	100-200	49.2	،
" "	20.	300-400	78	"	"	10.	${ }^{\prime}$	46.1	"
" "	40.	300-400	87	"	"	20.	"	44.2	"
"	0.	500-600	64	\cdots	"	50.	"	42.5	"
" "	0.	700-800	56	"	"	100.	" ${ }^{1}$	46.8	.
" "	20.	700-800	62	${ }^{6}$	"	0.	${ }_{18}^{1-500}$	47.5	${ }^{\prime}$
" "	40.	700-800	65	"	"	20.4		43.4	"
" "	0.	900-1000	52	${ }^{6}$	"	48.85	500-1000	41.6	
Ethyl chloride	11.	8.5-34.2	${ }_{138}$	3	"		$500-1000$ $1000-1500$	41.6 35.8	"
" ${ }^{\text {" }}$	15.2 61.5	$8.7-37.2$ $12.6-34.4$	${ }_{2}^{153}$	"	"	0. 20.4	1000-11 500	35.8 33.8	${ }^{\prime}$
"	61.5 99.0	$12.6-34.4$ $12.8-34.5$	256	"	${ }^{\prime}$	20.4 48.85	،	32.8 32.5	"
Glycerine	20.5	-	25	8	$"$	0.	I 500-2000	32.4	".
"	14.8	-	22	6	'	0.	2000-2500	29.2	\because
Mercury	0. 0.	-	3.92 3.90	$\begin{array}{r} 9 \\ 10 \end{array}$	"	${ }_{48.85}^{0 .}$	2500-3000	26.1 25.4	"
Methyl alcohol	14.7	8.50-37.1	104	3					

For references see page 80 .

Bmithsonian Tasles.

COMPRESSIBILITY AND BULK MODULI OF SOLIDS.

Solid.	Compression per unit volume per atmo. \times ro	Authority.	Calculated values of bulk modulus in -	
			Grams per sq. cm.	Pounds per sq. in.
Crystals: Barite . .	1.93	Voigt . . .	${ }_{1}^{535} \times 1{ }^{10}{ }^{6}$	$\underset{19.68}{7.6 \mathrm{I}} \times 10^{6}$
Beryl	0.747		${ }^{1} 3840$	19.68 " 12.24
Fluorspar -	1.20	"	906 "	12.89 "
Pyrites Quartz	1.14 2.67	"	387 "	5.50
Rock salt	4.20*	" . . .	246 "	3.50 "
Sylvine	7.45*	" 6 . .	138 1694	1.97 "
Topaz	0.61	" ${ }^{\prime}$. \cdot	1694 9140	24.11 130.10
Brass	0.113	Amagat - ${ }^{\text {- }}$	9140	130.10 15.48
Copper	0.86	Buchanan .	1202 "	17.10 "
Delta metal	1.02	Amagat . -	1012 "	14.41 "
Lead . .	2.76	" . .	374 "	5.32"
Steel	0.68	"	1518 "	21.61
Glass	2.2-2.9	" . .	405	5.76

Note: Winklemann, Schott, and Straulel (Wied Ann. 61, 63, 1897; 68, 1899) give the following coefficients (among others) for varinus Jena glasses in terms of the volume decrease divided by the increase of pressure expressed in kilograms per square millimeter:
The following values in $\mathrm{cm}^{2} / \mathrm{Kg}$ of ro ${ }^{0} \times$ Compressibility are given for the cor responding temperatures by Grüneisen Ana. der Phys. 33, p. 65, 19га.

$$
\begin{array}{ll}
\text { Al. }-191^{D}, 1.32 ; 17^{0}, 1.46 ; 125^{0}, 1.70 . & \text { Fe. }-190^{D}, 0.61 ; 188^{0}, 0.63 ; 165^{\circ}, 0.67 . \\
\text { Cu. }-191^{\circ}, 0.7^{\circ} ; 17^{D}, 0.77 ; 165^{D}, 0.83 . & \text { Ag. } 191^{\circ}, 0.71 ; 16^{\circ}, 0.76 ; 166^{\circ}, 0.86 . \\
\text { Pt. } 189^{\circ}, 0.37 ; 17^{\circ}, 0.39 ; 164^{\circ}, 0.40 . & \text { Pb. } 191^{\circ},(2.5) ; 14^{\circ},(3.2)
\end{array}
$$

No.	Glass.	Compressibility.	No.	Glass.	Compressibility
665		7520	2154	Kalibleisilicat . . .	3660
1299	Barytborosilicat .	5800	S 208	Heaviest Bleisilicat . .	355°
16	Natronkalkzinksilicat .	4530	500	Very Heavy "	3510
278	-	3790	S 196	Tonerdborat with sodium, baryte	3470

* Röatgen and Schneider by piezometric experiments obtained $5.0 \times$ ro-6 for rock salt, and $5.6 \times$ ro-s for sylvine (Wied. Ann., vol. 31).

References to Tables 55 and 56 .

Liquids (Table ${ }_{55}$):
I Amagat, Ann. chim. phys. (6) 29, 1893.
2 Röntgen, Wied. Ann. 44, p. 1, 1891.
3 Amagat, C. R. 68, p. 1170, 1869 ; Ann. chim. phys. (5) 28, 1883.
4 Pagliani-Palazzo, Mem. Acad. Lin. (3) 19, 1883.

5 Grimaldi, Zeitschr. Phys. Chem. I, 1887.
6 de Metz, Wied. Ann. 4I, p. 663, 1890; 47, p. 706, 1892.

7 Barus, Sill. Journ. 39, p. 478, 1890; 41, 1891; Bull. U.S. Geol. Surv. 1892.
Solids (Tahle 56) :
Amagat, C. R. 108, p. 228, 1889; J. de Phys. (2) 8, p.197, 1889.

8 Quincke, Wied. Ann. 19, p. 401, 1883.
9 Amagat, Ann. chim. phys. (6) 22, p. 95, 1891 .
io Aimé, Ann. chim. phys. (3) 8, p. 268, 1843.
${ }_{11}$ Colladon-Sturm, Pogg. Ann. 12, p. $39,1828$.
12 Martini.
13 de Heen, Bull. Acad. Roy. Belg. (3) 9, 1885.
14 Bartoli, Rend Lomb. (2) 28, 29, 1896.
15 Protz, Ann. der Phys. (4) 31, p. 127, 1910.
See also Bridgman, Proc. Ann. Acad. 48, p. 309, 1912 ($\mathrm{H}_{2} \mathrm{O}$) 49, p. 3, 1913 (alcohols, etc.) ; 49, p. 627, 1914 (high pressure technique).

Buchanan, Proc. Roy. Soc. Edinb. 10, 1880.
Voigt, Wied. Ann. 31, 1887; 34, 1888, 36, 1888.

Smithsonian Tableb.

Table 57.
SPECIFIC GRAVITIES CORRESPONDING TO THE BAUMÉ SCALE.
The specific gravities are for $15.56^{\circ} \mathrm{C}\left(60^{\circ} \mathrm{F}\right)$ referred to water at the same temperature as unity. For specific gravities less than unity the values are calculated from the formula:

$$
\text { Degrees Baumé }=\frac{140}{\text { Specific Gravity }}-{ }^{\text {r }} 30 .
$$

For specific gravities greater than unity from:

$$
\text { Degrees Baumé }=145-\frac{145}{\text { Specific Gravity }} ;
$$

Specific Gravities less than I.										
SpecificGravity	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
	Degrees Baumé.									
0.60	103.33	99.51	95.8I	92.22	88.75	85.38	82.12	78.95	75.88	72.90
. 70	70.00	67.18	64.44	61.78	59.19	56.67	54.2 I	51.82	49.49	47.22
. 80	45.00	42.84	40.73	38.68	36.67	34.71	32.79	30.92	29.09	27.30
.90 I. 00	25.56 10.00	23.85	22.17	20.54	18.94	17.37	15.83	14.33	12.86	11.41

Specific Gravities greater than I.

Specific Gravity	0.0	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
	Degrees Baumé.									
1.00	0.00	I. 44	2.84	4.22	5.88	6.91	8.21	9.49	10.74	11.97
1.10	13.18	14.37	15.54	16.68	17.81	18.91	20.00	21.07	22.12	23.15
1.20	24.17	25.16	26.15	27.11	28.06	29.00	29.92	30.83	31.72	32.60
1. 30	33.46	34.31	35.15	35.98	36.79	37.59	38.38	39.16	39.93	40.68
I. 40	4 I .43	42.16	42.89	43.60	44.31	45.00	45.68	46.36	47.03	47.68
1.50	48.33	48.97	49.60	50.23	50.84	51.45	52.05	52.64	53.23	53.80
I. 60	54.38						57.65	58.17	58.69	59.20
I. 7.80 I.	59.71 64.44	60.20 64.89	60.70 65.33	61.18 65.76	61.67 66.20	62.14 66.62	62.61	63.08	63.54	63.99

Smithsonian Tables.

REDUCTIONS OF WEIGHINGS IN AIR TO VACUO.

TABLE 58.

When the weight M in grams of a body is determined in air, a correction is necessary for the buoyancy of the air equal to $\mathrm{M} \delta\left(\mathrm{I} / \mathrm{d}-\mathrm{I} / \mathrm{d}_{1}\right.$) where $\delta=$ the density (wt . of Iccm in grams $=0.0012$) of the air during the weighing, d the density of the body, d_{1} that of the weights. δ for various barometric values and humidities may be determined from Tables 153 to 155. The following table is computed for $\delta=0.0012$. The corrected weight $=M+\mathrm{kM} / \mathrm{I}_{1000}$.

Density weighed d.	Correction factor, \mathbf{k}.			Density of body weighed.	Correction factor, \mathbf{k}.		
	$\begin{gathered} \text { Pt. Ir. } \\ \text { weights } \\ \mathrm{d}_{1} \\ =21.5 . \end{gathered}$	Brass weights 8.4 .	Quartz or Al. weights 2.65 .		$\begin{gathered} \text { Pt. Ir. } \\ \text { weights } \\ \mathrm{d}_{1}=21.5 . \end{gathered}$	Brass weights 8.4-	Quartz or AI. weights 2.65.
	+2.34	+2.26	+1.95	1.6	+0.69	+0.61	+0.30
.6	+1.34 +1.91	+ 2.26	+1.95	1.7	+.65	$+.56$	+ .25
. 7	+ 1.66	+1.57	+1.26	1.8	+.62	+.52	+.21
. 75	$\underline{1}+55$	+1.46	$+1.15$	1.9	+ 58	+.49	+.18
. 80	+ +1.44 +1.36	+1.36	+1.05	2.0	+.54 $+\quad .43$	+.46	+.15
. 85	+1.36 +1.28	1 +1.27 +1.19	+0.96 $+\quad .88$	2.5 3.0	+.54 +.43 $+\quad .34$	+. 34	+..33
. 90	+1.28 +1.21	+1.19 +1.12	+ .88	3.0 4.0	+.34	+..26	二.15
1.00	+1.14	+1.06	$+.75$	6.0	$+.14$	$+.06$	-. 25
I.I	+1.04	+0.95	+ . 64	8.0	$+.09$	+.01	- . 30
1.2	+ 0.94	+. 86	+ . 55	10.0	$+.06$	-. 02	- . 33
1.3	+ . 87	+.78	+ 47	15.0	$+.03$	-. .06	- .37
1.4	+ . 80	+.71	+ 40	20.0	$\pm .004$	-. 08	- 39
1.5	+.75	+ . 66	+.35	22.0	. 001	- . 09	- 40

TABLE 59. - Reductions of Densitiee in Air to Vacuo.

(This correction may be accomplished through the use of the above table for each separate weighing.)
If s is the density of the substance as calculated from the uncorrected weights, S its true density, and L the true density of the liquid used, then the vacuum correction to be applied to the uncorrected density, s, is 0.0012 ($1-\mathrm{s} / \mathrm{L}$).
Let $\mathrm{W}_{\mathrm{s}}=$ uncorrected weight of substance, $\mathrm{W}_{1}=$ uncorrected weight of the liquid displaced by the substance, then by definition, $\mathrm{s}=\mathrm{LW} / \mathrm{W}_{1}$. Assuming D to be the density of the balance of weights, $\mathrm{W}_{\mathrm{s}}\{\mathrm{I}+0.0012(\mathrm{I} / \mathrm{S}-\mathrm{I} / \mathrm{D})\}$ and $\mathrm{W}_{1}\{\mathrm{I}+0.0012(\mathrm{I} / \mathrm{L}-\mathrm{I} / \mathrm{D})\}$ are the true weights of the substance and liquid respectively (assuming that the weighings are mado under normal atmospheric corrections, so that the weight of 1 cc . of air is 0.0012 gram).
Then the true density $S=\frac{W_{s}\{I+0.0012(I / S-1 / D)\}}{W_{1}\{I+0.0012(I / L-I / D)\}} \mathrm{L}$.
But from above $\mathrm{W}_{\mathrm{s}} / \mathrm{W}_{1}=\mathrm{s} / \mathrm{L}$, and since L is always large compared with 0.0012 , $S-s=0.0012(1-s / L)$.
The values of 0.0012 ($1-\mathrm{s} / \mathrm{L}$) for densities up to 20 and for liquids of density I (water), 0.852 (xylene) and 13.55 (mercury) follow:
(See reference below for discussion of density determinations).

[^11]Table 60.
DENSITY OR MASS IN GRAMS PER CUBIC CENTIMETER OF THE ELEMENTS, LIQUID OR SOLID.
N. B. The density of a specimen may depend considerably on its state and previous treatment.

Element.	Physical State.	Grams per cu. cm.*	Temperature. \dagger	Authority.
Aluminum	$\begin{aligned} & \text { cast } \\ & \text { wrought } \end{aligned}$	$\begin{aligned} & 2.56-2.58 \\ & 2.65-2.80 \end{aligned}$		
"	pure	2.58 .80 2.58		Mallet, 1882.
Antimony	vacuo-distilled	6.618	20	Kahlbaum, 1902.
"'	ditto-compressed amorphous	${ }_{6.22} 6$	20	Hérard.
Argon	liquid	I. 3845	-183	Baly-Donnan.
Arsenic		${ }_{5}$. 4233	-189	
"	amorph. br.-black	5.73 3.78	14	Geuther.
"	yellow	3.88		Linck.
Barium		3.78		Guatz.
Bismuth	solid	9.70-9.90		
"	vacuo-distilled	9.747 9.781	20	Kahlbaum, Igoz.
"	liquid	10.00	271	Vincentini-Omodei.
	${ }_{\text {solid }}$ soly	${ }^{9.67}$	271	
${ }^{\text {Boron }}$	amorph. pure	2.535 2.45		Moissan.
Bromine	liquid	3.12		Richards-Stull.
Cadmium	cast	8.54-8.57		
"	vacuo-distilled	8.648	20	Kahlbaum, 1902.
"	solid	8.37	318	Vincentini-Omodei.
Cæsium	liquid	7.99	318	Richards-Brink.
Cæasium		1.84 1.54		Brink.
Carbon	diamond	3.52		Wigand.
	graphite	2.25 6.79		Muthmann-Weiss.
Cerium	electrolytic pure	7.02		" "
Chlorine	liquid	1.507	-33.6	Drugman-Ramsay.
Chromium	pure	6.52-6.73 6.92	20	Moissan.
Cobalt		8.71	21	Tilden, Ch. C. 1898.
Columbium			15	Muthmann-Weiss.
Copper	cast	8.30-8.95		
"	${ }_{\text {wrawn }}$	$8.85-8.95$ 8.858		
"	electrolytic	8.88-8.95		
"	vacuo-distilled	8.9326	20	Kahlbaum, 1 ¢02.
"	ditto-compressed	${ }_{8}^{8.9376}$		Roberts-Wrightson.
Erbium		4.77		St. Meyer, Z. Ph. Ch. 37.
Fluorine	liquid	1.14	-200	Moissan-Dewar.
Gallium		5.93	$\begin{aligned} & 23 \\ & 20 \end{aligned}$	Winkler.
Glucinum		1.85		Humpidge.
Gold	cast	19.3		
"	wrought	19.33 18.88		Kahlbaum, 1902.
"			20	-
Helium	liquid	18.27 0.15	- 269	Onnes, 1908.
Hydrogen	liquid	0.070 7.28	-252	Dewar, Ch. News, 1904. Richards.
Indium		7.28		

* To reduce to pounds per cu. ft. multiply by 62,4.
\dagger Where the temperature is not given, ordinary atmospheric temperature is understood.
Compiled from Clarke's Constants of Nature, Landolt-Börnstein-Meyerhoffer's Tables, and other sources. Where no authority is stated, the values are mostly means from various sources.

DENSITY OR MASS IN GRAMS PER CUBIC CENTIMETER OF THE ELEMENTS, LIQUID OR SOLID.

Element.	Physical State	Grams per cu. cm.*	Temperature. \dagger	Authority.
Iridium		22.42	17	Deville-Debray
Iodine		4.940	20	Richards-Stull
Iron	pure	7.85-7.88		
6	gray cast	7.03-7.13		
"	white cast	7.58-7.73		
"	wrought	$7.80-7.90$		
\%	liquid steel	7.88 $7.60-7.80$		Roberts-Austen
Krypton	liquid	2.16	-146	Ramsay-Travers
Lanthanum		6.1.5		Muthmann-Weiss
Lead	cast	11.37 11.36	24	$\underset{\text { Reich }}{ }$
"	wrought	11.36	24	
"	liquid	11.005 10.645	$\begin{array}{r}325 \\ 325 \\ \hline 20\end{array}$	Vincentini-Omoder
"	vacuo-distilled	11.342	20	Kahlbaum, 1902
" ${ }^{\text {" }}$	ditto-compressed	11.347	20	" ${ }^{\text {a }}$
Lithium		0.534	20	Richards-Brink, '07
Magnesium		1.741		Voigt
Manganese		7.42		Prelinger
${ }_{\text {Mercury }}$	liquid	13.596	0	Regnault, Volkmann
"	"	13.690	-38.8	Vincentini-Omodei
"	solid	14.193	-38.8	Mallet
"	"	14.383	-188	Dewar, 1902
Molybdenum		9.01		Moissan
Neodymium		6.96		Muthmann-Weiss
Nickel		8.60-8.90		
Nitrogen	liquid	0.810	-195 -205	$\underset{4}{\text { Baly-Donnan, }}{ }_{4}^{1902}$
Osmium		22.5		Deville-Debray
Oxygen	liquid	1.14	-184	
Palladium Phosphorus		12.16 1.83		Richards-Stull
Phosphorus	red	1.83 2.20		
" ${ }_{\text {" }}$	metallic	2.34	15	Hittorf
Platinum		21.37	20	Richards-Stull
Potassium		0.370	20	Richards-Brink, '07
"	solid liquid	0.851 0.830	62.1 62.1	Vincentini-OModei
Præsodymium		6.475		Muthmann-Weiss
Rhodium		12.44		Holborn Henning
Rubidium		1.532	20	Richards-Brink, '07
Ruthenium		12.06	\bigcirc	Toby
Samarium		$7.7-7.8$ $4.3-4.8$		Muthmann-Weiss
Silicon	cryst.	2.42	20	Richards-Stull-Brink
"	amorph.	2.35	15	Vigoroux
Silver	cast wrought	$\begin{aligned} & 10.42-10.53 \\ & 10.6 \end{aligned}$		
"	vacuo-distilled	10.492	20	
"	ditto-compressed	10.503	20	Kah ${ }_{\text {/ }}$
Sodium	liquid	9.51		Wrights on
Sodium		0.9712 0.9519		Richards-Brink, '07
"	liquid	0.9519 0.9287	97.6 97.6	Vincentini-Omodei
"		1.0066	-188	Dewar
Strontium		2.50-2.58		Matthiessen
Sulphur	liquid	$\begin{aligned} & 2.0-2.1 \\ & 1.8 \mathrm{II} \end{aligned}$	113	Vincentini-Omodei

* To reduce to pounds per cubic ft. multiply by 62.4.
\dagger Where the temperature is not given, ordinary atmosphere temperature is understood.

Tables 60 (continued) AND 61. MASS OF VARIOUS SUBSTANCES. TABLE 60 (continued). - Density or Mass in grams per cublo centimeter and pounde per oublo foot of the elements, liquid or solid.

TABLE 61. - Mass in grams per oublo centimeter and in pounds per cubic foot of different kinds of wood.
The wood is supposed to be seasoned and of average dryness.

Wood.	Grams per cubic centimeter.	Pounds per cubic foot.	Wood.	Grams per cubic centimeter.	Pounds percubic foot.
Alder	0.42-0.68	26-42	Hazel	0.60-0.80	37-49
Apple	0.66-0.84	4^{1-52}	Hickory	0.60-0.93	37-58
Ash	0.65-0.85	40-53	Holly	0.76	
Bamboo	$0.3{ }^{1-0.40}$	19-25	Iron-bark	1.03	64
Basswood. See Linden.			Juniper	0.56	35
Beech	0.70-0.90	43-56	Laburnum	0.92	57
Blue gum	1.00	62	Lancewood	0.68-1.00	42-62
Birch	$0.51-0.77$	32-48	Lignum vitæ	1.17-1.33	73^{-83}
Box	$0.95-\mathrm{I} .16$	59-72	Linden or Lime-tree	0.32-0.59	20-37
Bullet-tree	1.05	65	Locust	0.67-0.71	42-44
Butternut	0.38	24	Logwood	. 91	
Cedar	0.49-0.57	30-35	Mahogany, Honduras	0.66 0.85	4 4
Cherry	$0.70-0.90$	43-56	" Spanish	0.85	
Cork	0.22-0.26	14-16	Maple	0.62-0.75	39-47
Dogwood	0.76	478	Oak	0.60-0.90	$37-56$ $38-45$
Ebony	1.11-1.33	69-83	Pear-tree Plum-tree	$0.61-0.73$ $0.66-0.78$	$38-45$ $41-49$
Elm Fir or Pine, American	$0.54-0.60$	34-37	Plum-tree Poplar	$0.66-0.78$ $0.35-0.5$	$41-49$ $22-31$
White	0.35-0.50	22-31	Satinwood	0.95	59
* Larch	$0.50-0.56$	31-35	Sycamore	$0.40-0.60$	24-37
6 Pitch	0.83-0.85	52-53	Teak, Indian	$0.66-0.88$	$4 \mathrm{4}-55$
$\cdots \quad$ Red	0.48-0.70	$30-44$ $27-33$	Walnut African	0.94-0.70	40-43
* Spruce	$\begin{aligned} & 0.43^{-0.53} \\ & 0.48-0.70 \end{aligned}$	$27-33$ $30-44$	Water gum	1.00	62
* Yellow	0.37-0.60	23-37	Willow	. $0.40-0.60$	24-37
Greenheart	0.93-1.04	58-65			

* Where the temperature is not given, ordinary atmospheric temperature is understood.

Smithsonian Tables.

DENSITY OR MASS IN GRAMS PER CUBIC CENTIMETER AND POUNDS PER CUBIC FOOT OF VARIOUS SOLIDS.

N. B. The density of a specimen depends considerably on its state and previous treatment ; especially is this the case with porous materials.

Material.	Grams per cu. cm.	Pounds per cu. foot.	Material.	Grams per $\mathrm{cu} . \mathrm{cm}$.	Pounds per cu. foot.
Agate	2.5-2.7	156-168	Gum arabic	$1.3{ }^{-1.4}$	80-85
Alabaster :			Gypsum	2.31-2.33	$144-145$
Carbonate	2.69-2.78	168-1 73	Hematite	4.9-5.3	306-330
Sulphate	2.26-2.32	141-145	Hornblende	3.0	187
Albite	2.62-2.65	163-165	Ice	0.917	57.2
Amber	1.06-1.1 1	66-69	Ilmenite	4.5-5.	280-310
Amphiboles	2.9-3.2	180-200	Ivory	$1.83-1.92$	114-120
Anorthite	2.74-2.76	171-172	Labradorite	$2.7^{-2.72}$	168-170
Anthracite	1.4-1.8	87-112	Lava: basaltic	2.8-3.0	175-185
Asbestos	2.0-2.8	125-175	trachytic	$2.0-2.7$	125-168
Asphalt	1.1-I. 5	69-94	Leather : dry	0.86	54
Basalt	2.4-3.1	150-190	greased	1.02	64
Beeswax	0.96-0.97	60-61	Lime : mortar	1.65-1.78	103^{-111}
Beryl	2.69-2.7	168-168	slaked	${ }^{1} .3^{-1.4}$	81-87
Biotite	2.7-3.1	170-190	Limestone	2.68-2.76	167-171
Bone	1.7-2.0	106-125	Litharge:		
Brick	I.4-2.2	87-137	Artificial	9.3-9.4	580-585
Butter	0.86-0.87	53-54	Natural	7.8-8.0	490-500
Calamine	4.1-4.5	255-280	Magnetite	4.9-5.2	306-324
Caoutchouc	0.92-0.99	57-62	Malachite	3.7-4.1	23I-256
Celluloid	1.4	87	Marble	2.6-2.84	160-177
Cement, set	2.7-3.0	170-190	Meerschaum	0.99-1.28	62-80
Chalk	1.9-2.8	118-175	Mica	$2.6-3.2$	165-200
Charcoal: oak	$\begin{aligned} & 0.57 \\ & 0.28-0.44 \end{aligned}$	35-28	Mnscovite	$2.75-3.00$ 3.5	$\begin{aligned} & 172-225 \\ & 218 \end{aligned}$
Chrome yellow	6.00	374	Oligoclase	2.65-2.67	165-167
Chromite	4.32-4.57	270-285	Olivine	3.27-3.37	204-210
Cinnabar	8.12	507	Opal	2.2	137
Clay	1.8-2.6	122-162	Orthoclase	$2.58-2.61$	$161-163$
Coal, soft	1.2-1.5	75-94	Paper	$0.7-1.15$	44-72
Cocoa butter	0.89-0.91	56-57	Paraffin	0.87-0.91	54-57
Coke	$1.0-1.7$ $1.04-1.14$	$62-105$ $65-71$	Peat	0.84 1.07	
Corundum	3.9-4.0	245-250	Porcelain	2.3-2.5	143-156
Diamond:			Porphyry	2.6-2.9	162-181
Anthracitic Carbonado	1. 66 $3.01-3.25$	104 $188-203$	Pyrite	4.95-5.1	$309-318$
Carbonado	3.01-3.25	188-203	Quartz	2.65	165
Diorite	2.52 2.84	157	Quartzin	2.73	170
Ebonite	1.15	72	Rock salt	2.18	136
Emery	4.0	250	Rutile	6.00-6.5	374-406
Epidote	3.25-3.5	203-218	Sandstone	2.14 -2.36	134-147
Feldspar	$2.555^{-2.75}$	$159-17^{2}$	Serpentine	$2.50-2.65$	$156-165$
Flint	2.63	164	Slag, furnace	$2.0-3.9$	125-240
Flnorite	3.18	198	Slate	2.6-3.3	162-205
Gamboge	1.2	75	Soapstone	2.6-2.8	162-175
Garnet	3.15-4.3	197-268	Starch	1.53	95
Gas carbon	1.88	117	Sugar	1.61	100
Gelatine	1.27	180	Talc	2.7-2.8	168-1 74
Glass : common flint	$2.4-2.8$ $2.9-5.9$	$150-175$ $180-370$	Tallow Topaz	$0.91-0.97$ $3.5-3.6$	$57-60$ $219-223$
Glue flint	$2.9-5.9$ 1.27	$180-370$ 80	Topaz	$3.5-3.6$ $3.0-3.2$	219-223 $190-200$
Granite	2.64-2.76	165-172	Zircon	4.68-4.70	292-293
Graphite	$2.30-2.72$	144-170			

Smithsonian Tables.

Smithsonian Tables.

Table 64.-DENSITIES OF VARIOUS NATURAL AND ARTIFICIAL MINERALS.

(See also Table 62.)

Name and Formula.	Density grams per cc.	Sp. Vol. cc. per gram.	¢	Name and Formula.	Density grams per cc.	$\mathrm{Sp} . \mathrm{Vol}$. cc. per gram.	U U. L ¢ ~
Pure compounds, all at $25^{\circ} \mathrm{C}$				Feldspars : Albite glass, $\mathrm{NaAlSi}_{3} \mathrm{O}_{8}$,			
Magnesia, MgO	3.603	. 2775	1	art. ${ }^{\text {ars }}$	2.375	. 4210	6
Lime, CaO	$3 \cdot 306$. 3025	2	Albite cryst., $\mathrm{NaAlSi}_{3} \mathrm{O}_{8}$,			
Forms of SiO_{2} :				art.	2.597	. 3851	"
Quartz, natural	2.646	.3779 .3785	"	Anorthite glass, ${ }_{\text {Cail }}{ }_{2} \mathrm{Si}_{2} \mathrm{O}_{3}$, art.			"
Cristobalite, artificial	2.642 2.319	. 3785	"	$\underset{\text { Anorthite cryst., }}{\mathrm{CaAl}_{2} \mathrm{Si}_{2} \mathrm{O}_{8} \text {, art. }}$	2.692	$\cdot 3715$	*
Cristobalite, artificial	2.206	. 4533	"	$\mathrm{CaAl}_{2} \mathrm{Si}_{2} \mathrm{O}_{8}$, art.	2.757	.3627	"
Forms of $\mathrm{Al}_{2} \mathrm{SiO}_{5}$:				Soda anorthite,			
Sillimanite glass	2.53	. 395	3	${ }_{\text {Borax }} \stackrel{\mathrm{NaAlS}}{\text { glass }} \mathrm{Na}^{\text {Na }} \mathrm{Na}_{4} \mathrm{~B}_{4} \mathrm{O}_{7}{ }^{\text {art. }}$	2.563 2.36	.3902 .423	7
Sillimanite cryst. Forms of MgSiO_{3} :	3.022	. 3309	،	$\underset{\text { Borax, glass, }}{\text { cryst. }} \mathrm{Na}_{2} \mathrm{~B}_{4} \mathrm{O}_{7}$	$\begin{aligned} & 2.36 \\ & 2.27 \end{aligned}$	$\begin{array}{r} .423 \\ .440 \end{array}$	6
$\boldsymbol{\beta}$ Monoclinic pyroxene	3.183	. 3142	5	Fluorite, natural, CaF_{2}			
a' Orthorhombic pyroxene	3.166	. 3159	"	(20)	3.180	. 3145	8
β^{\prime} Monoclinic amphibole			"	$\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4} \quad\left(30^{\circ}\right)$	1.765	. 5666	9
$\boldsymbol{\gamma}^{\prime}$ Orthorhombic amphibole	2.849	. 3510	"	$\begin{array}{ll} \\ \mathrm{K}_{2} \mathrm{SO}_{4} \\ \mathrm{KCl} \text {, fine powder } & \left(30^{\circ}\right) \\ \left(30^{\circ}\right)\end{array}$	2.657 1.984	$\begin{array}{r} .3764 \\ .5040 \end{array}$	"
Glass	2.735	. 3656	"	Forms of ZnS :			
Forms of CaSiO_{3} :				Sphalerite, natural*	4.090	. 2444	10
a (Pseudo-wollastonite)	2.904	- 3444	${ }^{2}$	Wurtzite, artificialt	4.087	. 2447	"
$\boldsymbol{\beta}$ (Wollastonite)	2.906	. 3441	"	Greenockite, artificial	4.820	. 2075	"
Glass	2.895	. 3454	"	Forms of HgS:			"
Forms of $\mathrm{Ca}_{2} \mathrm{SiO}_{4}$: a - calcium-orthosilicate	3.26		"	Cinnabar, artificial Metacinnabar, artifi-	8.176	. 1223	"
$\boldsymbol{\beta}$ - " ${ }^{\text {a }}$	3.27	. 306	"	cial	7.58	.132	"
$\boldsymbol{\gamma}$ - $\beta^{\prime}-$	2.965	. 337	"	Minerals :			
Lime-alumina compounds : $3 \mathrm{CaO} \cdot \mathrm{Al}_{2} \mathrm{O}_{3}$				Gehlenite, from Velardena	3.03	-330	II
${ }_{5} \mathrm{CaO} \cdot{ }_{3} \mathrm{Al}_{2} \mathrm{O}_{3}$	3.820	. 3346	3	Spurrite, from Velardena,	3.03	. 33	1
$\mathrm{CaO} \cdot \mathrm{Al}_{2} \mathrm{O}_{5}$	2.972	. 3365	"	${ }_{2} \mathrm{Ca}_{2} \mathrm{SiO}_{4} \cdot \mathrm{CaCO}_{3} \quad \mathrm{~V}^{\text {a }}$	3.005	. 3328	${ }^{6}$
$\begin{aligned} & 3 \mathrm{CaO} \cdot{ }_{5}{ }_{3} \mathrm{Al}_{2} \mathrm{O}_{8} \\ & 3 \mathrm{CaO} \cdot{ }_{5} \mathrm{Al}_{2} \mathrm{O}_{8}, \text { unstable } \end{aligned}$				Hillebrandite, from Velardena,			
form	3.04	-329	"	$\mathrm{CaSiO}_{3} \cdot \mathrm{Ca}(\mathrm{OH})_{2}$	2.684	. 3726	"
Forms of $\mathrm{MgSiO}_{9} \cdot \mathrm{CaSiO}_{3}:$				Pyrite, natural, FeS_{4} Marcasite, natural, ${ }_{\text {FeS }}$	5.012 4.873	. 1995	10
Diopside,natural, cryst." \quadartificial, "\quad glass	$\begin{aligned} & 3.258 \\ & 3.265 \\ & 2.846 \end{aligned}$	$\begin{array}{r} \cdot 3069 \\ .3063 \\ \cdot 3514 \end{array}$	1	*Only $0.15 \% \mathrm{Fe}$ total impurity. \dagger Same composition as Sphalerite.	4.873	. 2052	

References: 1, Larsen I909; 2, Day and Shepherd; 3, Shepherd and Rankin, 1909; 4, Allen and White, Ig09; 5, Allen, Wright and Clement, 1906; 6, Day and Allen, 1905; 7, Washington and Wright, I9Io; 8, Merwin, 1911; 9, Johnston and Adams, i91ı; 10, Allen and Crenshaw, 1912; if, Wright, 1908.

All the data of this table are from the Geophysical Laboratory, Washington.
Table 65.-DENSITIES OF MOLTEN TIN AND TIN-LEAD EUTECTIC.

$$
\begin{aligned}
& \text { * Melts at 18r. Day and Sosman, Geophysical Laboratory, unpublished. }
\end{aligned}
$$

smithsonian tables.

Tables 66-67.
 WEIGHT OF SHEET METAL.

TABLE 66. - Weight of Sheet Metal. (Metrio Measure.)
This table gives the weight in grams of a plate one meter square and of the thickoess stated in the first column.

Thickness io thou- sandths of a cm.	Iron.	Copper.	Brass.	Aluminum.	Platinum.	Gold.	Silver.
$\mathbf{1}$	78.0	89.0	85.6	26.7	215.0	193.0	105.0
$\mathbf{2}$	156.0	178.0	171.2	53.4	430.0	386.0	210.0
3	234.0	267.0	256.8	80.1	6450	579.0	315.0
4	312.0	356.0	342.4	106.8	860.0	772.0	420.0
$\mathbf{5}$	390.0	445.0	428.0	133.5	1075.0	965.0	525.0
$\mathbf{6}$	468.0	534.0	513.6	160.2	1290.0	1158.0	630.0
7	546.0	623.0	599.2	186.9	1505.0	1351.0	735.0
8	624.0	712.0	684.8	213.6	1720.0	1544.0	840.0
9	702.0	80.0	770.4	240.3	1935.0	1737.0	945.0
$\mathbf{1 0}$	780.0	890.0	856.0	267.0	2150.0	1930.0	1050.0

TABLE 67. - Weight of Sheat Matal. (Byitish Meabure.)

Smithsonian Tables.

DENSITY OF LIQUIDS.
Density or mass in grams per cubic centimeter and in pounds per cubic foot of various liquids.

Smithsonian Tables.

DENSITY OF CASES.
The following table gives the density of the gases at $0^{\circ} \mathrm{C}, 76 \mathrm{~cm}$. pressure, at sea-level and latitude 45° relative to air as unity and under the same conditions; also the weight of one liter in grams and one cubic foot in pounds.

Gas.	Specific Gravity	$\underset{\text { per liter. }}{\text { Grams }}$	Pounds per cubic foot.	Reference.
Air	1.000	1.2928	. 08071	Rayleigh; Leduc.
Acetylene	0.92	1.1620	. 07254	Berthelot, 1860.
Ammonia	0.597	0.7706	.0481I	Leduc, C. R. 125, 1897.
Argon	1.379	1.782	.1112	Ramsey-Travers, Proc. R. Soc. 67, 1900.
Bromine	5.524	7.1388	. 4457	Jahn, 1882.
Carbon dioxide	2.01 1.5291	2.594 I. 9768	.16194	Frankland, Ann. Ch. Pharm. 71. Guye, Pintza, 1908.
" monoxide	0.9672	1.2506	. 07807	Ruyleigh, Proc. R. Soc. 62, 1897.
Chlorine	2.491	3.1674	. 19774	Leduc, C. R. 125, 1897.
Coal gas \{ from	0.320	0.414	. 02583	
Cyanogen ${ }^{\text {to }}$	0.740 r. 806	0.957 2.3229	. 05973	
Ethane	${ }_{1}^{1.0494}$	2. 3229 I. 367	. 1484290	Bay-Lussac.
Fluorine	1.26	1.697	. 1059	Moissan, C. R. ${ }^{\text {Iog. }}$
Helium	1. 368	0.1787	. 01116	Ramsay-Travers, Proc. R. Soc. 67, 1900.
Hydrofluoric acid	0.7126	0.894	.05585	Thorpe-Hambley, J. Chem. Soc. 53.
Hydrobromic acid	2.71	3.6163	. 2258	Löwig, Gmelin-Kraut, Org. Chem.
Hydrochloric acid	1.2684	1.6398	.10237	Guye-Gazarian, 1908.
Hydrogen	0.0696	0.09004	. 005621	Rayleigh, Proc. R. Soc. 53, 1893.
Hydrogen sulphide	1.1895	1.5230	. 09508	Leduc, C. R. 125, 1897:
Krypton	2.868	3.708	. 2315	Watson, J. Ch. Soc. 1910.
Methane	0.5576	0.7160	. 04470	Thomson.
Neon	0.6963	0.9002	. 0558	Watson, J. Ch. Soc. 1910.
Nitrogen	0.9673	1.2514	. 07812	Rayleigh, Proc. R. Soc. 62, 1897.
Nitric oxide, NO	1.0367	1.3402	. 08367	Guye, Davila, 1908.
Nitrous oxide, $\mathrm{N}_{2} \mathrm{O}$	1.5298	1.9777	. 12347	Guye, Pintza, 1908.
Oxygen	I. 053	1.4292	. 08922	Rayleigh, Proc. R. Soc. 62, 1897.
Sulphur dioxide	2.2639	2.9266	. 18271	Jaquerod, Pintza, 1908.
Steam at 100° Xenon	0.469 4.526	0.581 5.851	$\begin{array}{r} .0363 \\ .3653 \end{array}$	Watson, J. Ch. Soc. 1910.

Compiled partly from Landolt-Börnstein-Meyerhoffer's Physikalisch-Chemische Tabellen.

Gmithsonian Tables.

DENSITY OF AQUEOUS SOLUTIONS.*

The following table gives the density of solutions of various salts in water. The numbers give the weight in grams per cubic centimeter. For brevity the substance is indicated by formula only.

Substance.	Weight of the dissolved sulstance in 100 parts by weight of the solution.									$\begin{aligned} & \dot{U} \\ & \dot{\circ} \\ & \text { E } \\ & \text { H } \end{aligned}$	Authority.
	5	10	${ }^{15}$	20	25	30	40	50	60		
$\mathrm{K}_{2} \mathrm{O}$	1.047	1.098	I.153	1.214	1.284	I. 354	I. 503	1. 659	I. 809	15.	Schiff.
KOH	1.040	1.082	1.027	1.076	1.229	I. 286	1.410	1.538	1. 666	15.	"
$\mathrm{Na}_{2} \mathrm{O}$	I. 073	I. 144	1.218	1.284	1.354	I. 421	1.557	1.689	1.829	15.	"
NaOH	1.058	I.114	1.169	1.224	I. 279	I. 331	1.436	I. 539	1.642	15.	"
NH_{3}.	0.978	0.959	0.940	0.924	0.909	0.896	1,		,	16.	Carius.
$\mathrm{NH}_{4} \mathrm{Cl}$	I. 015	1.030	1.044	1.058	1.072	-	-	-	-	15.	Gerlach.
KCl	I.03I	1.065	1.099	I. 135	-	-	-	-	-	15.	
NaCl .	1.035	1.072	1.110	I.150	1.191	-	-	-	-	15.	"
LiCl .	1.029	1.057	1.085	I.116	1.147	I. 181	1.255	-	-	15.	"
CaCl_{2}	I.04I	I. 086	$1.13{ }^{2}$	1.181	I. 232	1.286	1.402	-	-	15.	"
$\mathrm{CaCl}_{2}+6 \mathrm{H}_{2} \mathrm{O}$	1.019	1,040	1.061	1.083	1. 105	1.128	1.176	1.225	1.276	18.	Schiff.
$\mathrm{AlCl}_{3}{ }^{\circ}$	1.030	1.072	I.1II	1.153	I. 196	1. 24 I	1.340	-		15.	Gerlach.
$\mathrm{MgCl}_{2} \cdot{ }^{-}$	1.041	1.085	1.130	I.177	1. 226	1.278	-		-	15.	
$\mathrm{MgCl}_{2}+6 \mathrm{IH}_{2} \mathrm{O}$	I. 014	1.032	1.049	1.067	1.085	1.103	I.141	1.183	I. 222	24.	Schiff.
$\mathrm{ZnCl}_{2} \cdot$ -	1.043	1.089	1.135	I.I84	1.236	1.289	1.417	1.563	I. 737	19.5	Kremers.
CdCl_{2}	1.043	1.087	1.138	1.193	1.254	1.319	1.469	1.653	1.887	19.5	"
SrCl_{2}.	1.044	1.092	1.143	I.198	1. 257	1.321	-			± 5.	Gerlach.
$\mathrm{SrCl}_{2}+6 \mathrm{H}_{2} \mathrm{O}$	1.027	1.053	1.082	I.III	I. 042	1.174	1.242	I. 317	-	15.	
$\mathrm{BaCl}_{2} \mathrm{BaCl}_{2}+{ }_{2} \dot{\mathrm{H}}_{2} \dot{\mathrm{O}}$	I. 045	1.094	I.147	1. 205	1.269	,	-		-	15.	Schif
$\mathrm{BaCl}_{2}+2 \mathrm{H}_{2} \mathrm{O}$	1.035	1.075	1.119	I. 166	1.217	1.273	-	-	-	21.	Schiff.
CuCl_{2}	1.044	1.091	I. 155	I.221	1.291	1.360	1.527	-	-	17.5	Franz.
NiCl_{2}	1.048	1.098	I.I 57	1.223	I. 299		-	-	-	17.5	"
HgCl_{2}	1.041	1.092		-			-			20.	Mendelejeff.
$\mathrm{Fe}_{2} \mathrm{Cl}_{6}$	1.041	1.086	I.I 30	I. 79	1.232	1.290	1.413	1.545	1.668	17.5	Hager.
PtCl_{4}.	1.046	1.097	I.I 53	1.214	1.285	1.362	1.546	1. 785	-		Precht.
$\mathrm{SnCl}_{2}+2 \mathrm{H}_{2} \mathrm{O}$	1.032	1.067	1.104	1.143	I. 185	1.229	1. 329	1.444	1.580	15.	Gerlach.
$\mathrm{SnCl}_{4}+5 \mathrm{H}_{2} \mathrm{O}$	1.029	I. 058	I. 089	1.122	I. 157	1.193	I. 274	1. 365	1.467	15.	"
LiBr	1.033	I. 070	I.III	I.I 54	1.202	1.252	I. 366	1. 498	-	19.5	Kremers.
$\mathrm{KBr}^{\mathrm{Na}}$.	1.035	1.073	I. 114	I.157	1.205	1.254	I. 364		-	19.5	"
NaBr	1.038	1.078	I.123	1.172	1.224	1.279	I. 408	1.563	-	19.5	"
MgBra_{2}	1.041 1.043	1.085	I.I35	1. 189	1.245	1. 308	I. 449	1.623	1873	19.5	"
ZnBr_{2}	1.043	1.091 1.088	I.I 44	I. 202	1. 263	1. 328	I. 473	I. 648	1.873	19.5	"
CaBr_{2}	1.041	1.088	I. 139	I.197	I. 25^{8}	1.324	1.479	1.678		19.5	${ }^{\prime}$
BaBr_{2}	1.043	1.090	I.I42	I. 199	1.260	1.324 1.327	1.459 1.483	1.639	-	19.5 19.5	"
SrBr_{2}	1.043	1.089	1.140	1. 198	1.260	1.328	I. 489	1.693	1.953	19.5	"
KI ${ }_{\text {LiI }}$	1.036	1.076	I.118	1.164	1.216	1. 269	I. 394	1. 544	1.732	19.5	"
LiI •	1.036	I. 077	I. 122	1.170	1.222	1.278	1.412	1.573	1.775	19.5	"
NaI	1.038	1.080	I.126	1.177	1.232	I. 292	1.430	1.598	1.808	19.5	${ }^{6}$
ZnI_{2}	1.043	1.089	I.I 3^{8}	1.194	1.253	1.316	1.467	1.648	1.873	19.5	"
CdI_{2}	1.042	1.086	I.136	1.192	1.251	1.317	1.474	1. 678	-	19.5	"
MgI_{2}.	I. 041	1.086	I.I 37	1.192	1.252	1.318	1. 472	I. 666	1.913	19.5	"
CaI_{2}.	1.042	I. 088	I. 13^{8}	1.196	I. 258	I. 319	1.475	1.663	I. 908	19.5	"
SrI_{2}.	1.043	1.089	1.140	1.198	1.260	I. 328	1.489	r. 693	1.953	19.5	"
BaI_{2} -	1.043	1.089	1.141	1.199	1.263	1.331	1.493	1.702	1.968	19.5	"
NaClO_{3}.	1.035	I. 068	1.106	1.145	I. 188	1.233	1. 329	-	-	19.5	"
NaBrO_{3}.	1.039	1.08r	1.127	1.176	1.229	1.287	1.32	-	-	19.5	"
KNO_{3} -	1.03 I	1.064	1.099	1.135	-	-	-	-	-	15.	Gerlach.
NaNO_{8}.	I.O3I	1.065	1.101	1.140	I.I 80	I. 222	1.313	1.416	-	20.2	Schiff.
AgNO_{3}.	1.044	1.090	1.140	1.195	I. 255	I. 322	1.479	1. 675	1.918	15.	Kohirausch.

* Compiled from two papers on the subject by Gerlach in the "Zeit. fïr Anal. Chin.," vols. 8 and 27.

DENSITY OF AQUEOUS SOLUTIONS.

Substance.	Weight of the dissolved substance in 100 parts by weight of the solution.									$\begin{aligned} & \dot{U} \\ & \text { 藏 } \end{aligned}$	Authority.
	5	10	15	20	25	30	40	50	60		
$\mathrm{NH}_{4} \mathrm{NO}_{3}$	1.020	1.041	1.063	1.085	1.107	1.131	1.178	1.229	1.282	17.5	Gerlach.
$\mathrm{Zn}\left(\mathrm{NO}_{3}\right)_{2}$	1.048	1.095	1.146	1.201	1.263	1.325	1.456	1. 597	-	17.5	Franz.
$\mathrm{Zn}\left(\mathrm{NO}_{8}\right)_{2}+6 \mathrm{H}_{2} \mathrm{O}$		1.054	118	I.113		1.178	1.250	1. 329		14.	Oudemans.
$\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}$ - .	1.037	1.075	1.118	1.162	1.211	1.260	1.367	1.482	1.604	17.5	Gerlach.
$\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}$	1.044	1.093	1.143	1.203	1.263	1.328	1.471		-	17.5	Franz.
$\mathrm{Sr}\left(\mathrm{NO}_{3}\right)_{2}$	1.039	1.083	1.129	1.179		-	-	-	-	19.5	Kremers.
$\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$	1.043	1.091	1.143	1.199	1.262	1.332				17.5	Gerlach.
$\mathrm{Cd}\left(\mathrm{NO}_{3}\right)_{2}$	1.052	1.097	1.150	1.212	1.283	1. 355	1. 536	1.759	-	17.5	Franz.
$\mathrm{Co}\left(\mathrm{NO}_{3}\right)_{2}$	1.045	1.090	1.137	1.192	1.252	1.318	1.465	-	-	17.5	"
$\mathrm{Ni}\left(\mathrm{NO}_{3}\right)_{2}$	1.045	1.090	1.137	1.192	1.252	1.318	1.465	-		17.5	
$\mathrm{Fe}_{2}\left(\mathrm{NO}_{3}\right)_{\mathrm{B}}$	1.039	1.076	I.II7	1.160	1.210	1.261	1.373	1.496	1.657	17.5	"
$\mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}+6 \mathrm{H}_{2} \mathrm{O}$	1.018	1.038	1.060	1.082	1.105	1.129	1.179	1.232		2 I	Schiff.
$\mathrm{Mn}\left(\mathrm{NO}_{3}\right)_{2}+6 \mathrm{H}_{2} \mathrm{O}$	1.025	1.052	1.079	1.108	1.138	1.169	I. 235	1. 307	1. 386	8	Oudemans.
$\mathrm{K}_{2} \mathrm{CO}_{3} \cdot{ }^{\text {a }}$.	1.044	1.092	1.141	1.192	1.245	1.300	1.417	1.543		15	Gerlach.
$\mathrm{K}_{2} \mathrm{CO}_{3}+2 \mathrm{H}_{2} \mathrm{O}$	1.037	1.072	I. 110	1.150	$1.19{ }^{1}$	1.233	1.320	1.415	1.511	15.	
$\mathrm{Na}_{2} \mathrm{CO}_{3} \mathrm{roH}_{2} \mathrm{O}$	1.019	1.038	1.057	1.077	1.098	1.118	1236	1.287		15.	Schiff.
$\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$	1.027	r. 055	1.084	I.113	1.142	1.170	1.226	1.287	-	19.	Schiff. Hager
$\mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3}{ }_{7} \dot{\mathrm{H}_{2}}$	1.045	1.096	1.150	1,207	1.270	1.336	1.489	-	-	18. 17.2	Hager. Schiff.
$\mathrm{FeSO}_{4}+7 \mathrm{H}_{2} \mathrm{O}$	1.025	1.053	1.081	1.111	1.141	1.173	${ }^{1.238}$			17.2	Schiff. Gerlach.
$\mathrm{MgSO}_{4} \cdot$ -	1.051	I.104	1.16I	1.221	1.284					15	Gerlach.
$\mathrm{MgSO}+7 \mathrm{H}_{2} \mathrm{O}$	I. 025	1.050	1.075	1.101	1.129	1.155	1.215	1.278	-	15.	"
$\mathrm{Na}_{2} \mathrm{So}_{4}+1 \mathrm{IOH}_{2} \mathrm{O}$	1.019	1.039	1.059	1.08I	1.102	1.124	-			15.	
$\mathrm{CuSO}_{4}+5 \mathrm{H}_{2} \mathrm{O}$.	1.031	I. 064	1.098	1.134	1.173	1.213	1			18.	
$\mathrm{MnSO}_{4}+4 \mathrm{H}_{2} \mathrm{O}$	1.031	I. 064	1.099	I.135	1.174	1.214	1.303	1. 398		15.	Ger
$\mathrm{ZnSO}_{4}+7 \mathrm{H}_{2} \mathrm{O}$.	1.027	1.057	1.089	1.122	1.156	1.191	1.269	1.351	1.443	20.5	Schi
$\begin{gathered} \mathrm{Fe}_{2}(\mathrm{SO})_{3}+\mathrm{K}_{2} \mathrm{SO}_{4} \\ +24 \mathrm{H}_{2} \mathrm{O} \end{gathered}$	1.026	1.045	1.066	1.088	1.112	1.141	-		-	17.5	Franz.
$\begin{gathered} \mathrm{Cr}_{2}(\mathrm{SO})_{3}+\mathrm{K}_{2} \mathrm{SO}_{4} \\ +24 \mathrm{H}_{2} \mathrm{O} \end{gathered}$	I. 016	1.033	1.051	1.073	1.099	1.126	1.188	I. 287	I. 454	17.5	"
$\begin{gathered} \mathrm{MgSO}_{4}+\mathrm{K}_{2} \mathrm{SO}_{4} \\ +6 \mathrm{H}_{0} \mathrm{O} \end{gathered}$	1.032	1.066	1.101	1.138	-	-	-	-	-	15.	Schiff.
$\begin{aligned} & \left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}+6 \\ & \mathrm{FeSO}_{4}+6 \mathrm{H}_{2} \mathrm{O} \end{aligned}$											"
$\begin{gathered} \mathrm{FeSO}_{4}+6 \mathrm{H}_{2} \mathrm{O} \\ \mathrm{~K}_{2} \mathrm{CrO}_{4} \end{gathered}$	1.	1.058	1.090 1.127	1.122	1.154	1.191 1.279	1.397	$-$	-	19.9	"
$\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$		1.071	1.108	1	5	-		-		19.5	Kremers.
$\mathrm{Fe}(\mathrm{Cy})_{6} \mathrm{~K}_{4}$	1.028	1.059	1.092	1.126						15.	Schiff
$\mathrm{Fe}(\mathrm{Cy}){ }_{6} \mathrm{~K}_{3}$	1.025	1.053	1.070	1.113	-					13	
$\begin{gathered} \mathrm{Pb}\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right)_{2}+ \\ 3 \mathrm{H}_{2} \mathrm{O} \end{gathered}$	1.031	1.064	1.100	1.137	1.177	¢ 222	1.315	1.426	-	15.	Gerlach.
$\begin{gathered} 2 \mathrm{Na}\left(\mathrm{HH}+\mathrm{As}_{2} \mathrm{O}_{5}\right. \\ +24 \mathrm{H}_{2} \mathrm{O} \end{gathered}$	1.020	1.042	1.066	1.089	1.114	1.140	I.194	-	-	14.	Schiff.
	5	10	15	20	30	40	60	80	ico		
SO_{3}	1.040	1.084	1.132	1.179	1.277	1.389	1.564	1.840		15 4	Brineau. Schiff.
SO_{2}	1.013	1.028 r. 069	1.045 1.104	1.063 1.141	1.217		1.422	1.506		15.	Kolb.
$\mathrm{N}_{2} \mathrm{O}_{5}$	1.033	1.069 1.047	1.104	1.141 1.096	1.217 1.150	1.294 1.207	1.422	1.50	-	15.	Gerlach.
$\mathrm{C}_{4} \mathrm{C}$	1.018	1.038	1.05^{8}	1.079	1.123	1.170	1.273	-	-	15.	
Cane sugar.	1.019	I. 039	1.060	1.082	1.129	1.178	1.289	-	-	17.5	
HCl .	1.025	1.050	1.075	I.10	1.151	1. 200	-			15.	
HBr	1.035	I. 073	1.114	1.158	I.257	1.376 1.400					
HI	1.037	1. 077	I. 118	I.165	1.271	1.400 1.307			1.838	15.	Kolb.
$\mathrm{H}_{2} \mathrm{SO}_{4}$.	1.032	1.069	1.106	1.145	1.223	1.307	1.501	1.732	1.838	17.5	
$\mathrm{H}_{2} \mathrm{SiFl}_{6}$	I. 040	I. 082	1.127	1.174	1.273	1. 385				17.5	Hager.
$\mathrm{P}_{2} \mathrm{O}_{6}$; ${ }^{\text {c }}$	I. 035	1.077	1.119 1. 086	1.167 1.119	1.271 1.188	1.385 1.264	$\begin{aligned} & \mathrm{I} .676 \\ & \mathrm{I} .43^{8} \end{aligned}$	-		15.	Schiff.
$\mathrm{P}_{2} \mathrm{O}_{5}+{ }_{3} \mathrm{H}_{2} \mathrm{O}$.	1.027	1.057 1.056	1.086	1.119 I.119 1.02	1.188 1.184	1.264	1.438 1.373	I. 459	1.528	15.	Kolb.
HNO.	1.028	1.056 I. 14	1.088		1.184 1.041	1.250 1.052	1.068	1.459	1.055	15.	Oudemans.
$\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}$.	1.007	1.014	1.021	1.028	1.041	1.05		1.075			

Table 71.
DENSITY OF PURE WATER FREE FROM AIR.
[Under standard pressure (76 cm), at every tenth part of a degree of the international hydrogen scale from 0° to $4_{1}{ }^{\circ}$ C, in grams per milliliter ${ }^{1}$]

Do greas grade	Tenths of Degrses.										Mean Difieronces
	0	1	2	3	4	5	8	7	8	9	
0	0.999868 t	8747	8812	8875	8936	8996	9053	9109	9163	9216	+ 59
1	9267	9315	9363	9408	9452	9494	9534	9573	9610	9645	+ 41
2	9679	9711	9741	9769	9796	982 I	9844	9866	9887	9905	+ 24
3	9922	9937	9951	9962	*9973	9981	9988	*9994	+9998	* ${ }^{*} 0000$	+ 8
4	1.0000000	*9999	*9996	*9992	*9986	*9979	*9970	*9960	*9947	${ }^{*} 9934$	
5	0.9999919	9902	9884	9864	9842	9819	9795	9769	9742	9713	- 24
6	9682	9650	9617	9582	9545	9507	9468	9427	9385	9341	- 39
7	9296	9249	9201	9151	9100	9048	8994	8938	8881	8823	- 53
8	8764	8703	8641	8577	8512	8445	8377	8308	8237	8165	-67 -85
9	809I	8017	7940	7863	7784	7704	7622	7539	7455	7369	-8I
10	7282	7194	7105	7014	6921	6826	6729	6632	6533	6432	-95
11	6331	6228	6124	6020	5913	5805	5696	5586	5474	5362	-108
12	5248	5132	5016	4898	4780	4660	4538	445	4291	4166	-121
13	4040	3912	3784	3654	3523	3391	3257	3122	2986	2850	-I33
14	2712	2572	2431	2289	2147	2003	1858	1711	1564	1416	-145
15	1266	1114	0962	0809	0655	0499	0343	0185	0026	*9865	-156
16	0.9989705	9542	9378	9214	9048	8881	8713	8544	8373	8202	-168
17	8029	7856	7681	7505	7328	7150	6971	6791	6610	6427	-178
18	6244	6058	5873	5686	5498	5309	5119	4927	4735	4541	-190
19	4347	415	3955	3757	355^{8}	3358	3158	2955	2752	2549	-200
20	2343	2137	1930	1722	1511	1301	1090	0878	0663	0449	-211
21	0233	0016	*9799	*9580	*9359	*9139	*8917	*8694	*8470	*8245	-221
22	0.9978019	7792	7564	7335	7104	6873	6641	6408	6173	5938	-232
23	5702	5466	5227	4988	4747	4506	4264	4021	3777	3531	-242
24	3286	3039	2790	2541	2291	2040	1788	I 535	1280	1026	-252
	- ${ }^{0770}$	9513	0255	*9997	*9736	*9476	*9214	*8951	*8688	*8423	-261
26	0.9968158	7892	7624	7356	7087	6817	6545	6273	6000	5726	-271
27	5451	5176	4898	4620	4342	4062	3782	3500	3218	2935	-280
28	2652 0.9959761	2366 9466	2080 9171	1793 8876	1505 8579	1217 8282	O928	-6637	0346	0053	-289
29	0.9959761	9466	9171	8876	8579	8282	7983	7684	7383	7083	-298
30	6780	6478	6174	5869	5564	5258	4950	4642	4334	4024	-307
3 B	3714	3401	3089	2776	2462	2147	1832	1515	1198	0880	-315
32	20561	0241	*9920	*9599	*9276	*8954	*8630	*8304	*7979	*7653	-324
33 34	0.9947325 4007	6997 3671	6668	6338	6007	5676	5345	5011	4678	4343	-332
34	4007	3671	3335	2997	2659	2318	1978	1638	1296	0953	-340
35	0610	0267	*9922	*9576	*9230	*8883	*8534	*8186	*7837	*7486	-347
36	0.9937136	6784	6432	6078	5725	5369	5014	4658	4301	3943	-355
37	- 3585	3226	2866	2505	2144	1782	1419	1055	0691	0326	-362
38	0.9929960	9593	9227	8859	8490	8120	7751	7380	7008	6636	-370
39	6263	5890	5516	5140	4765	4389	4011	3634	3255	2876	-377
40 41	($\begin{array}{r}2497 \\ \hline 8661\end{array}$	2116	1734	1352	0971	0587	0203	*9818	*9433	*9047	-384

${ }^{1}$ Accordiog to P. Chappuis, Bureau ioternational des Poids et Mesures, Travaux et Mémoires, 13; 1907.
Smithsonian Tables.

VOLUME IN CUBIC CENTIMETERS AT VARIOUS TEMPERATURES OF A CUBIC CENTIMETER OF WATER FREE FROM AIR AT THE TEMPERATURE OF MAXIMUM DENSITY.

Hyarogen Thermometer Scale.

Temp.	. 0	-1	- ${ }^{\text {I }}$	$\cdot 3$. 4	. 5	. 6	$\cdot 7$. 8	$\cdot 9$
0	1.0001 32	125	118	112	106	100	095	089	084	079
1	073	069	064	059	055	051	047	043	039	035
2	032	029	026	023	020	018	016	013	OII	009
3	008	006	005	004	003	002	001	001	000	000
4	000	000	000	∞	001	002	003	004	005	007
5	008	010	012	014	0.6	018	021	023	026	029
6	032	035	039	042	046	050	054	058	062	066
7	070	075	080	085	090	095	101	106	112	118
8	124	130	137	142	149	156	162	169	176	184
9	191	198	206	214	222	230	238	246	254	263
10	272	281	290	299	308	317	327	337	347	357
11	367	377	388	398	409	420	430	441	453	464
12	476	487	499	511	522	534	547	559	571	584
13	596	609	623	636	649	661	675	688	702	715
14	729	743	757	772	786	800	815	830	844	859
15	873	890	905	920	935	951	967	983	998	O1 5*
16	1.001031	047	063	080	097	113	130	147	164	182
17	198	216	233	252	269	287	305	323	341	358
18	378	396	415	433	452	471	490	510	529	548
19	568	588	606	626	646	667	687	707	728	748
20	769									960
21	98 I	002*	024*	046*	068*	091*	$113{ }^{\text {* }}$	135*	$158 *$	18I*
22	1.002203	226	249	271	295	319	342	364	389	412
23	436	459	483	507	532	556	58	605 854	629 879	654 905
24	679	704	729	754	779	804	829	854	879	905
25	932	95^{8}	983	oio*	036*	061*	088*	115*	141*	168*
26	1.003195	221	248	275	302	330	357	384	412	439
27	467	495	523	550	579	607	635	663	692	
28	749	776	806	836	865	893	922	951 250	981 280	OII* 310
29	1.004041	069	100	129	160	189	220	250	280	310
$3{ }^{\circ}$	341		403	432	464	894			588 904	
31 32	651 968	682 001*	713 033			808 ${ }^{\text {2** }}$	840 ${ }^{163}$	872 197	904 ${ }^{229}$	936 263
32 33	968 1.005296	001* ${ }^{\text {328 }}$	$033 *$ 361	066*	$098 *$ 427	132* 46I	163*	197 53°	229 562	${ }^{263}{ }^{\text {a }}$
33 34	1.005296 631	665	698	732	768	802	836	871	904	940
35	975	009*	044*	078*	115*	150*	185*	219*	255*	290*

Reciprocals of the preceding table.
Smithsonian Tables.

The mass of one cubic centimeter at $4^{\circ} \mathrm{C}$. is taken as unity.

Temp. C.	Density.	Volume.	Temp. C.	Deusity.	Volume.
-10°	0.99815	1.00186	+350	0.99406	1.00598
-9	843	157	36	371	633
-8	869	131	37	336	669
-7	892	108	38	300	706
-6	912	088	39	263	743
-5	0.99930	1.00070	40	0.99225	1.00782
-4	945	055	41	187	821
-3	958	042	42	147	861
-2	970	031	43	107	901
-I	979	021	44	066	943
$+0$	0.99987	1.00013	45	0.99025	1.00985
1	993	007	46	0.98982	1.01028
2	997	003	47	940	072
3	999	001	48	896	116
4	1.00000	1.00000	49	852	162
5	0.99999	1.00001	50	0.98807	1.01207
6	997	003	51	762	254
7	993	007	52	715	301
8	988	OI2	53	669	349
9	981	OI9	54	62 I	398
10	0.99973	1.00027	55	0.98573	1.01448
11	963	037	60	324	705
12	952	048	65	059	979
13	940	060	70	0.97781	1.02270
14	927	073	75	489	576
15	0.99913	1.00087	80	0.97183	1.02899
16	897 880	103	85	0.96865	1.03237
17	880	120	90	534	590
18	862	138	95	192	959
19	843	157	100	0.95838	1.04343
20	0.99823	1.00177	110	0.9510	
21	802	198	120	. 9434	1.0601
22	780	220	130	. 9352	1.0693
23	757	244	140	. 9264	1.0794
24	733	268	150	. 9173	1.0902
	0.99708	1.00293	160	0.9075	I. 1019
26	682	320	170	. 8973	1.1145
	655	347	180	. 8886	I. 1279
28	627	37.5 404	190	. 8750	1.1429
29	598	404	200	. 8628	1.1590
30	0.99568	1.00434	210	0.850	1.177
31	537	465	220	. 837	1.195
32	506	497	230	. 823	1.215
33 34	473	530	240	. 809	1.236
34	440	563	250	.794	1.259

[^12]Table 74.
DENSITY OF MERCURY.
Density or mass in grams per cubic centimeter, and the volume in cubic centimeters of one gram of mercury.

Temp. C.	Mass in grams per $\mathrm{cu} . \mathrm{cm}$.	Volume of 1 gram in $\mathrm{cu} . \mathrm{cms}$.	Temp. C.	Mass in grams per cu, cm.	Volume of 1 gram in cu. cms.
$\begin{aligned} & -10^{\circ} \\ & -9 \\ & -8 \\ & \text { - } 6 \end{aligned}$	$\begin{array}{r} 13.6202 \\ 6177 \\ 6152 \\ 6128 \\ 6103 \end{array}$	0.07342054338	30°	13.5217	
			31	51935168	$\begin{array}{r} 0.0739552 \\ 9685 \end{array}$
		4472	32		9819
		4606	33	5144	9953
		4739		5119	40087
-5	13.6078	0.0734873	35	13.5095	0.0740221
-4-3-2		5006	36	5070	$\begin{aligned} & 0354 \\ & 0488 \end{aligned}$
		5140	3738	5046	
	6004	5273		5021	$\begin{aligned} & 0488 \\ & 0622 \end{aligned}$
-I	5979	5407	39	4997	0756
01234	13.5955	0.0735540	40	13.4973	0.0740890
	5930	5674	5060	4729	$\begin{aligned} & 2230 \\ & 3572 \end{aligned}$
	$\begin{aligned} & 5905 \\ & 5880 \end{aligned}$	58085941		4486	
			7080	42434001	6262
	5856	6075			
56789	13.5831	0.0736208	90		
	5807	6342	1100	35183283	
	5782	6476			896 I 50285
	5757	6609	110	3283 3044	50285 1633
	5733	6743	130	2805	2982
10	13.5708	0.0736877	140	13.2567	$\begin{array}{r} 0.0754334 \\ 5688 \end{array}$
11	5683	7010	150	2330	
12	56595634	71447278	160170	20931856	$\begin{aligned} & 7044 \\ & 8402 \end{aligned}$
13					
14	5610	7411	180	1620	$\begin{aligned} & 8402 \\ & 9764 \end{aligned}$
15	13.5585	0.0737545	190	13.1384	0.0761128
16	5560	$\begin{array}{r} 7679 \\ 7812 \end{array}$	200	1148	$\begin{aligned} & 2495 \\ & 3865 \end{aligned}$
17	55365511		$\begin{aligned} & 210 \\ & 220 \end{aligned}$	09130678	
18		$\begin{aligned} & 78 \mathrm{I} 2 \\ & 7946 \\ & 8080 \end{aligned}$			52396616
19	5487		230	0443	
20	13.5462	0.0738213	240		0.0767996
21	5438	- 8347	250260	12.9975	$\begin{array}{r} 9381 \\ 70769 \end{array}$
22	5413	8481		974 I9507	
23	5389	86 I 58748	$\begin{aligned} & 270 \\ & 280 \end{aligned}$		2161
24	5364			9273	3558
2526	13.5340		290	12.9039	$\begin{array}{r} 0.0774958 \\ 6364 \end{array}$
	5315	9016	300		
27	52915266	$\begin{aligned} & 9150 \\ & 9284 \\ & 9417 \end{aligned}$	$\begin{aligned} & 310 \\ & 320 \\ & 330 \end{aligned}$		$\begin{array}{r} 7774 \\ 9189 \end{array}$
28				8339	
29	5242			8105	80609
30	13.5217	0.0739551	$\begin{array}{r} 340 \\ 350 \\ 360 \end{array}$	$\begin{array}{r} 12.7872 \\ 7638 \\ 7405 \end{array}$	$\begin{array}{r} 0.0782033 \\ 3464 \\ 4900 \end{array}$

Thiesen und Scheel, Tätigkeither. Phys.-Techn. Reichsanstalt, 1897-1898; Chappuis, Trav. Bur. Int. $13,1903$.
Thiesen, Scheel, Sell; Wiss. Abh. Phys.-Techa. Reichsanstalt 2, p. 184, 1895 .
Smithsonian Tables.

DENSITIES OF MIXTURES OF ETHYL ALCOHOL AND WATER IN GRAMS PER MILLILITER.

The densities in this table are numerically the same as specific gravities at the various temperatures in terms of water at $4^{\circ} \mathrm{C}$. as unity. Based upon work done at U. S. Bureau of Standards. See Bulletin Bur. Std̃s. vol. 9, no. 3 ; contains extensive bibliography; also Circular 19, 1913.

Per cent $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ by weight	Temperatures.						
	$10^{\circ} \mathrm{C}$	$15^{\circ} \mathrm{C}$.	$20^{\circ} \mathrm{C}$.	$25^{\circ} \mathrm{C}$.	$30^{\circ} \mathrm{C}$.	$35^{\circ} \mathrm{C}$	$40^{\circ} \mathrm{C}$
0	0.99973	0.99913	0.99823	0.99708	0.99568	0.99406	0.99225
1	785	725	636	520	379	217	O34
2	602	542	453	336	194	031 .9849	. 98846
3	426	365	275	157	014 084	-98849	663
4	258	195	103	. 98984	. 98839	672	485
	098	032	.98938	817	670	501	311
6	. 98946	. 98877	780	656	507	335	$\begin{array}{r}142 \\ \hline 97975\end{array}$
7	801	729	627	500	347	172	. 97975
8	660	584	478	346	189	009	808
9	524	442	331	193	031	. 97846	641
10	393	304	187	043	. 97875	685	475
11	267	171	047	. 97897	723	527	312
12	145	041	. 97910	753	573	371	150
13	026	. 97914	775	6 II	424	216	. 96989
14	. 97911	790	643	472	278	063	829
15	800	669	514	334	133	.9691	670
16	692	552	387	199	. 96990	760	512
17	583	433	259	062	844	607	352
18	473	313	129	. 96923	697	452	189
19	363	191	.96997	782	547	294	023
20	252	068	864	639	395	134	. 95856
21	139	. 96944	729	495	242	. 95973	687
22	024	818	592	348	087	809	516
23	. 96907	689	453	199	. 95929	643	343
24	787	558	312	048	769	476	168
25	665	424	168	. 95895	607	306	. 94991
26	539	287	020 08867	738	442	133	810
27	406	144	$\cdot 95867$	576	272	. 94955	625
28	268	. 95996	710	410	098	774	438
29	125	844	548	241	. 94922	590	248
30	. 95977	686	3^{82}	067	741	403	055
31	823	524	212	.94890	557	214	.93860
32	665	357	038	709	$37{ }^{\circ}$	021	662
33	502	186	. 94860	525	180	. 93825	461
34	334	OII	679	337	. 93986	626	257
35	162 9468	.94832	494	$\begin{array}{r}146 \\ \hline 93952\end{array}$	790	425	051 0824
36	. 94886	650	306	. 93952	591	221	. 92843
37	805 620	464 273	$\begin{array}{r}114 \\ \hline 93919\end{array}$	756 556	398	016 088	634
38	620	273	. 93919	556	186	. 92808	422
39	431	079	720	353	. 92979	597	208
40	238	.93882	518	148	770	385	.91992
41	042	682	314	. 92940	55^{8}	170	774
42	. 93842	478	107	729	344	. 91952	554
43	639	271	.92897	516	128	733	332
44	433	062	685	301	.91910	513	108
	226	.92852	472	085	692	291	.90884
46		640	257	. 91868	472	069	660
	. 92806	426	$\begin{array}{r}041 \\ \hline 9823\end{array}$	649	250	. 90845	434
48	593	211	91823 604	429 208	028 .90805	621	207
49	379	. 91995	604	208	. 90805	396	. 89979
50	162	776	384	. 90985	580	168	750

Table 75 (continued).
DENSITY OF MIXTURES OF ETHYL ALCOHOL AND WATER IN GRAMS
PER MILLILITER.

Per cent by weight	Temperature.						
	${ }_{10}{ }^{\circ} \mathrm{C}$.	${ }_{15}{ }^{\circ} \mathrm{C}$.	$20^{\circ} \mathrm{C}$.	$25^{\circ} \mathrm{C}$.	$30^{\circ} \mathrm{C}$.	$35^{\circ} \mathrm{C}$.	$40^{\circ} \mathrm{C}$.
50	0.92162	0.91776	0.91384	0.90985	0.90580	0.90168	0.89750
51	. 91943	555	160	760	353	. 89940	519 288
52	723	333	. 90936	534	\% 125	710	
53 54	502 279	[110	711 485	307 079	.89896 667	479 248	. 88882
55	055	659	258	. 89850	437	016	589
56	.90831	433	$\mathrm{O}_{3} \mathrm{I}$	621	206	. 88784	356
57	607	207	. 89803	392	. 88975	552	122 87888
58	381	. 89980	574	162	744	319	. 87888
59	154	752	344	. 8893 I	512	085	653
60	. 89927	523	113	699	278	.87851	417
61	698	293	. 88882	466	044	615	180 8693
62	468	${ }_{8}^{062}$	650	${ }^{233}$. 87809	379	. 86943
64	006	597	183	763	337	. 86905	466
65	. 88774	364	. 87948	527	100 86863	667	227 8597
66	541	\% $\begin{array}{r}130 \\ 87805\end{array}$	713	291 054	.86863 625	429 190	.85987 747
67 68	308 074	.87895 660	477 24	O54 .86817	625 387	. 85950	707
69	. 87839	424	004	. 579	148	710	266
70	602	187	. 86766	340	. 85908	470	025
71	365	. 86949	527	100 8.85	667	[2288	84783 540
72	$\begin{array}{r}127 \\ \hline 888\end{array}$	710	287	. 85859	$\begin{array}{r}426 \\ 484 \\ \hline\end{array}$. 84986	540 297
73	86888 648	470 229	047 .85806	618 37	184 .84941	743 500	297 053
74							
75 76	408 168	.85988 747	564 322	$\begin{array}{r}\text { r } \\ .8489 \\ \hline 891\end{array}$	698 455	257 013	.83809 564
76	168 .89927	747 505	322 879	.84891 647	$\begin{array}{r}425 \\ \hline 211\end{array}$. 83768	319
78	. 685	262	. 84835	403	. 83966	523 277	074 .82827
79	442	oı8	590	158	720	277	. 82827
80	197	. 84772	344	.839ri	473	029	578
8 8	. 84950	525	096	664	224	. 82780	329
82 83	702	${ }^{277}$. 83848	415	.82974 724	53 279	.81828
83 84	453 203	. 83777	348	. 82913	473	027	576
		525	095	660	220	. 81774	322
86	. 8697	271	. 82840	405	. 81965	519	067 80815
87 88	441 181	014 .82754	583	148 .81888	708	262 003 805	.8081 552
88	181	.82754 492	323 062	.81888 626	184	. 80742	291
89	. 82919	492					
90	654	227	.81797	362	.80922	478 211	028 .79761
91	386	. 81959	529 257		655 384	.79941	. 491
92	114 .8189	688 413	257 .80983	.80823 549	384 111	$\begin{array}{r}7969 \\ \hline 689\end{array}$	220
93 94	.81839 561	413 134	.80983 705	${ }_{272}^{549}$. 79835	393	. 78947
						114	670
95 96	. 2788	.80852 566	138	.79917	${ }^{271}$.78831	388
97	. 698	274	. 79846	415	.78981 684	542 247	180 .77806
98	399	. 79975	547 243	117 .78814	684 382	542 .77946	.77807
99	094	670	243	.78814	382		
100	. 79784	360	.78934	506	075	641	203

[^13] CANE SUCAR, OR SULPHURIC ACID.

Per cent by weight of substance.	Methyl Alcohol. D $\frac{15^{\circ}}{4^{\circ}} \mathrm{C}$.	Cane Sugar. 20^{-}	Sulphuric Acid. D $\frac{20^{\circ}}{4^{\circ}} \mathrm{C}$.	Per cent by weight of substance.	Methyl Alcohol. $\mathrm{D} \frac{15^{\circ}}{4^{\circ}} \mathrm{C}$	Cane $\underset{20^{\circ}}{\text { Sugar. }}$	Sulphuric Acid. $D \frac{20^{\circ}}{4^{\circ}} C$.
0	0.99913	0.998234	0.99823	50	0.91852	1.229567	1.39505
I	. 99727	1.002120	1.00506	51	. 91653	I. 235085 I. 24064 I	I. 40487 1.4148 I
2	. 99543	${ }^{1} \mathrm{I} .006015$	1.0117^{8}	52	-91451	I.24064I	1.41481 1.42487
3	. $9937{ }^{\circ}$	1.009934	1.01839	53	.91248	1.246234 1.251866	1.42487 1.43503
4	. 99198	1.013881	1.02500	54	. 91044	1.251866	1.43503
	. 99029	1.017854	1.03168	55	. 90839	I. 257535	1.44530
6	. 98864	1.021855	1.03843	56	.9063I	I. 263243	1.45568
7	. 98701	1. 025885	1.04527	57	. 90421	I. 268989	1.46615
8	. 98547	1. 029942	1.05216	58	. 90210	I. 274774	1.47673
9	. 98394	1.034029	1.05909	59	. 89996	1.280595	1.48740
10	. 98241	1.038143	1.06609	60	. 89781	1.286456	1.49818
11	. 98093	1.042288	1.07314	61	. 89563	1.292354	1.50904
12	. 97945	1.046462	1.08026	62	. 89341	1.298291	1.51999
13	. 97802	1.050665	1.08744	63	. 89117	1.304267	1.53102
14	. 97660	1.054900	1.09468	64	.88890	1.310282	1.54213
15	. 97518	1.059165	1.10199	65	. 88662	I. 316334	1.55333
16	. 97377	1.063460	1.10936	66	. 88433	1. 322425	1.56460
17	. 97237	1.067789	1.11679	67	. 88203	1. 328554	1. 57595
18	. 97096	1.072147	1.12428	68	. 87971	I. 334722	1.58739
19	. 96955	1.076537	1.13183	69	. 87739	1.340928	1.59890
20	.96814	1.080959	1.13943	70	. 87507	1.347174	1.61048
21	. 96673	1.085414	1.14709	71	. 87271	1.353456	1.62213
22	. 96533	1.089900	1.15480	72	. 87033	1.359778	1. 63384
23	. 96392	1.094420	1.16258	73	. 86792	1.3661 39	1.64560
24	. 96251	I. 098971	1.17041	74	. 86546	1.372536	1. 65738
25	. 96108	1.103557	1.17830	75	. 86300	1.378971	ェ. 66917
26	.95963	1.108175	1.18624	76	. 86051	I. $3^{8} 5446$	1. 68095
27	. 95817	1.112828	1.19423	77	. 85801	I. 391956	1. 69268
28	. 95668	1.117512	1.20227	78	. 85551	1.398505	1.70433
29	.95518	1.122231	1.21036	79	. 85300	1.405091	1.71585
30	. 95366	I. 126984	1.21850	80	. 85048	1.411715	1.72717
31	. 95253	1.131773	1.22669	8 I	. 84794	I.418374	1. 73827
32	.95056	1.136596	1. 23492	82	. 84536	I. 425072	1.74904
33	. 94896	1.141453	1.24320	83	. 84274	I.431807	1.75943
34	. 94734	1.146345	1.25154	84	. 84009	1.438579	1.76932
	. 94570	I.151 275	1.25992	85	. 83742	1.445388	1.77860
36	. 94404	I. 56238	1.26836	86	. 83475	I. 452232	1.78721
37	. 94237	1.161236	1.27685	87	. 83207	1.459114	1.79509
38	-94067	I. 166269	1. 28543	88	. 82937	I. 466032	1.80223
39	. 93894	1.171340	1.29407	89	. 82667	I. 472986	I. 80864
40	. 9.3720	I. 176447	I. 30278	90	. 82396	I. 479976	1.81438
41	. 93543	1.181592	1.31157	9 I	.82124	1.487002	1.81950
42	. 93365	1.186773	1.32043	92	.81849	1.494063	1.82401
43	.93185	I.191993	1.32938	93	.81568	I.501158	1.82790
44	.93001	1.197247	1.33843	94	.81285	1.508289	1.83115
45	.928I5	1. 202540	1.34759	95	.80999	1. 515455	1. 83368
46	. 92627	1.207870	1.35686	96	.80713	1. 522656	1. 83548
47	. 92436	1.213238	1. 36625	97	. 80428	1.529891	1. 83637
48	. 92242	1.218643	1. 37574	98	. 80143	1.537161	r. 83605
49	. 92048	1.224086	1.38533	99	.79859	I. 544462	
50	.91852	1.229567	1.39505	100	. 79577	1.551800	

(I) Calculated from the specific gravity determinations of Doroschevski and Rozhdestvenski at $15^{\circ} / 5^{\circ}$ C. ; J. Russ., Phys. Chem. Soc., 4I, p. 977, 1909.
(2) According to Dr. F. Plato; Wiss. Abh. der K. Normal-Eichungs-Kommission, 2, p. $153,1900$.
(3) Calculated from Dr. Domke's table; Wiss. Abh. der K. Normal-Eichungs-Kommission, 5. p. 13I, 1900.

Table 77.

VELOCITY OF SOUND IN SOLIDS.

The numbers given in this table refer to the velocity of sound along a bar of the substance, and hence depend on the Young's Modulus of elasticity of the material. The elastic constants of most of the materials given in this table vary through a somewhat wide range, and hence the aumbers can only be taken as rough approximations to the yelocity which may be obtained in any particular case. When temperatures are not marked, between 10° and 20° is to be understood.

Substance.	Temp. C.	Velocity in meters per second.	Velocity in feet per second.	Autharity.
	\bigcirc	5104	16740	
Brass	-	3500	$\begin{array}{r} 11480 \\ 7570 \end{array}$	Masson. Various.
Cadmium .	-	2307		Masson.
Cobalt	-	4724		
Copper . . .	20 100	3560 3290	11670 10800	Wertheim.
,	100	3290 2950	10800	"
Gold (soft)	20	1743	5717	
" (hard) .	-	2100	6890	Various.
Iron and soft steel	-	5000	16410	
Iron - .	20	5130	16820	Wertheim.
,	100	5300 4720	17390 15480	W
" cast steel	20	4990	16360	"
" " "	200	4790	15710	*
Lead.	20	1227	4026	eld
Magnesium	-	4602	15100	
Nickel	-	4973	16320	Masson.
Palladium .	$\overline{-}$	3150	10340	Various.
Platinum	20	2690	8815	Wertheim.
"	100 200	2570 2460	8837 8079	
Silver	20	2610	8553	*
"	100	2640	8658	"
Tin	-	2500	8200	Various.
Zinc .		3700	12140	
Various : Brick . .	-	3652	11980	Chladni.
Clay rock	-	3480	11420	Gray \& Milne. Stefan.
Cork	-	500	1640 12960	Stefan. ${ }_{\text {Gray \& Milne. }}$
Granite	-	3950 3810	12900	Gray *
Paraffin . ${ }^{\text {Marbl }}$	15	1304	4280	W arburg. Gray \& Milne.
Slate . .	-	4510	14800	
Tallow . . .	16	390	1280	Gray \& Milne. Warburg.
Tuff . . . ${ }^{\text {a }}$	-	2850	9350	Gray \& Milne. Various.
Glass . . $\left\{\begin{array}{l}\text { from } \\ \text { to }\end{array}\right.$	_	5000 6000	16410	"
Ivory	-	3013	9886	Ciccone \& Campanile.
Vulcanized rubber ${ }^{\text {a }}$,	\bigcirc	54	177	Exner.
" " (black) $\}$	50	31	102	"
" " (red) .	\bigcirc	69	226	
Wax . ${ }^{\text {" }}$.	70	34	111	Stefan.
Wax . . .	17 28	880	1450	
Woods: Ash, along the fibre.	2	4670	15310	
Woods : Ash, along the rings	-	${ }^{1} 390$	4570	Wertheim.
" along the rings		1260	4140	
Beech, along the fibre		3340	10960	"
" across the rings		1840	6030	
" along the rings		1415	4640	"
Elm, along the fibre	-	4120	13516 4665	"
" across the rings	-	1420	4625	"
" along the rings	-	1013	3324 15220	"
Fir, along the fibre.	-	4640	15220 13470	"
Maple "،		4110 385	13470	"
Oak " ${ }_{\text {Pine }}$ "		3850	10900	
Pine "، .	-	3280 420	14050	"
Poplar Sycamore "	-	4460	14640	

Table 78.
VELOCITY OF SOUND IN LIQUIDS AND CASES.
For gases, the velocity of sound $=\sqrt{\gamma \mathrm{P} / \rho}$, where P is the pressure, ρ the density, and γ the ratio of specific heat at constant pressure to that at constant volume (see Table 265).

Substance.	'Temp. C.	Velocity in meters per second.	Velocity in feet per second.	Authority.
	10 12.5 20.5 16. 17. 15. 15. 15. 15. 15. 15. 15. 13. 19. 31. 9. 15. 30. 60. 0. 0. 0. 0. 0. 0. 0. 20. 100. 500. 1000. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 100. 130.	$\begin{gathered} 1241 . \\ 1213 . \\ 1663 . \\ 1166 . \\ 116 \mathrm{I} . \\ 983 . \\ 1032 . \\ 1470 . \\ 153 . \\ 1650 . \\ 1326 . \\ 1441 . \\ 146 \mathrm{I} . \\ 1505 . \\ 1435 . \\ 1437 . \\ 1528 . \\ 1724 . \\ 33.78 \\ 33 \mathrm{I} .36 \\ 331.92 \\ 331.7 \\ 332.0 \\ 334.7 \\ 350.6 \\ 344 . \\ 386 . \\ 55 . \\ 700 . \\ 415 . \\ 337.1 \\ 337.4 \\ 258.0 \\ 189 . \\ 206.4 \\ 205.3 \\ 314 . \\ 1269.5 \\ 1286.4 \\ 490.4 \\ 432 . \\ 325 . \\ 26 \mathrm{I} .8 \\ 317.2 \\ 230.6 \\ 179.2 \\ 401 . \\ 404.8 \\ 424.4 \end{gathered}$	4072. 3980. 5456. 3826. 3809. 3225. 3386. 4823. 5020. 5414. 435 I. 4728. 4794. 4938. 4708. 4714. 5013. 5657. 1088.5 1087.I 1089.0 1088. 1089. 1098. 1150. 1129. 1266. I8I4. 2297. 1361. 1106. 1107. 846. 620. 677. 674. 1030. 4165. 4221. 1609. 1417. 1066. 859. 104 r. 756. 588. 1328. I 392.	Dorsing, 1908. ${ }^{\prime}$ 46 64 64 66 64 64 64 64 66 64 6 Colladon-Sturm. Wertheim. " Rowland. Violle, 1900. Thiesen, 1908. Mean. " (Witkowski). " " Stevens. " " Masson. Wullner. Dulong. Brockendahl, 1906. Masson. Martini. Strecker. Dulong. Zoch. " Masson. " Dulong. " Masson. " " Treitz, 1903. "

Note: The values from Ammonia to Methane inclusive are for closed tubes.
Smithsonian Tables.

Tables 79-80.
 MUSICAL SCALES.

The pitch relations between two notes may be expressed precisely (r) by the ratio of their vibration frequencies; (2) by the number of equally-tempered semitones between them (E. S.); also, less conveniently, (3) by the common logarithm of the ratio in (I); (4) by the lengths of the two portions of the tense striag which will furnish the notes; and (5) 10 terms of the octave as unity. The ratio io (4) is the reciprocal of that io (I); the oumber for (s) is $\mathrm{r} / \mathrm{I} 2$ of tbat for (2); the number for (2) is nearly 40 times that for (3).
Table 79 gives data for the middle octave, including vibration frequencies for three standards of pitch; $a=435$ double vibratioos per second, is the international standard and was adopted by the American Piano Manufacturers' Association. The "just-diatonic scale" of C-major is usually deduced, following Chladni, from the ratios of the three perfect major triads reduced to ooe octave, thus:

Other equivalent ratios and their values in E. S. are given in Table 8o. By transierring D to the left and using the ratio $10: 12: 15$ the scale of A-minor is obtained, which agrees with that of C -major except that $\mathrm{D}=262 / 3$. Nearly the same ratios are obtained from a series of harmonics beginning with the eighth; also by taking 12 successive perfect or Pythagorean fifths or fourths and reducing to one octave. Such calculations are most easily made by adding and suntracting intervals expressed in E.S. The notes needed to furnish a just major scale in other keya may he found by successive transpositions by fiftha or fourtha as shown in Tahle 80 . Disregarding the usually negligible diference of 0.02 E. S., the table gives the 24 notes to the octave required in the simplest emharmonic organ; the notes fall into pairs that differ hy a comma, o. 22 E . S. The line "mean tone" is based on Dom Bedos' rule for tuning the orgao (1746). The tables have been checked by the data in Ellis' Helmholtz's "Sensationa of Tone."

TABLE 79.

Note.	Interval.		Ratios.		Logarithma.		Number of Vibrations per second.				Beats for 0.1 E. S.
	Tempered.	Just.	Just.	Tempered.	Just.	Tempered.	Just.	Just.	Just.	Tempered.	
c^{\prime}	$\underset{\mathrm{O}}{\mathrm{E} . \mathrm{S}}$	$\begin{gathered} \mathrm{E} . \mathrm{S} . \\ \mathrm{o} . \end{gathered}$	1.00	1.00000	0.0000	0.00000	256	264	258.7	258.7.	1.50
	1			1.05926		. 02509				274.0	
d^{\prime}	2	2.04	I. 125	I. 12246	. 05115	. 05017	288	297	291.0	290.3	1.68
	3			1.18921		. 07526				307.6	
${ }^{\prime}{ }^{\prime}$	4	3.86	1.25	1.25992	.09691	.10034	320	330	323.4	325.9	1.89
f^{\prime}	5	4.98	1.33	I. 33484	. 12494	. 12543	341.3	35^{2}	344.9	$345 \cdot 3$	2.00
	6			I. 4142 I I .49831		.15051 .17560				365.8 387.5	
g^{\prime}	7	7.02	1.50	$\begin{aligned} & \text { I. } 4983 \mathrm{I} \\ & \mathrm{I} .58740 \end{aligned}$.17609	$\begin{aligned} & .17560 \\ & .20069 \end{aligned}$	384	396	388	387.5 410.6	2.25
\mathbf{a}^{\prime}	9	8.84	1.67	1.68179	. 22185	. 22577	426.7	440	431.1	435.0	2.52
	10			1.78180		. 25086				460.9	
b^{\prime}	11	10.88	1.875	1.88775	. 27300	. 27594	480	495	485.0	488.3	2.83
$c^{\prime \prime}$	12	12.00	2.00	2.00000	.30103	. 30103	512	528	517.3	517.3	3.00

TABLE 80.

ACCELERATION OF GRAVITY.

For Sea Level and Different Latitudes.

Calculated from Helmert's formula :
$g=9^{m} .78030\left(1+0.005302\right.$ sio. $\left.{ }^{1} \Phi-0.000007 \sin .{ }^{2}{ }^{2} \Phi\right)$

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline $$
\begin{aligned}
& \text { Latitude } \\
& \Phi
\end{aligned}
$$ \& $$
\begin{gathered}
y \\
\text { cm. per sec. } \\
\text { per sec. }
\end{gathered}
$$ \& Log.g \& $$
\begin{gathered}
\boldsymbol{g} \\
\text { feet per sec. } \\
\text { per sec. }
\end{gathered}
$$ \& Latitude
Φ \& $$
\stackrel{g}{\mathrm{~cm} . \text { per sec. }}
$$
per sec. \& Log. g \& feet per sec. per sec.

\hline \bigcirc° \& 978.030 \& 2.9903522 \& 32.0875 \& 50° \& 981.066 \& 2.9916982 \& 32.1871

\hline 5 \& . 069 \& . 99903695 \& .0888 \& 51 \& .155 \& .9917376 \& .1901

\hline 10 \& . 886 \& . 9904214 \& . 0927 \& 52 \& . 244 \& .9917770 \& . 1930

\hline 12 \& . 253 \& . 9904512 \& . 0949 \& 53 \& .331
.48 \& -9918156 \& .1959
.1987

\hline 14 \& . 332 \& .9904863 \& . 0974 \& 54 \& \& .9918540 \&

\hline 15 \& 978.376 \& 2.9905058 \& 32.0989 \& 55 \& 98 I .503 \& 2.9918976 \& 32.2015

\hline 16 \& . 422 \& . 9905262 \& .1004 \& 56 \& . 588 \& . 99192928 \& . 2043

\hline 17 \& .471 \& . 9905480 \& .1020 \& 57
58 \& . 754 \& .9920027 \& . 2097

\hline 19 \& . 577 \& . 9905950 \& . 1055 \& 59 \& . 835 \& . 9920385 \& . 2124

\hline 20 \& 978.634 \& 2.9906203 \& 32.1074 \& 60 \& 98 r .914 \& 2.9920735 \& 32.2550

\hline 21 \& . 693 \& . 9906465 \& . 1093 \& 61 \& -992 \& .9921080 \& . 2175

\hline 22 \& . 754 \& . 9906736 \& .1113 \& 62 \& 982.068 \& .9921415 \& . 2200

\hline 23 \& . 818 \& .9907019 \& . 1134 \& 63 \& .142
.215 \& . 99212743 \& . 22224

\hline 24 \& . 884 \& . 9907313 \& .1156 \& 64 \& . 215 \& .9922066 \& . 2248

\hline \& 978.952 \& 2.9907614 \& 32.1178 \& 65 \& 982.285 \& 2.9922375 \& 32.2273

\hline 26 \& 979.022 \& . 9907925 \& .1201 \& 66 \& . 354 \& .9922680 \& . 2294

\hline 27 \& . 094 \& -9908244 \& . 1224 \& 67 \& . 420 \& . 99922972 \& . 231318

\hline \& \& \& \& \& \& \&

\hline 30 \& 979.32 I \& 2.9909250 \& 32.1299 \& 70 \& 982.606 \& 2.9923794 \& 32.2377

\hline 31 \& .400 \& . 9909601 \& . 1325 \& 71 \& . 663 \& . 9924046 \& . 2395

\hline 32 \& . 481 \& -9909960 \& .1351 \& 72 \& . 718 \& .9924289 \& . 241313

\hline 33 \& . 662 \& .9910319 \& .1378
.1406 \& 73
74 \& . 7820 \& . 99924519 \& . 24430

\hline 34 \& . 646 \& .9910691 \& . 1406 \& 74 \& . 820 \& .9924740 \& -2447

\hline 35 \& 979.730 \& 2.9911064 \& 32.14.33 \& 75 \& 982.866 \& 2.9924943 \& 32.2462

\hline 36 \& . 815 \& . 9911441 \& . 1461 \& 76 \& -911 \& -9925142 \& . 2477

\hline 37 \& .902 \& .9911827 \& . 1490 \& ${ }_{78}^{77}$ \& -952 \& . 9925323 \& . 2490

\hline 38 \& .989 \& . 9912212 \& . 1518 \& 78 \& .999 \& .992549r \& . 2503

\hline 39 \& 980077 \& . 9912602 \& . 547 \& 79 \& 983.026 \& .9925650 \& . 2514

\hline 40 \& 980.166 \& 2.9912996 \& 32.1576 \& 80 \& 983.058 \& 2.9925791 \& 32.2525

\hline 41 \& . 255 \& .991339r \& . 1605 \& \& . 088 \& -9923924 \& . 2535

\hline 42 \& - 345 \& .9913789 \& . 1635 \& 82
83 \& .115 \& .9926043 \& . 2544

\hline 43 \& . 435 \& .9914183 \& .1664
.1694 \& 83
84 \& .158
.159 \& .9926145 \& . 2551

\hline 44 \& .525 \& -9914587 \& . 1694 \& 84 \& . 159 \& .9926238 \& . 2558

\hline \& 980.616 \& 3.9914989 \& 32.1724 \& \& 983.176 \& 2.9926312 \& 32.2564

\hline 46 \& . 706 \& .9915388 \& 19753

1783 \& 86 \& . 190 \& .9926375 \& . 25688

\hline 47
48 \& . 7987 \& . 99915791 \& .1783
.1813 \& 87
88 \& . 201 \& . 9.9286423 \& .2572
.2574

\hline 49 \& -977 \& . 9966588 \& -1842 \& 90 \& . 216 \& -9926489 \& . 2577

\hline
\end{tabular}

To reduce log. g (cm. per sec. per sec.) to $\log . g$ (ft. per sec. per sec.) add $\log .0 .03280833=8.5159842-10$.

CORRECTION FOR ALTITUDE.

-0.0003086 cm . per meter when altitude is in meters.
-0.000003086 ft . per foot when altitude is in feet.

Altitude.	Correction.	Altitude.	Correction.
200 m.	$0.0617 \mathrm{~cm} . / \mathrm{sec} .^{2}$	200 ft.	$0.000617 \mathrm{ft} . / \mathrm{sec} .^{2}$
300	.0926	300	.000926
400	.1234	400	.001234
500	.1543	500	.001543
600	.1852	.2160	700
700	.2469	.001852	
800	.2777	800	.002160
900		900	.002469

Io this table the results of a number of the more recent gravity determinations are brought together. They serve to show the degree of accuracy which may be assumed for the numbers is lable ys. In general, gravity is a little lower than the calculated value for stations far inlaod and slightly higher on the coast lioe.

Place,		Latitude. N. +, S. -		Elevation in meters.	Gravity, $\frac{\mathrm{cm}}{\mathrm{sec}^{\mathbf{2}}}$		Reference.				
		Observed.	Reduced to aea level.								
	Singapore					14	978.08	978.08	I		
	Georgetown, Ascension . .			5	978.25	978.25	2				
	Green Mountain, Ascension.		57	686	978.10	978.23	2				
	Loanda, Angola	-8	49	46	978.15	978.16	2				
	Caroline Islands . . ${ }^{\text {a }}$	- 10	00	2	978.37	978.37	3				
	Bridgetown, Barbadoes		04	18	978.18	978.18	2				
	Jamestown, St. Helena	-15	55	10	978.67	978.67	2				
	Longwood, " ${ }^{\text {P }}$ "	-15	57	533	978.53	978.59	2				
	Pakaoao, Sandwich Islands.	20	43	3001	978.28	978.85	3				
	Lahaina,	20	52	3	978.86	978.86	3				
	Haiki, "، "،		56	117	978.91	978.93	3				
	Honolulu, "	21	18	3	978.97	978.97	3				
	St. Georges, Bermuda	32	23	2	979.77	979.77	2				
	Sidney, Australia	-33	52	43	979.68	979.69	1				
	Cape Town	-33	56	11	979.62	979.62	2				
	Tokio, Japan - . -		41	6	979.95	979.95	I				
	Auckland, New Zealand	-36	52	43	979.68	979.69	1				
	Mount Hamilton, Cal. (Lick Obs.)	37	20	1282	979.66	979.91	4				
	" ${ }^{\text {¢ }}$ " " ${ }^{\text {a }}$	37	20	1282	979.68	979.92	5				
	$\underset{\text { San }}{ }$ Francisco, Cal.	37	47	114	979.96	979.98	4				
	" ${ }^{\text {W }}$ " ${ }^{\text {c }}$		47	114	980.02	980.04	5				
	Washington, D. C.*	38	53	10	980.11	980.11	4				
	Denver, Colo. .	39	54	1645	979.68	979.98	5				
	York, Pa. .	39	58	122	980.12	980.14	6				
	Ebensburgh, Pa. .		27	651	980.08	980.20	6				
	Allegheny, Pa. .	40	28	348	980.09	980.15	6				
	Hoboken, N. J. .		44	11	980.27	980.27	4				
	Salt Lake City, Utah	40	46	1288	979.82	980.05	5				
	Chicago, Ill. .	41	49	165	980.34	980.37	5				
	Pampaluna, Spain	42	49	45°	980.34	980.42	7				
	Montreal, Canada .	45	31	100	980.73	980.75	8				
	Geneva, Switzerland	46		405	980.58	980.64	8				
	4	46	12	405	980.60	980.66	9				
	Berne,		57	572	980.61	980.69	9				
	Zurich,		23	466	980.67	980.74	9				
	Paris, France .			67	980.96	980.97	8				
	Kew, England	51		7	981.20	98 I .20	8				
	Berlin, Germany . .		30	49	981.26	981.27	8				
	Port Simpson, B. C. .			6	981.46	98 r .46	4				
	Burroughs Bay, Alaska		59	\bigcirc	981.51	981.51					
	Wrangell, "\%	56		7	981.60 981.69	981.60 981.69	$\begin{aligned} & 4 \\ & 4 \end{aligned}$				
	Sitka, "			8	981.69 981.67	981.69 981.67					
	St. Paul's Island, "		07	12	981.67 981.74	$\begin{aligned} & 981.67 \\ & 98 \mathrm{I} .74 \end{aligned}$	$\begin{aligned} & 4 \\ & 4 \end{aligned}$				
	Puneau, ${ }^{\text {Pramid Harbor, " }}$		18	5	981.74 981.82	981.74 98.82	4				
	Yakutat Bay, "			4	98 r .83	981.83	4				
1 Smith: "United States Coast and Geodetic Survey Report for 1884," App. I4. 2 Preston: "United States Coast and Geodetic Survey Report for 1890," App. 12. 3 Preston: Ibid. 1888, App. 14. 4 Mendenhall : Ibid. 1891, App. 15. 5 Defforges : "Comptes Rendus," vol. 118, p. 23 . 6 Pierce : "U. S. C. and G. S. Rep. 1883," App. 19. 7 Cebrian and Los Arcos: "Comptes Rendus des Séances de la Commission Permanente de l'Association Géodesique International," 1893. 8 Pierce: "U.S. C. and G. S. Report 1876, App. I5, and I881, App. 17." 9 Messerschmidt: Same reference as 7.											

[^14]Smithsonian Tables.

SUMMARY OF RESULTS OF THE VALUE OF GRAVITY (g) AT STATIONS IN THE UNITED STATES AND ALASKA.*

[^15]
Smithsonian Tables.

Tables 84-85.
LENGTH OF THE SECONDS PENDULUM.
TABLE 84. - Length of Seconds Pendulum at Sea Level for Different Latitudee.*

Latitude.	Length in centimeters.	Log.	Length io inches.	Log.	Latitude.	Length in centimeters.	Log.	Length in inches.	Log.
0	99.0950	1.996052	39.0131	1.591218	50	99.4027	I. 997398	39.1348	I. 592563
5	. 0989	6069	. 0152	$\begin{array}{r}1.5912184 \\ \\ \hline 1284\end{array}$	55	9.4027 .447	1.99738 7592	39.1348 .1524	1.592563 2758
10	.1108	6121	. 0200	1287	60	. 4888	7774	. 1687	2939
15	. 1302	6206	. 0274	1372	65	.5263	7938	.1835	3103
20	.1562	6320	. 0378	1485	70	.5587	8079	.1962	3244
25	99.1884	1.996461	39.0506	1.591627	75	99.5850	1.998194	39.2067	1. 593360
30	. 2259	6625	. 0652	1790	80	. 6045	8279	. 2143	r 3444
35	.2672	6806	.0816	1972	85	. 6165	8331	. 2190	3496
40	-3116	7000	. 0990	2166	90	. 6206	8349	. 2206	3514
45	.3571	7199	.1169	2364					

* Calculated from force of gravity table by the formula $l=g / \pi^{2}$. For each xoo feet of elevation subtract 0.000596 cedtimeters, or 0.000235 idches, or .0000196 leet.

TABLE 85. - Length of the Seoonds Pendulum.*

Date of determination.	Number of observation stations.	Range of latitude included by the stations.	Leagth of peadulum in meters. for latitude ϕ.	Corresponding length of pendulum for lat. 45°	Reference.
1799	15	From $+67^{\circ} \circ 5^{\prime}$ to $-33^{\circ} 56^{\prime}$	$0.990631+.005637 \sin ^{2} \phi$	0.993450	1
1816	31	" $+74^{\circ} 53^{\prime \prime}{ }^{\prime \prime}-55^{\circ} 21^{\prime}$	$0.990743+.005466 \sin ^{2} \phi$	0.993976	2
1821	8	$+38^{\circ} 40^{\prime \prime}$ " $-60^{\circ} 45^{\prime}$	$0.990880+.005340 \sin ^{2} \phi$	0.993550	3
1825	25	${ }^{\prime}+79^{\circ} 50^{\prime \prime}{ }^{\prime \prime}$-120 59^{\prime}	$0.990977+.005142 \sin ^{2} \phi$	0.993548	4
1827	41	" $+79^{\circ} 50^{\prime \prime} "-51^{\circ} 35^{\prime}$	$0.991026+.005072 \sin ^{2} \phi$	0.993562	5
1829	5	$" 0^{\circ} \mathrm{o}^{\prime \prime} "+67^{\circ} 04^{\prime}$	$0.990555-.005679 \sin ^{2} \phi$	0.993395	6
1830	49	" $+79^{\circ} 55^{\prime \prime} "-55^{\circ} 35^{\prime}$	$0.991017+.005087 \sin ^{2} \phi$	0.993560	7
1833	-	" - " - -	$0.990941+.005142 \sin ^{2} \phi$	0.993512	8
1869	51	$"+79^{\circ} 50^{\prime \prime} "$ - $51^{\circ} 35^{\prime}$	$0.990970+.005185 \sin ^{2} \phi$	$0.993554 \dagger$	9
1876	73	$"+79^{\circ} 5^{\prime \prime} "{ }^{\prime \prime}$ - $62^{\circ}{ }^{\circ} 56^{\prime}$	$0.991011+.005105 \sin ^{2} \phi$	0.993563	10
1884	123	$"+79^{\circ} 50^{\prime \prime} "-62^{\circ} 56^{\prime}$	$0.990918+.005262 \sin ^{2} \phi$	0.993549	II
Combining the above results			0.9909IO+.005290 $\sin ^{2} \phi$	0.993555	12

I Laplace: "Traité de Mécanique Céleste" T. 2, livre 3, chap. 5, sect. 42.
2 Mathieu: "Sur les expériences du pendule; " in "Connaissance des Temps 1816 ." Additions, pp. 314-341, p. 332.

3 Biot et Arago: "Recueil d'Observations géodésiques, etc." Paris, 1821, P. 575.
${ }_{4}$ Sabine: "An Account of Experiments to determine the Figure of the Earth, etc., by Sir Edward Sabine." London, 1825, p. 352.
5 Saigey: "Comparaison des Observations du pendule à diverses latitudes; faites par MM. Biot, Kater, Sabine, de Freycinet, et Duperry;" in "Bulletin des Sciences Mathématiques, etc."" T. 1, pp. 31-43, and 171-184. Paris, 1827.

6 Pontécoulant: "Théorie analytique du Système du monde," Paris, 1829, T. 2, p. 466.
7 Airy: "Figure of the Earth;" in "Encyc. Met." 2d Div. vol. 3, p. 230.
8 Poisson: "Traité de Mécanique," T. 1, p, 377; "Connaissance des Temps," 1834, pp. 32-33; and Puissant: "Traité de géodésie," T. 2, p. 464.

9 Unferdinger : "Das Pendel als geodätisches Instrument;" in Grunert's "Archiv," 1869, p. 316.

10 Fischer: " Die Gestalt der Erde und die Pendelmessungen ;" in "Ast. Nach." 1876, col. 87 .
II Helmert: "Die mathematischen und physikalischen Theorieen der höheren Geodäsie, von Dr. F. R. Helmert," II. Theil. Leipzig, 1884, p. 24I.
12 Harkness.

[^16]Length of the seconds pendulum at sea level $=l=39.012540+0.208268 \sin ^{2} \phi$ inches. $=3.251045+0.017356 \sin ^{2} \phi$ feet.
$=0.9909910+0.005290 \sin ^{2} \phi$ meters.
Acceleration produced by gravity per second
per second mean solar time . . . $=g=32.086528+0.171293 \sin ^{2} \phi$ feet.
$=977.9886+5.2210 \sin ^{2} \phi$ centimeters.

Difference between geographical and geocentric latitude $=\phi-\phi^{\prime}=$
$688.224^{\prime \prime} \sin 2 \phi-1.1482^{\prime \prime} \sin 4 \phi+0.0026^{\prime \prime} \sin 6 \phi$.
Mean density of the Earth $=5.5247 \pm 0.0013$ (Burgess Phys. Rev. 1902).
$\left.\begin{array}{l}\text { Continental surface density of the Earth }=2.67 \\ \text { Mean density outer ten miles of earth's crust }=2.40\end{array}\right\}$ Harkness.
Moments of inertia of the Earth; the principal moments being taken as A, B, and C, and C the greater:

$$
\begin{aligned}
& \frac{C-A}{C}=0.0032652 \mathrm{I}=\frac{1}{306.259} ; \\
& C-A=0.001064767 E a^{2} ; \\
& A=B=0.325029 E a^{2} ; \\
& C=0.326094 E a^{2} ;
\end{aligned}
$$

where E is the mass of the Earth and a its equatorial semidiameter.

TABLE 87. - Length of Degrees on the Eerth'a Surface.

At	Miles per degree		Km. per degree		AtLat.	Miles per degree		Km. per degree	
	of Long.	of Lat.	of Long.	of Lat.		of Long.	of Lat.	of Long.	of Lat.
0°	69.17	68.70	111.32	110.57	55°	39.77	69.17	64.00	111.33
10	68.13	68.72	109.64	110.60	60	34.67	69.23	55.80	111.42
20	65.03	68.79	104.65	110.70	65	29.32	69.28	47.18	111.50
30	59.96	68.88	96.49	110.85	70	23.73	69.32	38.19	111.57
40	53.06	68.99	85.40	111.03	75	17.96	69.36	28.90	111.62
45	49.00	69.05	78.85	111.13	80	12.05	69.39	19.39	111.67
50	44.55	69.II	71.70	111.23	90	0.00	69.41	0.00	111.70

For more complete table see " Smithsonian Geographical Tables."

Smithsonian Tableg.

Table 88.
 MISCELLANEOUS ASTRONOMICAL DATA.

Length of sidereal year $=365.2563578$ mean solar days;

$$
=365 \text { days } 6 \text { hours } 9 \text { minutes } 9 \cdot 314 \text { seconds. }
$$

Length of tropical year $=365.242199870-0.0000062124 \frac{t-1850}{100}$ mean solar days;

$$
=365 \text { days } 5 \text { hours } 48 \text { minutes }\left(46.069-0.53675 \frac{t-1850}{100}\right) \text { seconds. }
$$

Length of sidereal month

$$
\begin{aligned}
& =27.321661162-0.00000026240 \frac{t-1800}{100} \text { days; } \\
& =27 \text { days } 7 \text { hours } 43 \text { minutes }\left(11.524-0.02267 \mathrm{I} \frac{t-1800}{100}\right) \text { seconds. }
\end{aligned}
$$

Length of synodical month

$$
\begin{aligned}
& =29.530588435-0.00000030696 \frac{t-1800}{100} \text { days; } \\
& =29 \text { days } 12 \text { hours } 44 \text { minutes }\left(2.841-0.026522 \frac{t-1800}{100}\right) \text { seconds. }
\end{aligned}
$$

Length of sidereal day $=86164.09965$ mean solar seconds.
N. B. - The factor containing t in the above equations (the year at which the values of the quantities are required) may in all ordinary cases be neglected.

Mean distance from earth to sun $=92900000$ miles $=149500000$ kilometers.
Eccentricity of the earth's orbit $=e=$

$$
0.01675104-0.0000004180(t-1900)-0.000000126\left(\frac{t-1900}{100}\right)^{2}
$$

Solar parallax $=8.7997^{\prime \prime} \pm 0.003$ (Weinberg, A. N. 165, 1904);

$$
8.807 \pm 0.0027 \text { (Hinks, Eros, 7) }
$$

8.799 (Samson, Jupiter satellites; Harvard observations).

Lunar parallax $=3422.68^{\prime \prime}$ 。
Mean distance from earth to moon $=60.2669$ terrestrial radii;
$=238854$ miles;
$=384393$ kilometers.

Lunar inequality of the earth $=L=6.454^{\prime \prime}$.
Parallactic inequality of the moon $=Q=124.80^{\prime \prime}$.
Mean motion of moon's node in 365.25 days $=\mu=-19^{\circ} 21^{\prime} 19.6191^{\prime \prime}+0.14136^{\prime \prime}\left(\frac{t-1800}{100}\right)$
Eccentricity and inclination of the moon's orbit $=e_{2}=0.05490807$.
Delaunay's $\boldsymbol{\gamma}=\sin \frac{1}{2} T=0.044886793$.

$$
I=5^{\circ} 08^{\prime} 43 \cdot 3546^{\prime \prime}
$$

Constant of nutation $=9.2^{\prime}$.
Constant of aberration $=20.4962 \pm 0.006$ (Weinberg, l. c.).*
Time taken by light to traverse the mean radius of the earth's orbit

$$
\begin{aligned}
& =498.82 \pm \text { 0.1 seconds (Weinberg) } \\
& =498.64 \text { (Samson). }
\end{aligned}
$$

Velocity of light $=186330$ miles per second (Weinberg);
$=299870 \pm 0.03$ kilometers per second.
General precession $=50.2564^{\prime \prime}+0.000222(t-1900)$.
Obliquity of the ecliptic $=23^{\circ} 27^{\prime} 8.26^{\prime \prime}-0.4684(t-1900)$.
Gravitation constant $=666.07 \times 10^{-10} \mathrm{~cm}^{8} / \mathrm{gr} . \mathrm{sec}^{2} \pm 0.16 \times 10^{-10}$.

* Recent work of Doolittle's and others indicates a value not less than $\mathbf{2 0 . 5 r}$.

Smithsonian Tableg.

Trable 89．－Planetary Data．

Body．	Reciprocals of masses．	Meaa distance from the sun． Km．	Sidereal period． Mean days	Equatorial diameter． K m．	Inclination of orbit．	Mean density． $\mathrm{H}_{2} \mathrm{O}=1$	Gravity at surface．
Sun	I．	－	－	I 391067	－	1． 39	27.6
Mercury	6000000.	58×10^{6}	87.97	4842	$7^{\circ} .003$	4.86	－3
Venus	408000.	108 ＂	224.70	12394	3.393	5.2	7.9
Earth＊	329390.	149 ＂	365.26	12756	－	$5 \cdot 52$	1.00
Mars	3093500.	228 ＂	686.98	7320	ז． 850	3.90	． 4
Jupiter	1047.35	$778{ }^{\text {＂}}$	4332.59	145250	1.308	1.36	2.6
Saturn	3501.6	1426＂	10759.20	123040	2.492	． 63	1.01
Uranus	22869.	2869 ＂	30586.29	48590	0.773	1.34	． 95
Neptune	19700.		60188.71	56040	1.778	1.28	． 97
Moon	＋ 81.45	38×10^{4}	27.32	3473	5.147	$3 \cdot 37$	． 17

＊Earth and moon．† Relative to earth．Inclination of axes ：Sun $7^{\circ} .25$ ；Earth $23^{\circ} \cdot 45$ ；Mars $24^{\circ} .6$ ；Jupiter $3^{\circ} .1$ ； Saturn $26^{\circ} .8$ ；Neptune $27^{\circ} .2$ ．Others doubtinl．

Table 90．－Equation of Time．

The equation of time when + is to be added to the apparent solar time to give mean time． When the place is not on a standard meridian（ 75^{\prime} th，etc．）its difference in longitude in time from that meridian must be subtracted when east，added when west to get standard time（ 75^{\prime} th meridian time，etc．）．The equation varies from year to year cyclically，and the figure following the \pm sign gives a rough idea of this variation．

	M．S．		M．S．		M．S．		M．S．
Jan． 1	＋ $3^{261}{ }^{\text {² }} 4$	Apr．${ }^{\text {I }}$	＋4 $\quad 2 \pm 7$	July I	＋3 31 ± 5	Oct． 1	－10 12 ± 8
	$+925 \pm 9$ +13	May 15	＋o 8三 5	Aug 15	＋5 42土	${ }^{1} 5$	－44 5士 6
Feb． 1	$+1342=4$ $+1420=2$	May I	－2 54 ± 10	Aug．I	＋6 9＝ 3	Nov．I	－16 59才 2
Mar． 15	＋14 20 圭 2 +1234	June ${ }^{15}$	-3 49 ± 1 -2 $28 \pm$ 	Sept．${ }^{15}$	$\begin{array}{rr}+4 & 24 \pm 5 \\ +0 & 2 \pm\end{array}$	Dec．${ }^{15}$	－15 22才 4
Mar． 1 15	＋12 34 ± 4 +99	June 1	－2 ${ }^{28} 8$	Sept． 1		Dec． 1	$\begin{array}{r}-10 \\ -453 \pm 10 \\ \hline\end{array}$

Table 91．－Miecellaneous Aetronomical Data．

Apex of Solar Motion ：

From proper motions，R．A． $1810=175^{\text {m }}$ ，Dec． $1810=+3$ I． 4 （Weersma，Gron．Publ．2r．）
From radial velocities，K．A．1900 $=17^{h} 54^{m}, \mathrm{Dec} \cdot 1900=+25.1$（Campbell，Lick．Bull．196．） Velocity $=19.5 \mathrm{Km}$ ．per sec．（Campbell．）

Nearest star so far as known ：a Centauri，parallax $=0.759^{\prime \prime}$（Gron．Publ．24）distance $=4.3$ light years．

Stars of both greatest proper motion and greatest radial velocity so far as known ：＊Cordova， V 243 ；proper motion $=8.70^{\prime \prime}$ in position angle 130° radial velocity +242 Km ．per sec．（Camp－ bell，Stellar Motions，1913）．Parallax $=0.319^{\prime \prime}$（Gron．Publ．24，also proper motion）．Distance $=$ 10.2 light years．

Average velocities with regard to center of gravity of the stellar system，according to Camp－ bell（Stellar Motion，1913）：

Sun＇s magnitude $=-26.5$ ，sending the earth $90,000,000,000$ times as much light as the star Aldebaran．

$$
\left.\begin{array}{c}
\text { Ratio of total radiation of sun to that of moon about } 100,000 \text { to I } \\
\text { " } " \text { light }
\end{array}\right\} \text { Langley. }
$$

[^17]
Smithsonian Tableg．

TERRESTRIAL MAGNETISM.

Seoular Change of Declination.

Changes in the magnetic declination between 18io, the date of the earliest available observations, and igio, for one or more places in each state and territory.

State.	Station.	1810	1820	1830	1840	1850	1860	1870	1880	1890	1900	1910
Ala. Alas.		-	\bigcirc	-	\bigcirc	-	\bigcirc	-	-	\bigcirc	-	0
	Montgomery	5.6E	5.8E	5.8 E	5.6 E	$5 \cdot 4 \mathrm{E}$	5.0 E	4.5 E	3.9 E	3.2 E	2.8 E	2.9 E
	Sitka	-		-			28.7 E	29.0 E	29.3 E	29.5 E	29.7 F	30.2 E
	Kodiak	-	-	-	-		26.1E	25.6 E	25.1 E	24.7 E	24.4 E	24.1E
	Unalaska	-	-	-		-	20.4E	20.1 E	19.6 E	19.0E	18.3 E	17.5E
	St. Michael	-	-	-	-	-	-	-	24.7 E	23.15	22.15	2 T .4 E
Ariz.	Holbrook	-	-		-	13.6 E	13.7 E	13.8 E	13.7 E	13.4E	I3.5E	13.9E
	Prescott		-		-	13.3 E	13.5 E	13.7 E	13.6 E	13.5 E	13.7 E	I4.3E
Ark.	Little Rock	8.6 E	8.8 E	9.0 E	9.0E	8.8 E	8.6 E	8.2 E	7.6 E	7.0 E	6,6E.	6.9E
Cal.	Los Angeles	I2.1E	12.6E	13.2 E	13.6 E	14.0E	14.2 E	14.4 E	14.6E	I4.6E	14.9 E	15.5E
	San José	15.0 E	15.5 E	16.0E	16.4 E	16.8E	17.1E	17.3 E	${ }_{17.5} \mathrm{E}$	17.5 E	17.8 E	I8.5E
Cal.	Redding	15.6E	16.1E	16.6E	17.0E	17.4 E	17.8 E	18.1E	18.2 E	18.3E	18.6E	19.3 E
Colo.	Pueblo	-	-	-	-	13.8 E	13.8 E	r3.8E	13.5 E	13.0 E	12.9 E	13.3E
	Glenwood Sp.	-			-	16.1 E	16.2 E	16.3E	16.1E	15.7 E	15.6 E	I6.IE
Conn.	Hartford	5.IW	5.6W	6.1W	6.8 W	7.5 W	8.2 W	8.7 W	9.4 W	9.8 W	10.4 W	r. OW
Del.	Dover	1.6W	1.9W	2.3 W	2.8 W	3.4 W	4.0 W	4.7 W	5.3 W	5.9W	6.4 W	7.0W
D. C.	Washington	0.5E	0.3 E	0.0	0.5 W	1.0W	1.7 W	2.4 W	3.0W	3.6 W	4.2 W	4.7 W
Fla.	Jacksonville	5.rE	$5 . \mathrm{IE}$	4.9 E	4.6 E	4.2 E	3.7 E	3.1 E	2.4 E	1.8E	I.3E	I. 2 E
	Pensacola	7.7 E	7.8 E	7.7 E	7.5 E	7.2 E	6.8 E	6.2 E	5.6 E	5.0 E	4.5 E	4.4 E
	Tampa	6.4 E	6.2 E	5.9 E	5.5 E	5.0 E	4.5 E	3.9 E	3.3E	2.8 E	2.3 E	2.0 E
Ga.	Macon	5.9 E	5.9 E	${ }_{5.7} \mathrm{~F}$ E	5.4E	5.aE	4.5 E	3.9 E	3.2 E	2.6 E	2.1E	2.0 E
Haw.	Honolulu	-	-		-	9.4 E	9.4 E	9.5 E	9.8 E	Io.re	10.4 E	10.6 E
Idabo	Pocatello	-	-	-		17.4 E	17.7 E	17.8 E	17.9 E	17.7 E	17.8 E	18.4 E
	Boise	-	-	-	-	18.0 E	18.4 E	18.6 E	18.7 E	18.6 E	18.8E	19.4 E
Ill.	Bloomington	6.3 E	6.5 E	6.6 E	6.5 E	6.3 E	5.9 E	5.4 E	4.7 E	4.1E	3.6 E	3.4 E
Ind.	Indianapolis	5.0 E	5.1E	5.0 E	4.7 E	4.4 E	3.8 E	3.2 E	2.6 E	2.08	1.4 E	r.rE
Ia.	Des Moines	-	10.2 E	10.4E	ro.5E	10.4 E	T0.2E	9.7 E	9.1E	8.4 E	7.9 E	8.rE
Kans.	Emporia	-	-	-	-	17.6E	II.5E	II. 2 E	10.7 E	ro.iE	9.8 E	Io.iE
	Ness City	-			-	12.4 E	12.4 E	12.2E	II.9E	11.4E	In.IE	It.4E
Ky.	Lexington	4.5 E	4.5 E	4.4 E	4.rE	3.6 E	3.15	2.5 E	1.9 E	1.2 E	0.7 E	0.5 E
	Princeton	6.8 E	7.0 E	7.0 E	6.8 E	6.5 E	6.15	5.6 E	5.0 E	4.3 E	3.8 E	3.7 E
La.	Alexandria	8.4 E	8.7 E	8.8E	8.8 E	8.7 E	8.4 E	8.0 E	7.4 E	6.9 E	6.6 E	6.8 E
Me.	Eastport	13.6 W	14.4 W	r5.2W	r6.0W	17.aW	17.7 W	18.2W	18.6W	18.7W	r9.0W	19.4W
	Portland	9.0 W	0.6 W	ro.3W	ri.oW	11.6W	12.3W	12.8W	13.4W	13.9W	14.4W	r4.8W
Md.	Baltimore	0.9 W	I.IW	ז. 4 W	1.9W	2.4 W	3.1W	3.8W	4.4 W	5.0W	5.6W	6.rW
Mass.	Boston	7.3 W	7.8W	8.4 W	9.15	9.8W	10.5W	Ir.oW	1 t .5 W	12.0W	12.6 W	13.1W
Mich.	Pittsfield	5.7 W	6.1W	6.7 W	7.4 W		8.7 W	9.3W	10.0W	10.4W	ri.ow	51.5W
	Marquette	-	6.7 E	6.7 E	6.5 E	6.0 E	5.4E	4.6 E	3.8 E	3.0 E	2.3 E	2.0 E
	Lansing		4.2 E	4.15	3.8 E	3.3E	2.8 E	2.15	1.3E	0.5 E	0.0 E	0.4 E
Minn.	Northome	-	10.4 E	ro. 7 E	${ }^{10.8 E}$	10.7 E	10.4 E	I0.0E	9.3 E	8.6 E	8.0 E	8.rE
	Mankato	-	If.3E	11.6E	II.7E	11.6E	II.3E	ro.9E	10.4E	9.5 E	9.0 E	9.1E

[^18]TERRESTRIAL MAGNETISM (continued).
Seoniar Change of Daclinatlon (continued).

State.	Station.	1810	1820	1830	1840	1850	1860	1870	1880	1890	1900	1910
		\bigcirc	-	-	-	\bigcirc	\bigcirc	\bigcirc	-	-	-	\bigcirc
Miss. Mo. Mont.	Jackson	8.2E	8.4 E	8.5 E	8.4 E	8.2 E	7.9 E	7.5 E	6.9 E	6.4 E	6.0 E	6.2 E
	Sedalia	-	I0.0E	10.2 E	10.2 E	10.1E	9.8 E	9.4 E	8.7 E	8.0E	7.6 E	7.9 E
	Forsyth	-	-	-	18.2 E	18.5 E	18.6 E	18.6E	18.4 E	17.9 E	17.8 E	18.3E
	Helena	-		-	18.9 E	19.3 E	19.6 E	19.8 E	19.6E	19.4E	19.5 E	20.0E
Nebr.	Hastings	-	II.6E	12.0 E	12.1E	12.1E	12.0E	11.7 E	II.2E	10.5 E	10.2 E	Io.5E
Nebr.	Alliance	-	-	-	-	15.4 E	15.4E	15.3 E	14.8E	14.3 E	14.2E	I4.5E
Nev.	Elko	-	-		-	17.3 E	17.6 E	17.7 E	17.7 E	17.6 E	17.8 E	18.3E
	Hawthorne					16.3 E	16.6 E	16.9 E	17.0 E	17.0E	17.3 E	17.8E
N. H.	Hanover	7.1W	7.5W	8.2W	8.9 W	9.8W	10.5W	II.IW	I1.6W	12.0 W	12.5 W	13.0W
N. J.	Trenton	2.8 W	3.15	3.5 W	4.1 W	4.7 W	5.4 W	6.0W	6.7 W	7.2W	7.8W	8.4 W
N. M.	Santa Rosa	-	-	-	-	12.7 E	12.8 E	12.7 E	12.5E	I2.1E	12.0 E	12.4E
	Laguna	5.6 W	5.8 W	6.3 W	6.0W	13.4 E	13.6 E	13.6 E	13.4 E	13.0 E	13.0 E	13.5 E
N. Y.	Albany	5.6 W	5.8W	6.3W	6.9 W	7.6W	8.4 W	9.1 W	9.8W	10.2 W	10.8 W	II.4W
	Elmira	2.2 W	2.4 W	2.8W	3.3 W	4.0 W	4.8W	5.4 W	6.3W	7.0W	7.6 W	8.rw
N.C.	Newhern	1.7E	1.6E	1.3E	0.8E	0.3 E	0.3 W	1.0W	1.6 W	2.2 W	2.8 W	3.3W
N. C. N. Dak.	Salishury	3.9E	3.8E	3.6 E	3.2 E	2.7 E	2.15	1.5 E	0.8 E	0.2 E	$0.4 W$	0.7 W
	Jamestowa	-		-	-	14.5 E	14.3 E	14.0E	13.5 E	12.7 E	12.4 E	12.8E
	Dickinsoo	-			-	17.6 E	17.6 E	17.4 E	17.0E	16.4E	16.2E	16.6E
Ohio Okla.	Columbus	3.4 E	$3 \cdot 4 \mathrm{E}$	3.2 E	2.9 E	2.4 E	1.8E	1.2E	0.6 E	0.0	0.7 W	1.1W
	Okmulgee	-	-	-	-	10.2E	10.1E	9.8 E	9.4 E	8.8 E	8.5 E	8.9E
Okla. Oreg.	Enid	-	-	-	-	11.2E	11.1E	10.9 E	10.5 E	9.9E	9.7 E	10.1E
	Sumpter	-	-	-	-	19.3 E	19.7 E	20.0 E	20.2 E	20.2E	20.4 E	21.0 E
	Detroit	16.7 E	17.4 E	18.0 E	18.6 E	19.2 E	19.7 7	20.1 E	20.4 E	20.5E	20.8E	21.5 E
Pa.	Pbiladelphia	2.2 W	2.4 W	2.8W	3.4 W	4.1W	4.8 W	5.5W	6.3W	6.8W	7.4 W	8.0W
	Altoona	0.5 W	0.6 W	0.9 W	1.3W	I.8W	2.4 W	3.1W	3.8W	4.5W	5.1W	5.6W
P. R.	San Juan	-							-	-	1.0W	2.0W
R. I,	Newport	6.6W	7.IW	7.7 W	8.4 W	9.1W	9.8W	10.3W	10.8W	II.3W	11.9 W	12.4W
$\begin{aligned} & \text { S. C. } \\ & \text { S. D. } \end{aligned}$	Columbia	4.4 E	4.3 E	4.1E	3.7 E	3.2 E	2.75	2.1E	1.4E	0.8E	0.2 E	0.1 W
	Huron		-	-	I3.1E	13.1E	12.9 E	12.6 E	12.IE	11.4 E	II.1E	11.4E
	Rapid City				-	16.4 E	16.4E	16.3E	15.8 E	15.3E	15.1E	15.4 E
Tean.	Chattanooga	5.3E	5.3 E	5.1E	4.8 E	4.4 E	3.9 E	3.3 E	2.6 E	2.0 E	I.5E	1.3E
	Huntington	-	$7 \cdot 4 \mathrm{E}$	7.4 E	7.3 E	7.0 E	6.6 E	6.15	5.5E	4.9 E	4.4 E	4.3 E
Tex.	Houston	-	8.9 E	9.2 E	9.3 E	9.3E	9.2E	8.9 E	8.5 E	7.9 E	7.7 E	8.IE
	Saa Antonio	-	-	9.6 E	9.8 E	9.9 E	9.8 E	9.6 E	9.3E	8.9 E	8.7 E	9.IE
	Pecos	-	-	10.8 E	II.0E	II.IE	II.IE	II. 0 E	10.8 E	10.4 E	10.3 E	${ }_{10.7 \mathrm{E}}$
Tex.Utah	Floydada	-	-	-	-	11.3E	II.3E	II.2E	10.9 E	10.4E	10.3E	10.7 E
	Salt Lake	-	-	-		16.4 E	16.6 E	16.7 E	16.5 E	I6.3E	16.5 E	17.0 E
$\begin{aligned} & \text { Vt. } \\ & \text { Va. } \end{aligned}$	Rutland	6.8W	7.2W	7.8W	8.5W	9.2W	Io.0W	10.6 W	11.2W	11.6 W	12.1W	${ }_{12.7}{ }^{\text {W W }}$
	Richmoad	0.8 E	0.6 E	0.3W	0.rW	0.6 W	1.2W	1.8W	2.5 W	3.1W	3.7 W	4.2 W
	Lynchhurg	1.9E	1.8E	1.6E	1.2E	0.8E	0.2 E	0.5 W	1.2W	1.8W	2.4 W	2.8 W
Wash.	Wilson Creek					21.3 E	21.6 E	21.9 E	21.9 E	22.1E	22.4 E	22.9E
	Seattle	$\mathrm{Ig} \mathrm{IE}$	19.7 E	20.3 E	20.8 E	21.3E	21.8 E	22.1E	22.3 E	22.6 E	23.0 E	22.9E
w. Va. Wis. Wyo.	Charleston	2.3 E	2.2 E	2.0 E	1.6E	I.IE	0.5 E	0.2 W	0.9 W	1.5 W	2.10	2.6 W
		-	8.6 E	8.7 E	8.6E	8.3 E	7.8 E	7.2 E	6.4 E	5.6 E	5.0E	4.9 E
	Douglas		-	-	-	15.8 E	16.0 E	16.0 E	15.8 E	15.4E	15.3 E	15.7E
	Green River		-	-	-	16.8 E	17.0 E	17.0 E	16.9 E	16.6 E	16.6E	17.0E

Smithsonian Tasles.

Tables 93-94.
TERRESTRIAL MAGNETISM (continued).
TABLE 98. - DIp or Inclination.
This table gives for the epoch January 1, 1905, the values of the magnetic dip, 1, corresponding to the longitudes west of Greenwich in the heading and the north latitudes in the first column.

	65°	70°	75°	80°	85°	90°	95°	100°	$105{ }^{\circ}$	$110{ }^{\circ}$	$115{ }^{\circ}$	120°	125 ${ }^{\circ}$
-	-	-	\bigcirc	\bigcirc	-	\bigcirc	-	-	0	-	-	-	\bigcirc
19	-	-	48.8	49.1	47.5	46.3	44.8	44.2	43.9	-	-		-
21	-	-	51.0	51.1	50.0	49.3	48.2	47.0	46.5	-	-		-
23	-	-	53.7	53.0	52.4	51.8	50.7	49.6	48.8	48.2	-	-	-
25	-	-	56.3	56.0	55.0	54.5	53.2	52.4	51.5	50.6	49.8	48.3	-
27	-	-	58.9	58.1	57.6	56.8	55.6	54.7	53.9	53.1	52.6	51.0	-
29	-	60.7	61.0	60.2	59.8	58.9	58.2	57.2	56.2	55.5	54.8	53.7	
31	-	63.0	63.1	62.6	62.0	6 I .3	60.6	59.6	58.7	57.7	56.7	56.0	-
33	-	65.0	65.0	64.6	64.0	63.5	62.7	62.0	61.0	59.8	58.9	58.1	-
35	-	67.0	66.9	66.5	66.0	65.6	64.9	63.7	62.7	62.3	61.0	60.2	-
37	-	68.6	68.9	68.6	68.2	67.7	66.9	66.2	65.1	64.6	62.9	62.2	-
39	-	70.3	70.6	70.4	70.2	69.7	68.8	68.1	67.2	66.1	65.0	64.0	62.8
41	-	71.8	72.2	72.2	71.9	7 I .4	70.8	69.8	68.9	67.8	66.8	65.6	64.7
43	-	73.5	73.9	74. 1	73.8	73.3	72.6	71.6	70.7	69.6	68.6	67.5	66.3
45	$74 \cdot 4$	74.8	75.6	75.5	75.4	75.0	74.3	73.6	72.4	71.5	70.3	69.2	68.1
47	75.7	76.2	76.9	76.8	76.9	76.8	76.0	75.2	74.2	73.0	71.8	70.8	69.9
49	76.8	78.1	78.2	78.3	78.7	78.1	77.5	76.8	75.8	74.5	73.5	72.3	71.4

TABLE 94. - Secular Ohange of Dip.

Values of magnetic dip for places designated by the north latitndes and longitudes west of Greenwich in the first two columns for January Ist of the years in the heading. The degrees are given in the third column and minutes in the succeeding columns.

Latitude.	Longitude.		1855	1860	1865	1870	1875	1880	1885	1890	1895	1900	1905	1910
\bigcirc	0	\bigcirc	,	,	,	,	,	,	,	,	,	,	,	,
25	80	55+	49	49	48	46	43	40	35	35	39	48	60	77
25	110	49+	08	20	30	39	46	55	6 I	68	76	86	96	106
30	83	$60+$	66	70	73	74	73	67	57	51	53	63	78	96
30	100	57+	44	49	58	67	70	65	60	61	68	77	90	105
30	115	54+	53	62	69	71	70	72	75	79	85	91	96	101
35	80	66+	57	58	57	54	45	35	26	21	20	22	30	38
35	90	$65+$	65	59	51	44	37	32	26	25	25	27	36	48
35	105	$62+$				32	30	24	24	24	28	34	42	50
35	120	$60+$	$\bigcirc 3$	06	08	08	O7	06	08	11	13	14	12	08
40	75	$71+$	82	82	78	73	65	55	43	33	27	24	24	24
40	90	70+	30	31	34	37	36	32	29	26	25	26	30	36
40	105	$67+$	3	$\frac{-}{4}$	6	56	53	51	51	51	52	56	60	65
40	120	$64+$	If	48	46	44	44	44	44	44	45	45 28	48	20
45	65	74+	116	110	IOI	92 90	80	68 73	57 62	46 53	35 43	28 38	24 36	20 34
45	75	75+	103	99	95	90	85	73	62	53	43	3	3	34
45	90	74+	8 I	8r	8I	79	77	75	68	63	61	59	60	60
45	105	$72+$			-			22	20	20	21	22	24	27
45	122.5	68+	35	34	37	40	40	39	37	34	30	26	24	20
49	92	78+	26	25	24	22	20	20 19	15	12 19	119	19 19	18	16 16
49	120	$72+$	-	26	24	22	22	19	20	19	19	19		

Gmithsonian Tables.

TERRESTRIAL MAGNETISM (comtinued).

TABLE 96.-Horizontal Intensity.

This table gives for the epoch January \mathbf{I}, 1905 , the horizontal intensity, H, expressed in C. G. S. units, corresponding to the longitudes in the heading and the latitudes in the first column.

	65°	70°	75°	80°	85°	90°	95°	100°	105°	110°	$115{ }^{\circ}$	120°	125°
19	-	-	. 307	. 314	. 319	-322	. 328	-332	.331				
21	-	-	- 301	. 309	. 314	. 316	. 320	. 324	. 324				
23	-	-	. 293	. 303	- 305	-309	- 312	-315	-317	-320			
25	-	-	. 284	.292	. 295	. 299	. 304	- 307	. 308	. 309	$\begin{array}{r} \cdot 312 \\ \cdot 306 \end{array}$. 304	
27	-	-	. 274	. 280	. 286	. 289	. 296	. 298	-300	- 303	$\cdot 306$		
29	-	. 257	. 262	. 269	. 276	. 281	. 286	. 289	. 292	. 294	. 297	. 291	
3 I	-	. 246	. 251	.256	. 263	. 269	. 274	. 277	. 282	. 284	.285	. 282	
33	-	.233	.239	. 245	.251	.257	. 262	. 266	. 270	.273	. 274	. 274	
35	-	. 220	. 225	.232	. 240	. 242	. 248	. 253	. 256	.259	. 262	. 265	
37	-	. 208	. 209	. 218	. 222	. 226	. 232	. 238	. 245	. 246	.252	.251	
39	-	. 197	. 198	. 203	. 206	. 212	. 217	. 224	. 229	.237		. 242	
41	-	. 184	. 185	. 186	. 192	. 196	. 202	. 207	. 216	.223 210	. 228	. 240	.236 .226
43	-	. 170	.170	. 169	.175	. 178	.187	. 194	. 201	. 210	.215	. 222	. 226
45	.16I	. 157	. 155	. 156	. 157	. 162	. 169	.177	. 190	. 192	.199	. 208	. 215
47	. 145	. 144	. 140	. 142	. 142	150 .150	. 152	. 161	.170	. 180	. 188	. 196	. 201
49	. 131	. 129	. 125	. 126	. 124	. 129	.138	. 146	. 153	. 165	.175	. 182	.187

TABLE 98. - Secular Change of Horizontal Intensity.
Values of horizontal intensity in C. G. S. units for places designated by the latitude and longitude in the first two columns for January 1 of the years in the heading.

烒		1855	1860	1865	1870	1875	1880	1885	1890	1895	1900	1905	1910
25	$8{ }_{8}^{\circ}$	-3099	. 3086	. 3073	- 3057	-3042	. 3025	- 3008	. 2990	. 2970	. 2949	. 2920	. 2890
25	110	. 3229	. 3218	. 3204	. 3189	. 3170	. 3155	. 3143	-3130	. 3117	. 3104	- 3090	. 3075
30	83	. 2803	. 2795	. 2788	. 2780	. 2772	. 2763	. 2752	. 2740	. 2725	. 2706	. 2680	. 2644
30	100	-		.2961	. 2942	. 2924	. 2907	.2891	. 2877	. 2865	. 2850	. 2830	. 2804
30	II 5	. 3040	. 3026	. 3011	. 2996	. 2979	. 2964	. 2952	. 2940	. 2929	. 2920	. 29 то	. 2898
35	80	. 2384	. 2379	. 2374	. 2369	. 2367	. 2363	. 2359	. 2352	. 2347	. 2337	. 2320	. 2296
35	90		-	-	. 2462	. 2462	. 2461	. 2458	. 2455	. 2447	. 2437	. 2430	. 2399
35	105	-	-	-	-	. 2620	. 2608	. 2599	. 2590	.2583	. 2573	. 2560	. 2544
35	120	80	88	I	. 2720	. 2707	. 2695	. 2683	. 2672	. 2663	. 2656	. 2650	. 2644
40	75	.1880	. 1883	.1891	. 1902	.19II	.1919	. 1925	. 1930	.193I	.1928	. 1920	. 1909
40	90	-	. 2086	. 2082	. 2079	.2076	. 2075	. 2074	. 2072	. 2068	. 2060	. 2050	. 2036
40	105	-		-	. 2272	. 2266	. 2261	. 2257	. 2253	. 2248	. 2240	. 2230	. 2217
40	120	-			. 2429	. 2420	.2412	. 2406	. 2399	. 2392	. 2386	. 2380	. 2379
45	65	. 1504	. 1514	.1525	. 5537	. 1553	. 1567	.1578	. 588	. 1600	. 1608	. 1610	. 1610
45	75	.I483	. 1485	. 1488	. 1495	. 1506	.1516	. 1527	.1538	. 546	. 555°	.1550	. 554
45	90	-	.1635	. 1633	.1631	. 1628	. 1626	. 1624	. 1623	. 1624	. 1623	. 1620	. 1616
45	105	-	-	2162	. 1920	.1919	. 1918	. 1916	.1913	. 1910	. 1906	. 1900	. 1892
45	122.5	. 2175	. 2170	. 2162	.2153	. 2145	. 2135	2127	. 2121	. 2117	. 2115	. 2115	. 2115
49	92	.1332	$.133{ }^{\circ}$.1328	. 1324	. 1321	.1319	. 1318	.1318	.1321	${ }^{1} 1324$.1330	
49	120	.184r	.1841	. 1840	. 1839	.1836	.183I	. 1826	.1821	.1819	. 1820	. 1820	. 1824

Smithsonian Tables.

TERRESTRIAL MAGNETISM (conlinued).
TABLE 97. - Total Intensity.
This table gives for the epoch January 1,1905 , the values of total intensity, F, expressed in C. G. S. units corresponding to the longitudes in the heading and the latitudes in the first column.

	65°	70°	75°	80°	85°	90°	95°	100°	105°	110°	$115{ }^{\circ}$	120°	125°
\circ 19	-	-	. 466	. 480	. 472	. 466	. 462	. 463	. 459				
2 I	-	-	. 478	. 492	. 489	. 485	. 480	. 475	. 471	-	-		-
23	-	-	-495	. 504	. 500	. 500	. 493	. 486	-481	. 480	-		-
25	-	-	. 512	. 522	. 514	. 515	. 507	. 503	-495	. 487	.483	457	-
27	-	-	. 530	. 530	. 534	528	.524	. 516	. 509	. 505	. 504	474	-
29	-	. 525	. 540	. 541	- 549	544	. 543	- 534	. 525	. 519	. 515	. 492	-
31	-	. 542	. 555	-556	- 560	. 560	-558	. 547	. 543	. 531	. 519	. 504	-
33 35	-	. 551	. 566	-571	. 572	. 576	$\cdot 571$. 567	. 557	. 543	. 530	. 518	-
35 37	-	. 563	. 574	. 582	. 590	586	$\cdot 584$. 57 I	-558	. 557	. 540	. 533	-
37	-	. 570	.581	. 598	. 598	. 596	. 591	. 590	. 582	. 573	- 553	. 538	
39	-	. 584	. 596	. 605	. 608	. 611	. 600	. 600	. 591	. 585	. 568	. 552	. 536
41	-	. 589	. 605	. 608	. 618	. 614	. 614	. 600	. 600	. 590	. 579	.581	. 552
43		. 599	.613	.617	. 627	. 619	. 625	. 614	. 608	. 602	. 589	. 580	. 562
45	. 599	. 599	. 623	. 623	. 623	. 626	. 624	. 627	. 628	. 605	. 590	. 586	. 576
47	. 587	. 604	.618	. 622	. 626	. 657	. 628	.630	. 624	. 616	. 602	. 596	. 585
49	. 574	. 626	.611	. 621	. 633	. 626	. 638	. 639	. 624	.617	. 616	- 599	. 588

TABLE 98. - Secular Change of Total Intensity.
Values of total intensity in C. G. S. units for places designated by the latitudes and longitudes in the first two columns for January I of the years in the heading. (Computed from Tables 92 and 94 .)

$\left\lvert\, \begin{aligned} & \text { Lati- } \\ & \text { tude } \end{aligned}\right.$	Longitude.	1855	1860	1865	1870	1875	1880	1885	1890	1895	1900	1905	1910
25	80	. 5516	. 54		. 543	. 540	. 5364		. 5290	. 5264	. 5247	. 5222	. 5206
25	110	. 4935	. 4938	. 4933	. 4925	. 4908	. 4904	. 4891	. 4883	. 4876	. 4873	. 4868	. 4860
30	83	. 5800	. 5796	. 5790	. 5777	. 5757	. 5720	. 5668	. 5625	. 5600	. 5590	. 5581	. 5559
30	100			. 5583	. 5570	. 5544	. 5499	. 5456	. 5432	. 5427	. 542 I	-5416	. 5405
30	115	. 5285	. 5280	. 5269	. 5247	. 5215	-5194	. 5179	:5167	. 5160	. 5158	.5151	. 5140
35	80	. 6089	. 6080	. 6063	. 6038	. 5996	. 5946	. 5900	. 5863	. 5874	. 5830	. 5818	. 5789
35	90	-	-	,	. 5991	. 5964	. 5942	. 5912	. 5901	. 5888	- 5865	. 5858	$\cdot 5852$
35	105.					. 5674	. 5629	. 5610	. 5590	. 5588	. 5585	-5582	$\cdot 5572$
35	120				. 5462	. 5433	. 5406	. 5388	. 5374	.5361	. 5350	. 5332	. 5309
40	75	. 6206	. 6216	6220	. 6227	. 6212	. 6182	. 6136	. 6098	. 6070	. 6045	.6019	. 5985
40	90	-	. 6254	. 6258	. 6264	. 6250	. 6226	. 6208	. 6187	.6170	. 6151	.6141	. 6135
40	105	-	.	-	. 6048	. 6019	. 5997	. 5986	. 5976	. 5967	. 5963	. 5953	- 5940
40	120	-			. 5691	. 5670	. 5651	. 5637	. 5620	. 5608	. 5593	-5590	-5591
45	65	.6188	. 6186	. 6167	. 6152	. 6134	. 6107	. 6077	. 6048	. 6019	. 6005	. 5987	. 6962
45	75	. 6454	.6431	. 6413	. 6404	. 6412	. 6363	. 6327	. 6306	. 6266	. 6247	. 6233	. 6235
45	90	-	. 6465	. 6457	. 6434	. 6408	. 6386	. 6330	.6291	. 6382	. 6264	. 6259	. 6244
45	105						. 6332	. 6314	. 6303	. 6299	. 6392	. 6284	. 6275
45	122.5	. 5956	. 5938	. 5930	. 5918	. 5896	. 5864	. 5834	. 58445	. 5776	. 6754	. 5745	. 5728
49	92	. 6643	. 6624	. 6608	. 6566	. 6533	. 6523	. 6472	. 6445	. 6451	. 6447	. 59850	. 5988
49	120	-	. 6100	. 6085	. 6071	. 6061	. 6028	. 6017	. 5995	- 5980	-5992	- 598	. 598

Smithsonian Tables.

The line of no declination appears to be still moving westward in the United States, but the line of no annual change is only a short distance to the west of it, so that it is probable that the extreme westerly position will soon be reached.

$\begin{aligned} & \text { Lat. } \\ & \text { N. } \end{aligned}$	Longitudes of the agonic line for the years -				
	1800	1850	1875	1890	1905
\bigcirc	-	0	-	\bigcirc	\bigcirc
25	-	-	-	75.5	76.1
30	-	-	-	78.6	79.7
35	-	76.7	79.0	79.9	81.7
6	75.2	$77 \cdot 3$	79.7	80.5	82.8
7	76.3	77.7	80.6	82.2	83.5
8	76.7	78.3	81.3	82.6	83.6
9	76.9	78.7	81.6	82.2	83.6
40	77.0	79.3	81. 6	82.7	84.0
1	77.9	80.4	81. 8	82.8	84.6
2	79.1	81.0	82.6	83.7	84.8
3	79.4	81.2	83.1	84.3	85.0
4	79.8	-	83.3	84.9	85.5
45	-	-	83.6	85.2	86.0
6	-	-	84.2	84.8	86.4
	-	-	85.1	85.4	86.4
8	-	-	86.0	85.9	86.5
9	-	-	86.5	86.3	87.2

Smithsonian Tables.

Table 100.

recent values of the magnetic elements at magnetic OBSERVATORIES.

(Compiled by the Department of Terrestrial Magnetism, Carnegie Institution of Washington.)

Place.	Latitude.	Longitude.	Middle of year.	Magnetic Elements.				
				Declination.	Inclination.	Intensity (C.G.S. units).		
						Hor'l.	Ver'l.	Total.
Pawlowsk	594 IN	3029 E	1907	109.9 E	7037.7 N	. 1650	. 4694	. 4975
Sitka	5703 N	135 20W	1910	3016.4 E	7432.2 N	. 5559	. 5637	$.5849$
Katharinenburg	57 O 3 N	6038 E	1907	1035.5 E	7052.2 N	. 1762	. 5081	. 5378
Rude Skov	55 5IN	$122_{27} \mathrm{E}$	1910	928.7 W	68 45.0N	. 1738	. 4468	. 4794
Eskdalemuir	$55 \mathrm{I9N}$	312 W	1911	1812.4 W	69 37.1N	. 1685	. 4534	. 4837
Stonyhurst	53 51N	228 W	1912	17 03.6W	68 41.4N	. 1740	. 4460	. 4787
Wilhelmshaven	5332 N	809 E	1910	1137.0 W	6730.5 N	.18ı2	. 4377	. 4737
Potsdam	5223 N	1304 E	1912	845.9 W	6620.4 N	. 1880	.4291	. 4685
Seddin	5217 N	13 O1E	1912	847.2 W	6617.4 N	. 1884	. 4290	. 4685
Irkutsk	52 r 6 N	104 16E	1905	158.1 E	7025.0 N	. 2001	. 5625	. 5970
De Bilt	5206 N	5 IIE	1910	1258.2 W	6646.5 N	. 1854	.4321	. 4702
Valencia	5156 N	10 r 5 W	1911	2038.1 WW	6812.1 N	.1789	. 4473	.4817
Clausthal	5148 N	1020 E	1905	1040.3 W			. . .	
Bochum	5129 N	714 E	1911	1148.3 W				
Kew	5128 N	- 19W	1911	1555.3 W	66 57.2N	. 1850	. 4349	. 4726
Greenwich	5128 N	000	1911	1533.0 W	6652.1 N	. 1852	. 4337	. 4716
Uccle	5048 N	42 IE	1911	13139 W	66 oo.rn	. 1902	. 4273	. 4677
Hermsdorf	5046 N	1614 E	1912	706.9 W		.		
Beuthen	5021 N	1855 E	1908	6 I 2.3 W				
Falmouth	5009 N	505 W	1912	1724.2 W	6626.6 N	. 1880	. 4312	. 4704
Prague	5005 N	1425 E	1910	809.6 W			...	
Cracow	5004 N	1958 E	1911	518.1 W	6415.5 N			
St. Helier (Jersey)	$49 \mathrm{I2N}$	205 W	1907	1627.4 W	6534.5 N			
Val Joyeux	48 49N	2015	1911	14 17.6W	64 41.6N	. 1974	.4176	. 4619
Munich	48 ogN	1137 E	1910	931.5 W	$6308.4 N$. 2064	. 4075	. 4568
Kremsmünster	4803 N	14 O8E	1904	902.4 W		-	
O'Gyalla (Pesth)	4753 N	$18 \mathrm{I2E}$	1911	625.6 W		. 2107		
Odessa	46 26N	3046 E	1910	$335-9 \mathrm{~W}$	6226.9 N	. 2171	.4161	. 4693
Pola	4452 N	1351 E	1911	8 I .5 W	6003.6 N	. 2216	.3853	. 4446
Agincourt (Toronto)	43 47N	79 16W	1910	603.9 W	74 38.5N	. 1627	. 5923	. 6142
Perpignan	4242 N	253 E 44	1910	1244.8 W 244.6 E		. 2545		. 4557
Tiflis		44 14 4 185 5	1905	24 tr 6E	5602.8 N 5611.7 N	. 2545	.3780	. 4557
Capodimonte	4052 N 4049 N	$1415 E$ 0 O	1911	1318.6 W	$5611.7 N$ 5754.8 N	. 2326	. 3709	. 4378
Coimbra	$40 \mathrm{4gN}$ $40 \mathrm{I2N}$	825 W	191I	1627.4 W	58 46.4N	.2301	. 3795	. 4438
Mount Weather	39 04N	7753 W	1908	339.2 W				
Baldwin	3847 N	95 IOW	1908	833.0 E	68 47.8N	. 2171	. 5597	. 6003
Cheltenham	3844 N	76 50W	1910	5 41.4W	7035.4 N	. 1983	. 5626	. 5966
Athens	3759 N	2342 E	1908	453.0 W	52 II .7 N	. 2620	.3361	. 4262
San Fernando	3628 N	612 W	1911	1505.2 W	5431.5 N	. 2489		
Tokio	354 IN	13945 E	1910	458.2 W	4907.3 N	. 3001	. 3467	. 4585
Tucson	32 I 5 N	11050 W	1910	1325.8 E	59 I 9.6 N 45 6.6 N	. 2741	-4621	- 5372 .4726
Zi-ka-wei	3 I 12 N	12126 E	1907	233.6 W	4536.6 N 43 54.8 N	. 33206	. 3377	.4726 .4617
Dehra Dun Helwan	3019 N 2952 N	7803 E	1910	231.9 E 225.4 W	4354.8 N 4043.7 N	.3326 .3006	. 32588	.4617 .3967
Barrackpore	22 226 N	8822 E	1910	$\bigcirc 55.5 \mathrm{E}$	3042.2 N	. 3733	. 2217	. 4342 L
Hongkong	22 I 8 N	11410 E	rgro	- 00.4 E	3058.8 N	. 3711	. 2228	. 4328
Honolulu	2119 N	158 04W	1910	929.7 E	3947.2 N	. 2916	. 2428	. 3795
Toungoo	18 56N	9627 E	1910	- 29.9 F	2302.1 N	.3880 .3687	.1650 .1637	. 4216
Alibág	1838 N	7252 E 6526 W	1912	051.2 E 220.6 W	2356.1 N	. 3887	.1637 .3424	$\begin{aligned} & .4034 \\ & .4478 \end{aligned}$
Vieques	1809 N	65 26W	1910	220.6 W 0 0	49 16 18.2 N	. 28886	- 3424	$\begin{aligned} & .4478 \\ & .398 \mathrm{I} \end{aligned}$
Antipolo Kodaikanal	1436 N 10	12 I 10 E	1911	O 40.9 E 0 55.0 W	$1618.2 N$ $345.2 N$	+ 38820	. 1117	.3981 . .3757
Batavia-Butenzorg	6 IIS	10649 E	1909	049.5 E	3109.2 S	. 3668	. 2218	. 4286
St. Paul de Loanda	848 S	1313 E	1910	16 r 2.3 W	$3532.2 \mathrm{~S}$. 2012	$\begin{aligned} & .1437 \\ & .2004 \end{aligned}$	$\begin{aligned} & .2473 \\ & .4086 \end{aligned}$
Samoa (Apia)	13485	171 47 472 E	1908 1907	9 9 48.71 .9 E	$\begin{aligned} & 2921.7 \mathrm{~S} \\ & 5405.7 \mathrm{~S} \end{aligned}$. 25561	. 2004	. 40819
Tananarive	1855 S 2006 S	4732 E 5733 E	1907 1911	929.7 W 9 8	54 53 3 $30.65 S$. 23331	.3499 .3151 .0617	$\begin{array}{r}.4319 \\ .3920 \\ \hline 2553\end{array}$
Mauritius			$\{1906$	855.3 W	1357.2 S	. 2477	.0617	. 2553
Rio de Janeiro	2255 S	43 IIW	$\{1910$	940.0 W -		

PRESSURE OF COLUMNS OF MERCURY AND WATER.

British and metric measures. Correct at $0^{\circ} \mathrm{C}$. for mercury and at $4^{\circ} \mathrm{C}$. for water.

Metric Measure.			British Measure.		
Cms. of Hg .	Pressure io grams per sq. cm.	Pressure in pounds per sq. inch.	Inches of Hg.	Pressure in grams per sq. cm.	Pressure in pounds per sq. inch.
1	13.5956	0. 193376	1	34.533	0.491174
2	27.1912	0.386752	2	69.066	0.982348
3	40.7868	0.580128	3	103.598	1.473522
4	54.3824	0.773504	4	$13^{8.131}$	1. 964696
5	67.9780	0.966880	5	172.664	2.455870
6	81.5736	1.160256	6	207.197	2.947044
7	95.1692	1. 353632	7	241.730	$3 \cdot 438218$
8	108.7648	1. 547008	8	276.262	3.929392
9	122.3604	1.740384	9	310.795	4.420566
10	135.9560	1.933760	10	$345 \cdot 328$	4.911740
Cms. of $\mathrm{H}_{2} \mathrm{O}$.	Pressure in grams per sq. cm.	Pressure in pounds per sq. inch.	Inches of $\mathrm{H}_{2} \mathrm{O}$.	Pressure in grams per sq. cm.	Pressure in pounds per sq. inch.
1	I	0.0142234	1	2.54	0.036127
2	2	0.0284468	2	5.08	0.072255
3	3	0.0426702	3	7.62	0.108382
4	4	0.0568936	4	10.16	0.144510
5	5	0.0711170	5	12.70	0.180637
6	6	0.0853404	6	15.24	0.216764
7	7	0.0995638	7	17.78	0.252892
8	8	0.11137872	8	20.32	0.289019
9	9	0.1280106	9	22.86	0.325147
10	10	0.1422340	10	25.40	0.361274

Smithsonian Tables.

REDUCTION OF BAROMETRIC HEIGHT TO STANDARD TEMPERATURE.*

Corrections for brass scale and English measure.		Corrections for brass scale and metric measure.		Corrections for glass scale and metric measure.	
Height of barometer in inches.	a in inches for temp. F.	Height of barometer in mm.	$\begin{gathered} a \\ \text { in min. for } \\ \text { temp. C. } \end{gathered}$	Height of barometer in mm .	in mm, for temp. C.
15.0	0.00135	400	0.0651	50	0.0086
16.0	. 00145	410	. 0668	100	. 0172
17.0	. 00154	420	. 0684	150	. 0258
17.5	. 00158	430	. 0700	200	. 0345
18.0	. 00163	440	. 0716	250	. 0431
18.5	. 00167	450	. 0732	300	.0517
19.0	. 00172	460	. 0749	350	. 0603
19.5	. 00176	470	. 0765		
		480	. 0781	400	0.0689
20.0	0.00181	490	. 0797	450	. 0775
20.5 21.0	. 000185	500	0.0813	500 520	.0861
21.5	. 00194	510	. 0830	540	. 0930
22.0	. 00199	520	. 0846	560	. 0965
22.5	. 00203	530	. 0862	580	. 0999
23.0	. 02208	540	.0878		
23.5	. 00212	550	. 0894	600	0.1034
		560	.0911	610	. 1051
24.0	0.00217	570	. 0927	620	. 1068
24.5	. 00221	580	. 0943	630	. 1085
25.0	. 00226	590	. 0959	640	.1103
25.5	. 00231			650	. 1120
26.0	. 00236	600	0.0975	660	. 1137
26.5	. 02240	610	. 0992		
27.0	. 00245	620	. 1008	670	0.1154
27.5	. 00249	630	. 1024	680	.1172
		640	. 1040	690	.1189
28.0	0.00254	650	. 1056	700	. 1206
28.5	. 00258	660	. 1073	710	. 1223
29.0	. 00263	670	. 1089	720	. 1240
29.2	. 00265	680	. 1105	730	. 1258
29.4	. 00267	690	. 1121	740	0.1275
29.6 29.8	. 00278	700	0.1137	750	. 1292
30.0	. 00272	710	. 1154	760	. 1309
		720	. 1170	770	. 1327
30.2	0.00274	730	. 1186	780	. 1344
30.4	. 00276	740	. 1202	790 800	.1361 .1378
30.6	. 00277	750	. 1218	800	. 1378
30.8	. 00279	760	. 1235	850	0.1464
31.0	. 00281	770 780	. 1258	900	. 1551
31.2 31.4	. 00285	790	. 1283	950	. 1639
31.6	. 00287	800	. 1299	1000	.1723

*The height of the barometer is affected by the relative thermal expansion of the mercury and the glass, in the case of instruments graduated on the glass tube. and by the relative expansion of the mercury and the metalic inclosing case, usually or brass, in the case of instrumente go the tem on the brass case. This relative expansion is practically proportional to the first power perature. The above tables of values of the coefficient of relative expansion will be found to give corrections almost identical with those given in the International Meteorological Tables. The numbers tabulated under a are the values of a in the equation $H_{\prime}=H_{t^{\prime}}-a\left(t^{\prime}-t\right)$ where H_{t} is the height at the standard temperature, $H \prime^{\prime}$ the observed height at the temperature t^{\prime}, and a $\left(t^{\prime}-t\right)$ the correction for temperature. The standard temperature is $0^{\circ} \mathrm{C}$. for the metric system and $28^{\circ} .5 \mathrm{~F}$. for the English system. The English barometer is correct for the temperature of melting ice at a temperature of approximately $28^{\circ}, 5 \mathrm{~F}$., because of the fact that the brass scale is graduated so as to be standard at $62^{\circ} \mathrm{F}$., while mercury has the standard density at $32^{\circ} \mathrm{F}$.

EXfMPLE.-A barometer having a brass scale gave $H=765 \mathrm{~mm}$. at $25^{\circ} \mathrm{C}$. ; required, the coresponding reading at $0^{\circ} \mathbf{C}$. Here the value of a is the mean of . 1235 and .1251 , or .1243; $\cdot^{\circ} a\left(l^{\prime}-\ell\right)$ $=.1243 \times 25=3 . \mathrm{II}$. Hence $H_{0}=765-3.11=76 \mathrm{r} .89$.
N. B.-Although a is here given to three and sometimes to four significant figures, it ls seldom worth while to use more than the nearest two-figure number. In fact, all barometers have not the aame values for a, and when great accuracy is wanted the proper coefficieuts bave to be deter. mined by experiment.

CORRECTION OF BAROMETER TO STANDARD GRAVITY.
Altitude term. Correction is to be subtracted.

Bmithsonian Tableb.

REDUCTION OF BAROMETER TO STANDARD GRAVITY.*

Reduotion to Latitude 45°. - English Scaio.

N. B. From latitude 0° to 44° the correction is to be subtracted.

From latitude 90° to 46° the correction is to be added.

Latitude.		Height of the barometer in inches.											
		19	20	21	22	23	24	25	26	27	28	29	30
		Inch.											
0°	90°	0.051	0.053	0.056	0.059	0.061	0.064	0.067	0.069	0.072	0.074	0.077	0.080
5	85	0.050	0.052	0.055	0.058	0.060	0.063	0.066	0.068	0.071	0.073	0.076	0.079
6	84	. 049	. 052	. 055	. 057	. 060	. 062	. 065	. 068	. 070	. 073	. 076	. 078
8	83	. 049	. 052	. 054	. 057	. 059	. 062	. 065	. 067	. 070	. 072	. 075	. 077
8	82	. 049	. 051	. 054	. 056	. 059	. 061	. 064	. 067	. 069	. 072	. 074	. 077
9	8I	. 048	. 051	. 053	. 056	. 058	.06I	. 063	. 066	. 068	.071	. 073	. 076
10	80	0.048	0.050	0.053	0.055	0.058	0.060	0.063	0.065	0.068	0.070	0.073	0.075
11	79	. 047	. 049	. 052	. 054	. 057	. 059	. 062	. 064	. 067	. 069	. 072	. 074
12	78	. 046	. 049	. 051	. 054	. 056	. 058	.061	. 063	. 066	. 068	. 071	. 073
13	77	. 045	. 048	. 050	. 053	. 055	. 057	. 060	. 062	. 065	. 067	. 069	. 072
14	76	. 045	. 047	. 049	. 052	. 054	. 056	. 059	.067	. 063	. 066	. 068	. 071
15	75	0.044	0.046	0.048	0.051	0.053	0.055	0.058	0.060	0.062	0.065	0.067	0.069
16	74	. 043	. 045	. 047	. 050	. 052	. 054	. 056	. 059	. 061	. 063	. 065	. 068
17	73	. 042	. 044	. 046	. 049	.05I	. 053	. 055	. 057	. 060	. 066	. 064	. 066
18	72	. 041	. 043	. 045	. 047	. 050	. 052	. 054	. 056	.058	. 060	. 062	. 065
19	71	. 040	. 042	. 044	. 046	. 048	. 050	. 052	. 055	. 057	. 059	. 06 I	. 063
20	70	0.039	0.04I	0.043	0.045	0.047	0.049	0.051	0.053	0.055	0.057	0.059	0.06I
21	69	. 038	. 040	. 042	. 044	. 045	. 047	. 049	. 051	. 053	. 055	. 057	. 059
22	68	. 036	. 038	. 040	. 042	. 044	. 046	. 048	. 050	. 052	. 054	. 056	. 057
23	67	. 035	. 037	. 039	. 041	. 043	. 044	. 046	. 048	. 050	. 052	. 054	. 055
24	66	. 034	. 036	. 037	. 039	. 041	. 043	. 045	. 046	. 048	. 050	. 052	. 053
25	65	0.033	0.034	0.036	0.038	0.039	0.041	0.043	0.044	0.046	0.048	0.050	0.051
26	64	.03I	. 033	. 034	.036	. 038	. 039	. 041	. 043	. 044	. 046	. 048	. 049
27	63	. 030	. 031	. 033	. 034	.036	.038	. 039	. 041	. 042	. 044	. 045	. 047
28	62	. 028	. 030	. 031	. 033	. 034	. 036	. 037	. 039	. 040	. 042	. 043	. 045
29	61	. 027	. 028	. 030	. 031	. 032	. 034	. 035	. 037	. 038	. 039	. 041	. 042
30	60	0.025	0.027	0.028	0.029	0.031	0.032	0.033	0.035	0.036	0.037	0.039	0.040
31	59	. 024	. 025	. 026	. 027	. 029	. 030	. 031	. 032	. 034	. 035	. 036	. 037
32	58	22	. 023	. 025	. 026	. 027	. 028	. 029	. 030	. 032	. 033	. 034	. 035
33	57	. 021	. 022	. 023	. 024	. 025	. 026	. 027	. 028	. 029	. 030	. 03 3	. 032
34	56	. 019	. 020	. 021	. 222	. 023	. 024	. 025	. 026	. 027	. 028	. 029	. 030
35	55	0.017	0.018	0.019	0.020	0.021	0.022	0.023	0.024	0.025	0.025	0.026	0.027
36	54	. 016	. 016	. 017	. 018	. 019	. 020	. 021	. 021	. 022	. 023	. 024	. 025
37	53	. 014	. 015	. 015	. 016	.017	. 018	. 018	. 019	. 020	. 021	. 021	. 022
38	52	. 012	. 013	. 014	. 014	. 015	. 015	. 016	. 017	. 017	. 018	. 019	. 019
39	51	. 011	. 117	. 012	. 012	. 013	. 013	. 014	. 014	. 015	. 015	. 016	. 017
40	50	0.009	0.009	0.010	0.010	0.011	0.011	0.012	0.012	0.012	0.013	0.013	0.014
41	49	. 007	. 007	. 008	. 008	. 009	. 009	. 009	. 010	. 010	. 010	. 011	. 011
42	48	. 005	. 006	. 006	. 006	. 006	. 007	. 007	. 007	. 008	. 008	. 008	. 008
43	47	. 004	. 004	. 004	. 004	. 004	. 004	. 005	. 005	. 005	. 005	. 005	. .006
44	46	. 002	. 002	. 002	. 002	. 002	. 002	. 002	. 002	. 03	. 03	. 003	. 003

* " Smithsonian Meteorological Tables," p. 58.

Smithsonian Tables.

REDUCTION OF BAROMETER TO STANDARD GRAVITY.*

Reduction to Latitude 45°. Metrio Scalo.
N. B. - From latitude 0° to 44° the correction is to be subtracted.

From latitude 90° to $4^{5^{\circ}}$ the correction is to be added.

Latitude.		Height of the barometer in millimeters.											
		520	560	600	620	640	660	680	700	720	740	760	780
		mm.	mm.	mm.	m	mm .	mm.	mm.	mm.	mm.	mm.	mm.	
0°	90°	I. 38	1.49	1. 60	1.65	1.70	1.76	1.81	1.86	I. 92	1.97	2.02	2.08
5	85	1. 36	1.47	I. 57	т. 63	1.68	1.73	1.78	I. 84	1.89	1.94	1.99	2.04
6	84	1.35	1.46	1.56	1.6I	1.67	1.72	1.77	1.82	1. 87	1.93	1.98	2.03
7	83	1.34	1.45	I. 55	1.60	1. 65	1.70	1.76	I.81	1.86	1.91	I. 96	2.01
8	82	1.33	1.43	1.54	I. 59	1.64	1.69	1.74	1.79	1.84	I. 89	1.94	2.00
9	81	1.32	1.42	1. 5^{2}	I. 57	1.62	I. 67	1.72	1.77	1.82	1.87	1.92	1.97
10	80	I. 30	1.40	1.50	1.55	1.60	1. 65	1.70	1.75	1.80	1.85	1.90	1.95
11	79	1.28	1.38	1.48	I. 53	I. 58	1. 63	1.68	1.73	1.78	1.83	1.88	1.93
12	78	1.26	1.36	1.46	I. 51	I. 56	1.60	1.65	1.70	1.75	1.80	1. 85	1.90
13	77	1.24	I. 34	I. 44	I. 48	1. 53	I. 5^{8}	1.63	1.67	1.72	1.77	1.82	1.87
14	76	1.22	1.32	1.41	1.46	1.50	I. 55	1.60	1.65	1.69	1.74	1.79	1.83
25	75	I. 20	1.29	I. 3^{8}	1.43	1.48	1.52	1.57	1.61	1.66	1.71	1.75	1.80
16	74	1.17	1.26	I. 35	I. 40	1.44	1.49	I. 54	1.58	1.63	1.67	1.72	1.76
17	73	1.15	I. 24	I. 32	1.37	I. 41	1.45	1.50	1.54	I. 59	1.63	1.68	1.72
18	72	1.12	1.21	I. 29	I. 34	I. 38	1.42	I. 46	1.51	-1. 55	I. 59	1.64	1.68
19	71	1.09	1.17	1.26	1.30	1.34	1. 3^{8}	I. 43	1.47	1.51	1.55	I. 59	1.64
20	70	1.06	1.14	1.22	1.26	1.31	1.35	1.39	1.43	1. 47	1.51	1. 55	I. 59
21	69	1.03	I.II	1.19	1.23	1.27	I.31	I. 35	1.38	I. 42	1.46	1.50	I. 54
22	68	1.00	1.07	1.15	I.19	1.23	1.26	I. 30	1.34	1.38	1.42	1.46	1.49
23	67	0.96	1.04	I.II	1.15	I.18	1.22	1.26	1.29	1.33	1.37	1.41	I. 44
24	66	. 93	1.00	1.07	1.10	1.14	1.18	1.21	1.25	1.28	1.32	I. 35	1.39
25	65	0.89	0.96	1.03	1.06	1.10	1.13	1.16	1.20	1.23	1.27	1.30	1.33
26	64	. 85	. 92	0.98	1.02	1.05	1.08	I.II	1.15	1.18	1.21	1.25	1.28
27	63	.8I	. 88	. 94	0.97	1.00	1.03	1.06	1.10	1.13	1.16	1.19	1.22
28	62	. 77	. 83	. 89	. 92	0.95	0.98	1.01	1.04	1.07	1.10	1.13	1.16
29	61	. 73	. 79	. 85	. 87	. 90	. 93	0.96	0.99	1.02	1.04	1.07	1.10
30	60	0.69	0.75	0.80	0.83	0.85	0.88	0.91	0.94	0.96	0.98	1.01	1.04
31	59	. 65	. 70	. 75	. 77	. 80	. 82	. 85	. 87	. 90	. 92	0.95	0.97
32	58	. 61	. 65	. 70	. 72	. 75	. 77	. 79	. 82	. 84	. 86	. 89	. 91
33	57	. 56	. 61	. 65	. 67	. 69	. 71	. 74	.76	. 78	. 80	. 82	. 84
34	56	$\cdot 52$. 56	. 60	. 62	. 64	. 66	. 68	. 70	. 72	. 74	. 76	. 78
35	55	0.47	0.51	0.55	0.56	0.58	0.60	0.62	0.64	0.66	0.67	0.69	0.71
36	54	-43	. 46	. 49	. 51	. 53	. 54	. 56	. 58	. 59	.6I	. 63	. 64
37	53 52	. 38	. 41	. 44	. 45	-47	-48	. 50	. 51	. 53	. 54	. 56	. 57
38	52	. 33	- 36	. 39	. 40	. 41	. 43	. 44	. 45	. 46	. 48	. 49	. 50
39	51	. 29	.31	$\cdot 33$	- 34	. 35	. 37	. 3^{8}	. 39	. 40	.41	. 42	. 43
40	50	0.24	0.26	0.28	0.29	0.30	0.31	0.31	0.32	0.33	0.34	0.35	0.36
4 I	49	.19	. 216	. 22	. 23	. 24	. 24	. 25	. 26	. 27	. 27	. 28	. 29
42	48	. 14	. 16	.17	.17	. 18	. 18	. 19	. 19	. 20	. 21	. 21	. 22
43	47	. 10	. 10	. 11	. 12	.12	.12	. 13	. 3	. 13	. 14	. 14	. 14
44	46	. 05	. 05	. 06	. 06	. 06	. 06	. 06	. 07	. 07	. 07	. 07	. 07

* "Smithsonian Meteorological Tables," p. 59.

Smithsonian Tables.

Tables 106-107.
table 106. - Oorreotion of the Barometer for Oapillarity.*

i. Metric Measure.								
Diameter of tube in mm.	Height of Meniscus in Millimetrrs.							
	0.4	0.6	0.8	1.0	1.2	1.4	1.6	1.8
	Correction to be added in millimeters.							
	0.83	1.22	1.54	1.98	2.37	$\overline{-}$	-	-
5	. 47	0.65	0.86	1.19	1.45	1.80	-	-
6	. 27	.41 .28	. 56	0.78 .53	0.98	1.21 0.82	1.43 0.97	1.13
7	. 18	. 28	. 29	. 53	. 67	0.82 .56	0.97 .65	1.13 0.77
9	-	. 15	. 21	. 28	. 33	. 40	$\cdot 46$	$\cdot 52$
10	-	-	. 5	. 20	. 25	. 29	.33	. 37
11	-	-	.ro	.14	. 18	. 21	. 24	. 27
12	-	-	. 07	. 10	.13 .10	. 15	. 18	. 19
13	-	-	. 04	. 07	. 10		.13	
2. British Measure.								
Diameter of tube	Height of Meniscus in Inchis.							
	. 01	. 02	. 03	. 04	. 05	. 06	. 07	. 08
	Correction to be added in hundredths of an inch.							
. 15	2.36	4.70 2.20	6.86 3.28	9.23 4.54	11.56 5.94		-	-
. 20	1.10 0.55	2.20 I. 20	3.86 1.92	4.54 2.76	5.94 3.68	7.85 4.72	5.88	
. 30	$\stackrel{.}{ } \cdot \underline{ }$	0.79	1.26	1.77	2.30	. 2.88	3.48	4.20
. 35	-	. 51	0.82	1.15 0.81	1.49 r. 02 1.68	- ${ }_{\text {¢ }} \mathrm{I} .85$	2.24 1.42	2.65 1.62
. 40	-	. 40	. 61	0.81 .51	1. 02 0.68	1.22 0.83	1.42 0.96	1.62 1.15
. 45	-	-	. 32	. 515	$\begin{array}{r} \\ \hline \\ \hline\end{array}$. .83 .56	$\stackrel{.}{ }{ }^{\text {. }} 4$	-.71
. 55	-	-	. 08	. 20	$\cdot 31$. 40	. 47	$\cdot 52$

* The first table is from Kohlrausch (Experimental Physics), and is based on the experiments of Mendelejeff and Gutkowski (Jour. de Phys. Chem. Geo. Petersburg, 1877, or Wied. Beib. 1877). The second table has been calculated from the same data by conversion into inches and graphic interpolation.

Thable 107. - Volume of Meroury Menisens in Cu. Mm.

Height of meniscus.	Diameter of tube in mm.										
	14	15	16	17	18	19	20	21	22	23	24
${ }_{\text {mmı }} 1.6$			214	245	280	318	356	398	444	492	541 646
1.6	181	211	244	281	320	362	407	455	507	560	616
2.0	206	240	278	319	362	409	460	513	57 I	631	694
2.2	233	271	313	358	406	459	515	574	637 708	704	859
2.4	262	303	350	400	454	$5{ }_{565}$	573 633	76 706	782	862	948
2.6	291	33^{8}	388	444	503	50	633				

Scheel und Heuse, Amnalen der Physik, 33, p. 291, 1910.
Smithsonian Tables.

AERODYNAMICS.

The pressure on a plane surface normal to the wind is for ordinary wind velocities expressed by

$$
P=k w a v^{2}
$$

where k is a constant depending on the units employed, w the mass of unit volume of the air, a the area of the surface and v the velocity of the wind.* Engineers generally use the table of values of P given by Smeaton in 1759. This table was calculated from the formula

$$
P=.00492 v^{2}
$$

and gives the pressure in pounds per square foot when v is expressed in miles per hour. The corresponding formula when v is expressed in feet per second is

$$
P=.00228 \gamma^{2}
$$

Later determinations do not agree well together, but give on the average somewhat lower values for the coefficient. The value of w depends, of course, on the temperature and the barometric pressure. Langley's experiments give $k w=.00166$ at ordinary barometric pressure and $10^{\circ} \mathrm{C}$. temperature.

For planes inclined at an angle α less than 90° to the direction of the wind the pressure may be expressed as $\quad P_{a}=F_{a} P_{90}$.
Table 108, founded on the experiments of Langley, gives the value of F_{a} for different values of a. The word aspect, in the headings, is used by him to define the position of the plane relative to the direction of motion. The numerical value of the aspect is the ratio of the linear dimension transverse to the direction of motion to the linear dimension, a vertical plane through which is parallel to the direction of motion.

TABLE 108. - Valnes of P_{a} in Eqzation $P_{a}=F_{a} P_{90}$

Plane $z_{0} \mathrm{in} . \times 4.8 \mathrm{in}$. Aspect 6 (nearly).		Plane $12 \mathrm{in} . X_{12} \mathrm{in}$. Aspect 1 .		Plane 6 in. $\times 24$ in. Aspect 1 .	
a	F_{a}	α	F_{a}	α	F_{a}
0°	0.00	0°	0.00	0°	0.00
5	0.28	5	0.15	5	0.07
10	0.44	10	0.30	10	0.17
15	0.55	15	0.44	15	0.29
20	0.62	20	0.57	20	0.43
25	0.66	25	0.69	25	0.58
30	0.69	30	0.78	30	0.71
35	0.72	35	0.84	-	-
40	0.74	40	0.88	-	-
45	0.76	45	0.91	-	-
50	0.78	50	-	-	-

\footnotetext{
*The following pressures in pounds per square inch show roughly the influence of the shape and size of the resisting surface (Dines' results). The wind velocity was 20.9 miles per hour. The flat plates were zin. thick.

Square, sides 4 in . Circle, same area	$\text { . } 1.51$	Plate, 6 in. diam. 90° cone at back Same, cone in front
Rectangle, 16 in. by 1	$: \begin{aligned} & 1.5 \mathrm{I} \\ & 1.70 \end{aligned}$	sharp 30° cone at back
Square, 12 io. sides	r. 57	cone in front
Circle, same area	I. 55	5 in . Robinson cup
Rectaogl	1.59	Same, with back to wind
Square, sides 16	1.52	g in. cup on $6 \frac{1}{2} \mathrm{in}$. of $\frac{\mathrm{E}}{\text { ¢ }} \mathrm{in}$. rod 1.75
$\stackrel{\mathrm{P}}{ }$	1.45	Same, with back to wind 0.60
Sphere, 6 in.		24

Smithsonian Tables.

AERODYNAMICS.

On the basis of the results given in Table 108 Langley states the following condition for the soaring of an aeroplane 76.2 centimeters long and 12.2 centimeters broad, weighing 500 grams, - that is, a plane one square foot in area, weighing 1.1 pounds. It is supposed to soar in a horizontal direction, with aspect 6 .

TABLE 109. - Data for the Soaring of Planes $76.2 \times 12.2 \mathrm{cms}$. welghing 600 Grame, Appect 6,

Inclination to the horizontal a.	Soaring speed \boldsymbol{v}.		Work expended per minute		Weight of planes of like form, capa ble of soaring at speed η with the ex-penditure of one horse power.	
	$\begin{aligned} & \text { Meters per } \\ & \text { sec. } \end{aligned}$	Feet per sec.	Kilogram meters.	Foot pounds.	Kilograms.	Pounds.
2°	20.0	66	24	174	95.0	209
5	15.2	50	41	297	55.5	122
10	12.4	41			34.8 26.5	77
15 30	11.2 10.6	37	86 175	623 1268	26.5 13.0	58 29
30 45	10.6 11.2	$\begin{aligned} & 35 \\ & 37 \end{aligned}$	175 336	$\begin{aligned} & 1268 \\ & 2434 \end{aligned}$	13.0 6.8	$\begin{aligned} & 29 \\ & 15 \end{aligned}$

$$
\begin{aligned}
\text { In general, if } \rho & =\frac{\text { weight }}{\text { area }} \\
\text { Soaring speed } v & =\sqrt{\frac{\rho}{k} \cdot \frac{1}{F_{a} \cos a}} \\
\text { Activity per unit of weight } & =v \tan a
\end{aligned}
$$

The following data for curved surfaces are due to Wellner (Zeits. für Luftschifffahrt, x., Oct. 1893).

Let the surface be so curved that its intersection with a vertical plane parallel to the line of motion is a parabola whose height is about $\frac{1}{12}$ the subtending chord, and let the surface be bounded by an elliptic outline symmetrical with the line of motion. Also, let the angle of inclination of the chord of the surface be α, and the angle between the direction of resultant air pressure and the normal to the direction of motion be β. Then $\beta<\alpha$, and the soaring speed is $y=\sqrt{\frac{\rho}{\beta} \frac{I}{F_{a} \cos \beta}}$, while the activity per unit of weight $=v \tan \beta$.

The following series of values were obtained from experiments on moving trains and in the wind.

$$
\begin{array}{rrrrrr}
\text { Angle of inclination } \alpha=-3^{0} & 0^{0} & +3^{\circ} & 6^{\circ} & 9^{\circ} & 12^{\circ} \\
\text { Inclination factor } F_{a} & =0.20 & 0.50 & 0.75 & 0.90 & 1.00 \\
\tan \beta & =0.01 & 0.02 & 0.03 & 0.04 & 0.10 \\
0.17
\end{array}
$$

Thus a curved surface shows finite soaring speeds when the angle of inclination α is zero or even slightly negative. Above $a=12^{\circ}$ curved surfaces rapidly lose any advantage they may have for small inclinations.
Smithsonian Tables.

TABLE 110. - Friction.

The following table of coefficients of friction f and its reciprocal I / f, together with the angle of friction or angle of repose ϕ, is quoted from Raokine's "Applied Mechanics." It was compiled by Rankine from the results of General Morin and other anthorities, aod is sufficient for all ordinary purposes.

* Quoted from a paper by Jenkin and Ewing, "Phil. Trans. R. S." vol. $\mathbf{x 6 7}$. In this paper it is shown that in cases where" static friction" exceeds " kinetic friction" there is a gradual increase of the coefficient of friction as the speed is reduced towards zero.

TABLE 111. - Lubricants.

The best lubricants are in general the following: Low temperatures, light mineral lubricating oils. Very great pressures, slow speeds, graphite, soapstone and other solid lubricants. Heavy pressures, slow speeds, ditto and lard, tallow and other greases. Heavy pressures and high speeds, sperm oil, castor oil, heavy mineral oils. Light pressures, high speeds, sperm, refined petroleum olive, rape, cottonseed. Ordinary machinery, lard oil, tallow oil, heavy mineral oils and the heavier vegetable oils. Steam cylinders, heavy mineral oils, lard, tallow. Watches and delicate mechanisms, clarified sperm, neat's-foot, porpoise, olive and light mineral lubricating oils.

TABLE 112. - Lubricants For Cutting Tools.

Material.	Turning.	Chucking.	Drilling.	Tapping Milling.	Reaming.
Tool Steel,	dry or oil	oil or s. w.	oil	oil	lard oil
Soft Steel,	dry or soda water	soda water	oil or s. w.	oil	lard oil
Wrought iron	dry or soda water	soda water	oil or s. w.	oil	lard oil
Cast iron, brass	dry		dry	dry	dry
Copper	dry	dry	dry	dry	mixture
Glass	turpentine or kerosene				

Mixture $=1 / 3$ crude petroleum, $/ 3$ lard oil. Oil $=$ sperm or lard. Tables II and 112 quoted from "Friction and Lost Work in Machiaery and Mill Work," Thurston, Wiley and Sons. Smithsonian Tables.

Table 113.
 VISCOSITY.

The coefficient of viscosity is the tangential force per unit area of one face of a plate of the fluid which is required to keep up unit distortion between the faces. Viscosity is thus measured in terms of the temporary rigidity which it gives to the fluid. Solids may be included in this definition when only that part of the rigidity which is due to varying distortion is considered. One of the most satisfactory methods of measuring the viscosity of fluids is by the observation of the rate of flow of the fluid through a capillary tube, the length of which is great in comparison with its diameter. Poiseuille* gave the following formula for calculating the viscosity coefficient in this case : $\mu=\frac{\pi / r^{4} s}{8 v l}$, where h is the pressure height, r the radius of the tube, s the density of the fluid, v the quantity flowing per unit time, and l the length of the capillary part of the tube. The liquid is supposed to flow from an upper to a lower reservoir joined by the tube, hence h and l are different. The product $h s$ is the pressure under which the flow takes place. Hagenbach \dagger pointed out that this formula is in error if the velocity of flow is sensible, and suggested a correction which was used in the calculation of his results. The amount to be subtracted from h, according to Hagenbach, is $\frac{v^{2}}{\sqrt{2} \cdot g}$, where g is the acceleration due to gravity. Gartenmeister \ddagger points out an error in this to which his attention had been called by Finkener, and states that the quantity to be subtracted from h should be simply $\frac{v^{2}}{g^{2}}$; and this formula is used in the reduction of his observations. Gartenmeister's formula is the most accurate, but all of them nearly agree if the tube be long enough to make the rate of flow very small. None of the formulæ take into account irregularities in the distortion of the fluid near the ends of the tube, but this is probably negligible in all cases here quoted from, although it probably renders the results obtained by the " viscosimeter " commonly used for testing oils useless for our purpose.
The term " specific viscosity" is sometimes used in the headings of the tables; it means the ratio of the viscosity of the fluid under consideration to the viscosity of water at a specified temperature.

The friction of a fluid is proportional to the size of the rubbing surface, to $\frac{d v}{d x}$, where v is the velocity of motion in a direction perpendicular to the rubbing surface, and to a constant known as the viscosity.
(a) Variation of Viscosity of Water, with Temperature. Dynes per sq. om.

| 它 | Poiseville. 1846. | $\begin{aligned} & \text { Sprung. } \\ & 1876 . \end{aligned}$ | Slotte. $: 883$. | Thorpe-Rogers. 1894 .§ | Hosking. 1909.\|| | 离 | Slotte. 1883. | Thorpe-Rogers 1894. | Hosking. 1909.\|| |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0° | 0.01716 | 0.01778 | 0.01808 | 0.01778 | 0.01793 | 55° | 0.00510 | 0.00506 | . 00508 |
| 5 | .or 515 | . 11510 | . 01524 | . 01510 | .or 522 | 60 | .00472 | . 00468 | . 00469 |
| 10 | . 01309 | .01301 | . 01314 | . 1313 | . 01310 | 65 | . 00438 | . 00436 | . 00436 |
| 15 | .OI146 | . 01135 | . O1144 | . 01134 | . 01142 | 70 | . 00408 | . 00406 | . 00406 |
| 20 | . 01008 | . 01003 | . 01008 | . 01002 | . 01006 | 75 | . 00382 | . 00380 | . 00380 |
| 25 | . 00897 | .00896 | . 00896 | .00891 | . 00893 | 80 | . 00358 | . 00356 | .00356 |
| 30 | . 00803 | . 00802 | . 00803 | . 00798 | .00800 | 85 | . 00337 | . 00335 | .00.335 |
| 35 | . 00721 | . 00723 | . 00724 | . 00720 | . 00724 | 90 | .00318 | . 00316 | . 00316 |
| 40 | . 00653 | . 00657 | . 00657 | . 00654 | . 00657 | 95 | . 00301 | . 00299 | .00300 |
| 45 | . 00595 | . 00602 | . 00602 | . 00597 | .00600 | roo | . 00285 | . 00283 | . 00284 |
| 50 | | . 00553 | . 00553 | . 00548 | . 00550 | ${ }^{\text {I } 53}$ | | - | .001819 |
| | | | | | | | | | |
| (b) Varlation of Specific Viscosity of Water with Temperature. \\| | | | | | | | | | |
| | | 25° | 0.498 | 50° | | | 0.212 | | |
| 50 | . 849 | 30 | . 446 | 55 | . 283 | 80 | . 199 | 124° | $.124 \\|$ |
| 10° | . 730 | 35 | . 404 | 60 | . 262 | 85 | . 187 | $153{ }^{\circ}$ | .1014 |
| 15° | . 637 | 40 | . 367 | 65 | . 243 | 90 | .176 | - | - |
| 20° | .561 | 45 | . 335 | 70 | . 226 | 95 | . 167 | - | - |

[^19]
Smithsonian Tables.

VISCOSITY.

Table 114. - Solution of Alcohol in Water.*

Coefficients of viscosity, in C. G. S. units, for solntion of alcohol in water.

$\begin{aligned} & \text { Temp. } \\ & \text { C. } \end{aligned}$	Percentage by weight of alcohol in the mixture.								
	0	8.21	16.60	34.58	43.99	53.36	75.75	87.45	99.72
0°	0.0181	0.0287	0.0453	0.0732	0.0707	0.0632	0.0407	0.0294	0.0180
5	. 0152	. 0234	. 0351	. 0558	. 0552	. 0502	. 0344	. 0256	. 0163
10	. 0131	. 0195	.0281	. 0435	. 0438	. 0405	. 0292	. 0223	. 0148
15	. 0114	. 0165	. 0230	. 0347	. 0353	. 0332	. 0250	. 0195	. 0134
20	. 0101	. 0142	. 0193	. 0283)	. 0286	. 0276	. 0215	. 0172	. 0122
25	0.0090	0.0123	0.0163	0.0234	0.0241	0.0232	0.0187	0.0152	0.0110
30	.008I	. 0108	.OI41	. 0196	. 0204	. 0198	. 0163	. 0135	. 0100
35	. 0073	.oog6	. 0122	. 0167	. 0174	. 0171	. 0144	. 0120	. 0092
40	. 0067	. 0086	. 0108	. 0143	. 0150	. 0149	. 0127	. 0107	. 0084
45	. 0061	. 0077	. 0095	. 0125	. 0131	. 0130	. 0113	. 0097	. 0077
50	0.0056	0.0070		0.0109	0.0115	0.0115	0.0102		
55	.0052	. 0063	. 0076	. 0096	. 0102	. 0102	. 0091	.0086	. 0065
60	. 0048	. 0058	. 0069	. 0086	.0091	. 0092	. 0083	. 0073	. 0060

The following tables (115-116) contain the results of a number of experiments in the viscosity of mineral oils derived from petroleum residues and used for lubricating purposes. \dagger

TABLE L15, - Mineral 011s. \ddagger

			Sp. viscosity. Water at $20^{\circ} \mathrm{C}$. $=$ ィ.		
			$20^{\circ} \mathrm{C}$.	$50^{\circ} \mathrm{C}$.	$100{ }^{\circ} \mathrm{C}$.
.931	243	274	-	11.30	2.9
. 921	216	246	-	7.31	2.5
. 906	189	208	-	3.45	1.5
. 921	163	190	-	27.80	2.8
. 917	132	168	-	-	2.6
. 904	170	207	8.65	2.65	1.7
.891 .878	${ }_{1} 15$	182	4.77	1.86	1.3
.878 .855	108 42	148 45	2.94 1.65	I. 48	
. 905	165	202	-	3.10	1.5
. 894	1 39	270	7.60	3.60	1.3
. 866	90	224	2.50	1.50	-

TABLE 116. -Oils.

Oil.	咅			
Cylinder oil .	. 917	227	274	191
Machine oil	. 914	213	260	102
Wagon oil	. 914	148	182	80
	.911	157	187	70
Naphtha residue	. 910	134	162	55
Oleo-naphtha	. 910	219	257	121
" "	. 804	201	242	66
Oleonid	. 884	18	222	26
quality	.881	188	224	20
Olive oil .		-	-	22
Whale oil	.879 .875	_	-	2 9 8

[^20]
Smithsonian Tables.

This table gives some miscellaneous data as to the viscosity of liquids, mostly referring to oils and paraffins. The viscosities are in C. G. S. unita.

*Calculated from the formula $\mu=.017-.000066 t+.00000021 t^{2}$-.00000000025t ${ }^{\circ}$ (vide Koch, Wied. Ann. vol. 14, p. 188 I).

Smithsonian Tables.

This table gives the viscosity of a number of liquids together with their temperature variation. The headings are temperatures in Centigrade degrees, and the numbers under them the coefficients of viscosity in C. G. S. units.*

Liquid.	Temperature Centigrade.								
	0°	10°	${ }^{20}$	30°	40°	50°	70°	90°	
Acetates: Methyl	-	. 0046	. 0041	. 0036	. 0032	. 0030	-		1
Ethyl		. 0051	. 0044	. 0040	. 0035	.0032			I
Propyl	-	. 0066	. 0059	. 0052	. 0044	.0039			I
Allyl		. 0068	.0061	. 0054	. 0049	. 0044			I
Amyl		. 0106	. 0089	. 00777	. 0065	. 0058			1 2
Acids: Formic	-	$\begin{aligned} & .02262 \\ & .0150 \end{aligned}$	$\begin{aligned} & .01804 \\ & .0126 \end{aligned}$	$\begin{aligned} & .01465 \\ & .0109 \end{aligned}$. 01224	. 010825			2 I
		. 0125	. 10107	. 0092	. 0081	. 0073			3
		. 0139	. 0118	. 0101	.0091	.0080			I
Butyric		. 0196	. 0163	.0136	. 0118	. 0102			2
Valeric		. 0271	. 02220	. 0183	. 0155	.0127 .0150			3 3 3
Alcohol : Methyl	.00813	. 000886	.0271	.0222	.00450	. 0 . 0196	-		4
Ethyl	. 01770	. 01449	.01192	. 00990	. 08828	.00698	. 00504		4
Propyl	. 03882	. 02917	. 02255	. 01778	. 01403	. 01128	. 00757	. 00526	4
Butyric	. 05185	. $0387{ }^{8}$. 02947	. 02266	. 01780	. 01409	. 00926	. 00633	4
Allyl	. 02144	. 01703	. 01361	. 01165	. 010911	. 00760	.00548 .00642 0	. 00407	4
Isopropyl Isobutyl	.04564 .08038	. 032454	. 02369	. 01755	.01329	.010269	. 000972	.00633	4
Amyl (op.-inac.)	. 08532	.06000	. 04341	. 03206	. 02414	. 01849	.01147	. 00758	4
Aldehyde	. 00267	. 00244	. 00222						3
Benzole			. 0440	.0319	.0241	.or89			5
	. 00902	. 00759	. 00649	. 00562	. 00492	. 00437	.00351		4
Bromides: Ethyl	. 00478	. 00432	.00392	. 00357					4
${ }_{\text {Propyl }}$. 00645	.00575 .0055 8	. 00517	. 004467	. 00425	. 00388	. 00328		4
Allyl	. 00619	. $0055{ }^{2}$. 00496	. 000449	. 00410	.00374	.00316		4
Carbon bisulphide	. 02435	. 0203595	.00367	. 00342	.00319			. 00733	4
Carbon dioxide (liq.)	. 00099	. 00085	.00071			-	-		
Chlorides: Propyl	. 00436	. 00390	. 00352	. 00319	. 00291				4
Allyl	. 00402	. 00358	. 00322	.00292					4
Ethylene	. 01128	. 00961	. 00833	. 00730	.00646	. 00576	.00470		4
Chloroform	. 00700	. 00626	. 00564	. 00511	. 00466	. 00390			4
EtherEthylbenzole		. 0026	. 0023	. 0021					1
	. 00874	. 00758	. 00666	. 00592	. 00529	. 00477	.00394	.00330	4
Ethylsulphide	. 00559	. 00496	. 00444	. 00401	.00363	.00331	. 00279	.00237	4
	. 00594	. 00536	.00487	. 00446	. 03409				
${ }_{\text {Propyl }}$.00719	. 000645	. 00583	. 000530	. 00484	.00444	. 00378	.00387	4
Allyl	. 00933°	. 00819	. 00726	. 00652	.00588	. 00534	. 00448	. 00381	4
Metaxylol	. 00802	.00698	.00615	. 00547	.00491	. 00444	.00369	.00313	4
NitrobenzeneParaffines: Pentane		-0256	. 0203	. 0170	. 0144	. 0124			1
		.00256	.00232	.00212 .00290 0		.0024İ	. 00221	-	4 4 4
Hexane Heptane	. 000396	. 00355	$\begin{array}{\|l\|l} .00320 \\ .00410 \end{array}$.00290	.00264	.0024I	. 00221		4
Octane	. 00703	. 00612	.00538	. 00478	. 00428	. 00386	.00318	.00266	4
Isopentane	. 00273	. 00246	. 00223	. 00204	-			-	4
Isohexane	. 00371	.00332	. 00300	. 00272	. 00247	. 002226	-	-	4
Propyl aldehyde ${ }^{\text {Isoheptane }}$. 00477	. 00423	.00379	.00342 .0036	. 00309	. 00282	.00235	.00200	4
Propyl addehyde	. 00768	. 00668	.00586	1.00520	. 00466	. 00420	. 00348	. 00292	4
${ }_{2}$ Gartenmeister, Zeitschr. Phys. Chem. 6, 8890 . 3 Rellstab, Diss. Bonn, 8868 . ${ }_{4}^{3}$ Thorpe-Roger, Philos. Trans. 185 A, 1894, 189 A,				1897; ${ }^{\text {Chem. }} \mathrm{S}$ ijkander, Warburg-E	roc. Roy. W. 71, r8, abo, Wie	Soc. 55, 7. Chem d. Ann. I		, 15, 1897.	

* Calculated from the specific viscosities given in Landolt \& Börnstein's Pbys. Chem. Tab.

For inorganic acids, see Solutions.

Smithsonian Tables.

VISCOSITY OF SOLUTIONS.

This table is intended to show the effect of change of concentration and change of temperature on the viscosity of solutions of salts in water. The specific viscosity \times soo is given for two or more densities and for several temperatures in the case of each solution. μ stands for specific viscosity, and t for temperature Centigrade.

Salt.	Percentage by weight of salt in solution.	Density.	μ	t	μ	t	μ	t	μ	t	Authority.
$\underset{،}{\mathrm{BaCl}_{2}}$	7.60	-	77.9	Io	44.0	30	35.2	50		-	Sprung.
	15.40	-	86.4	"	56.0	"	39.6	"	-	-	"
	24.34	-	100.7	"	66.2	"	47.7	"	-	-	"
$\underset{\text { c }}{\mathrm{Na}\left(\mathrm{NO}_{3}\right)_{2}}$	2.98	1.027	62.0	15	51.1	25	42.4	35	34.8	45	Wagner.
	5.24	1.051	$68 . \mathrm{I}$		54.2		44.1		36.9		
$\begin{gathered} \mathrm{CaCl}_{2} \\ " \\ " \\ \hline \end{gathered}$	15.17	-	110.9	10	71.3	30	50.3	50	-		Sprung.
	31.60	-	272.5	"	177.0	${ }^{6}$	124.0	"	-	-	"
	39.75	-	670.0	"	379.0	"	245.5	"	-	-	"
	44.09	-	-	-	593.1	"	363.2	"	-	-	"
$\underset{\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}}{ }$	17.55	1.171	93.8	15	74.6	25	60.0	35	49.9	4.5	Wagner.
	30.10	1.274	144.1	c	112.7	"	90.7	"	75.1	"	
	40.13	1.386	242.6	"	217.1	"	1 56.5	"	128.1	"	
$\underset{\text { " }}{\mathrm{CdCl}_{2}}$	11.09	1.109	77.5	15	60.5	25	49.1	35	40.7	45	"
	16.30	1.181	88.9	"	70.5	"	57.5	3	47.2	"	"
	24.79	1.320	104.0	"	80.4	"	64.6	${ }^{\prime}$	53.6	"	
$\underset{\text { 6 }}{\mathrm{Cd}}(\underset{\mathbf{N O}}{8})_{2}$	7.81	1.074	61.9	15	50.1	25	4I.I	35	34.0	45	"
	15.71	1.159	71.8	،	58.7	"	48.8	"	4 4 .3	"	"
	22.36	1.241	85.1	"	69.0	"	57.3	"			"
$\underset{\text { "6 }}{\mathrm{CdSO}_{4}}$	7.14	1.068	78.9	15	61. 8	25	49.9	35	$4 \mathrm{I} \cdot 3$	45	"
	14.66	1.159	96.2	،	72.4		58.1	3	48.8		"
	22.01	1. 268	120.8	،	91.8	"	73.5	"	60.1	"	"
$\begin{gathered} \mathrm{CoCl}_{2} \\ " \\ \hline \end{gathered}$	7.97	1.081	83.0	15	65.1	25	53.6	35	44.9	45	"
	14.86	1.161	11 I .6	"	85.1		73.7	"	88.8	"	"
	22.27	1.264	161.6	"	I26.6	"	101.6	"	85.6	"	"
$\underset{،}{\mathrm{Co}\left(\mathrm{NO}_{3}\right)_{2}}$	8.28	1.073	74.7	15	57.9	25	48.7	35	39.8	45	"
	15.96	1.144	87.0	${ }^{6}$	69.2		55.4		44.9	"	"
	24.53	1.229	110.4	"	88.0	"	71.5	"	59.1	"	${ }^{6}$
$\underset{u}{\mathrm{CoSO}_{4}}$	7.24	1.086	86.7	15	68.7	25	55.0	35	45.1	45	"
	14.16	1.159	117.8	${ }^{6}$	95.5		76.0		61.7	"	"
	21.17	1.240	193.6	"	146.2	"	113.0	"	89.9	${ }^{6}$	*
CuCl_{2}	12.01	1.104	87.2	15	67.8	25	55.1	35	45.6	45	"
	21.35	1.215	121.5	"	95.8	"	77.0	"	63.2	"	"
	33.03	1.33 I	178.4	"	137.2	"	107.6	"	87.1		"
$\underset{\text { c/ }}{\mathrm{Cu}\left(\mathrm{NO}_{8}\right)_{2}}$				15	76.0	25	${ }_{61} \mathbf{1} 5$	35	51.3	45	"
	26.68	1.264	126.2	"	98.8	"	80.9	" 6	68.6	"	-
	46.71	1. 536	382.9	"	283.8	"	215.3	"	172.2		'
$\underset{«}{\mathrm{CuSO}_{4}}$	6.79	1.055	79.6	15	6r. 8	25	49.8	35	41.4	45	"
	12.57	1.155	98.2	"	74.0		59.7	"	52.0	"	"
	17.49	1. 163	124.5	"	96.8	"	75.9	"	61.8		
$\underset{6}{\mathrm{HCl}}$	8.14		71.0	15	57.9	25	48.3	35	40.1	45	"
	8.14 16.12	1.084	80.0	،	66.5		56.4	6	48.1	"	"
	23.04	1.114	91.8	"	79.9		65.9	،	56.4	${ }^{\prime}$	
$\underset{\#}{\mathbf{H g C l}}{ }_{2}$	0.23	1.002	7675	-	58.5	20	46.8 46.6	30	38.3 38.3	40	"
	3.55	1.033	76.75	IO	59.2		46.6		38.3		

VISCOSITY OF SOLUTIONS.

Salt.	Percentage by weight of salt in solution.	Density.	μ	t	μ	t	μ	t	μ	t	Authority.
$\underset{6}{\mathrm{HNO}_{3}}$	8.37	1.067	66.4	I 5	54.8	25	45.4	35	37.6	45	Wagner.
	12.20	1.116	69.5	${ }^{4}$	57.3	"	47.9		40.7	،	
	28.31	1.178	80.3	"	65.5	"	54.9	"	46.2	"	"
$\mathrm{H}_{2} \mathrm{SO}_{4}$	7.87	1.065	77.8	15	61.0	25	50.0	35	41.7	45	"
	15.50	1.130	95.1	"	75.0	"	60.5		49.8	"	"
	23.43	1.200	122.7	"	95.5	"	77.5	"	$64 \cdot 3$	"	"
$\underset{\text { K }}{ }{ }^{\text {K }}$	10.23		70.0	10	46.1	30	33.1	50	-	-	Sprung.
	22.21		70.0	"	48.6	"	36.4	${ }^{\text {a }}$	-	-	
$\underset{"}{\mathrm{KBr}}$	14.02		67.6	10	44.8	30	32.1	50	-	-	"
	23.16	-	66.2	"	44.7	${ }^{6}$	33.2	"	-	-	"
		-	66.6	"		"		"	-	-	"
KI	8.42	-	69.5	10	44.0	30	31.3	50	-	-	"
"	17.01	-	65.3	"	42.9	"	31.4	6	-	-	"
	33.03		6 T .8	"	42.9	"	32.4	"	-	-	"
"	45.98	-	63.0 68.8	"	45.2	"	35.3	"	-	-	"
	54.00	-	68.8	${ }^{4}$	48.5	"	37.6	"	-	-	"
$\underset{4}{\mathrm{KClO}_{3}}$	3.51	-	71.7	10	44.7	30	31.5	50	-	-	"
	5.69	-	-	"	45.0	"	31.4		-	-	،
$\underset{\text { K }}{ }{ }^{\text {NO}}$	6.32	-	70.8	10	44.6	30	31.8	50	-	-	"
	12.19		68.7	،	44.8		32.3	"	-	-	"
	17.60	-	68.8	"	46.0	"	33.4	"	-	-	"
$\mathrm{K}_{2} \mathrm{SO}_{4}$	5.17	-	77.4	10	48.6	30	$34 \cdot 3$	50	-	-	"
	9.77	-	81.0	"	52.0		36.9		-	-	"
$\mathrm{K}_{2} \mathrm{CrO}_{4}$	11.93	-	75.8	10	62.5	30	41.0	40	-	-	"
	19.61	-	85.3	،	68.7	"	47.9	"	-	-	"
	24.26	1.233	97.8	"	74.5	"	54.5	"	-	-	Slotte.
	32.78	-	109.5	"	88.9	"	62.6	"	-	-	Sprung.
$\underset{4}{ } \mathrm{~K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$	4.71	1.032	72.6	10	55.9	20		30		40	Slotte.
	6.97	1.049	73.1	"	56.4	"	$45 \cdot 5$	"	$37 \cdot 7$	${ }^{4}$	"
$\begin{gathered} \mathrm{LiCl} \\ " \end{gathered}$	7.76	-	96.1	10	59.7	30	41.2	50	-	-	Sprung.
	13.91	-	121.3	"	75.9	"	52.6	"	-	-	"
	26.93	-	229.4	"	142.1	"	98.0	"	-	-	"
$\underset{\text { ، }}{\mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}}$	18.62		99.8				66.5		56.2		
	34.19	1. 200	213.3	${ }^{4}$	164.4	6	132.4	،	109.9	4	"
	39.77	1.430	317.0	"	250.0	"	191.4	*	158.1	${ }^{\prime}$	"
$\underset{\text { " }}{\mathrm{MgSO}_{4}}$		-		10	59.0				-	-	
	9.50	-	130.9	"	77.7	"	53.0	"	-	-	"،
	19.32	-	302.2	"	166.4	"	106.0	"	-	-	"
$\underset{\sim}{\mathrm{MgCrO}_{4}}$	12.31	1.089	111.3	10	84.8	20	67.4				Slotte.
	21.86	I.164	167.1	"	125.3	"	99.0	"	79.4	"	Slo
	27.71	1.217	232.2	"	172.6	"	133.9	"	105.6	"	"
$\underset{4}{\mathrm{MnCl}_{2}}$	8.01	1.096	92.8	15	71.1	25			48.1		Wagner.
	15.65	1.196	I 30.9	"	104.2	"	84.0	"	68.7	"	"
"	30.33	1.337	256.3	"	193.2	،	155.0	"	123.7	*	*
	40.13	1.453	537.3	"	393.4	"	300.4	"	246.5	"	"

Smithsonian Tables.

VISCOSITY OF SOLUTIONS.

Salt.	Percentage by weight of salt in solution.	Density.	μ	t	μ	t	μ	t	μ	t	Authority.
$\underset{4}{\mathrm{Mn}\left(\mathrm{NO}_{3}\right)_{2}}$	$\begin{aligned} & 18.31 \\ & 29.60 \\ & 49.31 \end{aligned}$	$\begin{aligned} & 1.148 \\ & 1.323 \\ & 1.506 \end{aligned}$		15 16	76.4 126.0 301.1	25	64.5 104.6 221.0	35	55.6 88.6 188.8	45 "	Wagner. "
$\underset{\sim}{\mathbf{M n S O}}$	11.45 18.80 22.08	$\begin{aligned} & 1.147 \\ & \mathrm{I} .25 \mathrm{I} \\ & \mathrm{I} .306 \end{aligned}$	$\begin{aligned} & \text { I29.4 } \\ & 228.6 \\ & 661.8 \end{aligned}$	15	$\begin{array}{r} 98.6 \\ 172.2 \\ 474.3 \end{array}$	25	$\begin{array}{r} 78.3 \\ 137.1 \\ 347 \cdot 9 \end{array}$	35 6	$\begin{array}{r} 63.4 \\ 107.4 \\ 266.8 \end{array}$	$\begin{aligned} & 45 \\ & 6 \\ & 6 \end{aligned}$	"
NaCl "	7.95 14.31 23.22	-	82.4 94.8 128.3	10	52.0 60.1 79.4	30 3	$\begin{aligned} & 31.8 \\ & 36.9 \\ & 47.4 \end{aligned}$	$\begin{aligned} & 50 \\ & 6 \\ & 4 \end{aligned}$	-	-	$\begin{gathered} \text { Sprung. } \\ \text { ، } \end{gathered}$
NaBr "	9.77 18.58 27.27	-	75.6 82.6 95.9	$\begin{aligned} & \text { IO } \\ & " \\ & " 6 \end{aligned}$	48.7 53.5 61.7	30	34.4 3.2 43.8	50 4	-	-	"
NaI "	$\begin{array}{r} 8.83 \\ 17.15 \\ 35.69 \\ 55.47 \end{array}$	-	73.1 73.8 86.0 157.2	10 $" 1$ $" 1$	46.0 47.4 55.7 96.4	30 6 6	32.4 33.7 40.6 66.9	50 $" 6$ 1	-	-	" ${ }^{\text {" }}$
NaClO_{3} \vdots	$\begin{aligned} & 11.50 \\ & 20.59 \\ & 33.54 \end{aligned}$	-	78.7 88.9 121.0	10 $" 1$	50.0 56.8 75.7	30 6	35.3 40.4 53.0	50 3	-	-	"
$\underset{*}{\mathrm{NaNO}_{8}}$	7.25 12.35 18.20 31.55	-	75.6 81.2 87.0 121.2	10 $" ،$ $" 0$	47.9 51.0 55.9 76.2	30 $" ،$ $" ،$	33.8 36.1 39.3 53.4	50 1 .	-	-	"
$\mathrm{Na}_{2} \mathrm{SO}_{4}$	$\begin{array}{r} 4.98 \\ 9.50 \\ 14.03 \\ 19.32 \end{array}$	-	96.2 130.9 187.9 302.2	10	59.0 77.7 107.4 166.4	30 3 6 6	40.9 53.0 71.1 106.0	50 $" 6$ 1	-	-	"
$\mathrm{Na}_{\text {\% }} \mathrm{CrO}_{4}$	$\begin{array}{r} 5.76 \\ 10.62 \\ 14.81 \end{array}$	$\begin{aligned} & 1.058 \\ & 1.112 \\ & 1.164 \end{aligned}$	$\begin{array}{r} 85.8 \\ 103.3 \\ 127.5 \end{array}$	10	66.6 79.3 97.1	20 4	53.4 63.5 77.3	$\begin{aligned} & 30 \\ & 6 \\ & 6 \end{aligned}$	43.8 52.3 63.0	40	Slotte. " "
$\underset{4}{\text { NH4 }}$	3.67 8.67 15.68 23.37	-	$\begin{aligned} & 71.5 \\ & 69 \cdot 1 \\ & 67 \cdot 3 \\ & 67 \cdot 4 \end{aligned}$	10 $" 1$ 1	45.0 45.3 46.2 47.7	30 $" 6$ $" 6$	31.9 32.6 34.0 36.1	50 36 6	-	-	$\begin{gathered} \text { Sprung. } \\ \text { " } \\ " \end{gathered}$
$\underset{\substack{\text { NHe }}}{\mathrm{NH}_{4} \mathrm{Br}}$	$\begin{aligned} & 15.97 \\ & 25.33 \\ & 36.88 \end{aligned}$	-	65.2 62.6 62.4	10 $" 0$	43.2 43.3 44.6	30 4 6	31.5 32.2 34.3	50	-	-	" ${ }^{\text {" }}$
	5.97 12.19 27.08 37.22 49.83	-	69.6 66.8 67.0 71.7 81.1	10 $" 1$ $" 1$ 1	\| $\begin{aligned} & 44 \cdot 3 \\ & 44 \cdot 3 \\ & 47.7 \\ & 5 \mathrm{I} .2 \\ & 63.3\end{aligned}$	30 $" 1$ $" 1$	31.6 3 I .9 34.9 38.8 48.9	50	- - -	- - - -	"
$\underset{\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}}{ }$	$\begin{array}{r} 8.10 \\ 15.94 \\ 25.51 \end{array}$	-	107.9 120.2 148.4	10	52.3 60.4 74.8	30	37.0 43.2 54.1	50 6 6	-	-	"

Smithsonian Tables.

VISCOSITY OF SOLUTIONS.

Salt.	Percentage by weight of salt in solution.	Density.	μ	t	μ	t	μ	t	μ	t	Authority.
$\underset{" 6}{\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CrO}_{4}}$	10.52	1.063	79.3	10	62.4	20	57	-	42.4	40	Slotte.
	19.75 28.04	1.120 1.173	88.2 101.1	"	70.0 80.7	"	57.8 60.8	30	48.4 56.4	-	"
$\left(\mathrm{NH}_{4}\right)_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$	6.85	1.039	72.5	10	56.3	20	45.8	30	38.0	40	"
	13.00	1.078	72.6	"	57.2	"	46.8	،	39.1	"	"
	19.93	1.126	77.6	"	58.8	"	48.7	"	40.9	"	"
$\underset{"}{\mathrm{NiCl}_{2}}$	11.45 22.69	1.109 1.226	90.4 140.2	15	70.0 109.7	25	57.5	35	48.2 72.7	45	Wagner.
	30.40	I. 337	229.5	"	171.8	،	139.2	"	III 1.9	"	"
$\underset{\text { " }}{\mathrm{Ni}\left(\mathrm{NO}_{3}\right)_{2}}$	16.49	1.136	90.7	${ }^{1} 5$	70.1	25		35	48.9	45	"
	30.01	1.278 1.388	135.6	"	105.9	"	85.5	"	70.7 152.4	"	"
	40.95	1. 388			169.7						"
$\underset{4}{\mathrm{NiSO}_{4}}$	10.62	1.092	94.6	${ }_{4} 15$		25	60.1	35		45	"
	18.19 25.35	1.198 1.314	154.9 298.5		119.9 224.9	"	99.5 173.0	"	75.7 152	،	"
	25.35	1.314	298.5	*			173.0				"
$\underset{\text { \% }}{\left(\mathrm{NO}_{3}\right)_{2}}$	17.93	1.179	74.0	${ }_{6}^{15}$	59.1	25	48.5	35		45	"
	32.22	1. 362	91.8	"	72.5	،	59.6	6	50.6	"	"
$\mathrm{Sr}\left(\mathrm{NO}_{6}\right)_{2}$	10.29	1. 088		15	56.0	25	45.9	35	39.1	45	"
	21.19	I. 124	87.3	،	69.2	،	57.8	6	48.1	"	"
	32.61	1. 307	116.9	"	93.3	"	76.7	"	62.3	"	*
ZnCl_{2}	15.33	1.146	93.6	15		25	57.8	35	48.2		
	23.49	1.229	111.5	"	86.6	${ }_{6}$	69.8	6	57.5	،	*
"	33.78	1.343	151.7	*	117.9	"	90.0	"	72.6	"	"
$\mathrm{Zn}\left(\mathrm{NO}_{3}\right)_{2}$	15.95	1.115	80.7	15		25	52.6	35	43.8		
	30.23	1.229	104.7	"	85.7	"	69.5	"	57.7	:	"
	44.50	1.437	167.9		130.6	"	105.4	"	87.9	"	"
$\underset{"}{\mathrm{ZnSO}_{4}}$	7.12	1.106	97.1	15	79.3	25	62.7	35	51.5		"
	16.64	1.195	156.0	${ }^{6}$	I 18.6	،	94.2	6	73.5	6	"
	23.09	I. 281	232.8	"	177.4	"	135.2	"	108.1	*	،

Smithsonian Tables.

SPECIFIC VISCOSITY．＊

	Normal solution．		${ }^{7}$ normal．		${ }^{3}$ normal．		t normal．		Authority
	感				$\begin{aligned} & \frac{2}{2} \\ & \stackrel{\rightharpoonup}{2} \\ & \hline 0 \end{aligned}$		$\begin{aligned} & \text { 䨖 } \\ & \text { an } \end{aligned}$		
Acids ：$\mathrm{Cl}_{2} \mathrm{O}_{8}$ $\mathrm{HCl}_{1} \mathrm{HClO}_{3}$ HCl_{3} HNO_{3} $\mathrm{H}_{2} \mathrm{SO}_{4}$.	1.0562	1.012	1.0283	1.003	1.01	1．000	1.0074	0.999	$\begin{gathered} \text { Reyher. } \\ " ، \\ \text { " } \\ \text { Wagner. } \end{gathered}$
	1.01	1． 067	${ }_{\text {l }}^{1.0092}$	1.034		L， 01		1.009	
	1.0332	1．027	1．0168	1.011	1.0086				
	1.0303	1.090	1.0154	1.043	1.0074	1．022	1.0035	－	
Aluminium sulphate Barium chloride Calcium chloride nitrate		1． 406	1.0278	1．178	1.01	1.082	I． 0	1．038	，
		1.123		1.057				1.013	
	1.04	1.156	I．0	1.04 1.07 1	1．0				＂
	1．0596	1.117	1．030	1.053	1．015 5	1.0	1.0076	1．008	
Cadmium chloride 6 nitrate Cobalt chloride ＂، nitrate ＂sulphate	1．077	1．134	1.0	1.063	1．0197	1.031	1．0098	1．020	
								迷	
	${ }^{1.09}$	1．348		1．157	1.02	1．07		10	
		1.204			1.0		1．00	1.0	
	1．0750	1．354	1.0383	1．160	1.01	1.077	1．0	1.0	
Copper chloride ＂$\quad \begin{gathered}\text { nitrate } \\ \text { sulphate }\end{gathered}$ Lead nitrate Lithium chloride sulphate		1.20		1.098	1．01 58		1.0077		
		1.179		1.08		1.040		10	
		1．358	1.0402 0.0699	1.160		I．080 I．017	I．0103 I．O17	1．038 1.007	＂
		1.142	1.0129	，	I． 1.			1.012	＂
	1.0453	1.290	1.0234	I． 1	1.0115	1.065	1.0057	1.032	
Magnesium chloride ＂ nitrate． ＂ sulphate Manganese chloride ＂＂ nitrate ＂． sulphate	1.1375	I．20	1．0188	1.0	1.00	1．044		1.021	
			1.08						
		1．367	1．029			1．0	${ }_{\text {1 }}^{1.0076}$	${ }_{\text {1．023 }}$	
						1.043			＂
	1．0728	1.364	1.0365		I．	I． 0	I．oc	1.037	
Nickel chloride＂＂	1.0591	1.205	1．0308	1.097		1．044	1．0067	1.021	＂
	${ }^{1.0755}$		1．0381 1.0391	I．1．	－ $\begin{aligned} & \text { 1．0192 } \\ & 1.0198 \\ & 1\end{aligned}$				＂
Potassium＂chloride＂chromatenitrate	1.0466	0.987	1.0235	0.987	1．017	0．9		93	＂
	1.0935	1.113	1.0475	1.0	${ }^{1.0241}$	1.022		${ }^{1.012}$	＂
	（1．0665	0．1075	1.0	0．949	1.0161 1.0170 1	${ }^{0} \mathrm{O} .08$	I． 1.0075 1.0084 1	（1．992	＂
$\begin{array}{cc}\text { Sodium chloride．} \\ \text {＂＂} & \text { bromide } . \\ \text {＂＂chlorate }\end{array}$ Silver nitrate．				1.047		1.024			Reyher．
		1．064	1.0396	I． 030	10，	1.015	I．0100	1.008	
	1.0	${ }_{\text {I }}^{1.0}$	1．0	1．042					
	1．1386	1.058	1.0692	1.020	1.0348	1.0	1．0173	1.08	Wagn
Strontiumchioricenitrate		1.141	1.0336	1.06	1.01	1.034	I． 0084	1.014	＂
	1．0822	I．115	1.04	I． 04	1.0208	1.02	1．0104		＂
Zinc chloride ＂nitrate ＂sulphate		I．I			1.0	1.0		4	
	－ 1	1．367	1．0	${ }_{1.173}^{1.1081}$	1.0198	1．082	1．0094	1.036	،

＊In the case of solutions of salts it has been found（vide Arrhennius，Zeits．fïr Phys．Chem．vol．r，p．285）that the specific viscosity can，in many cases，be nearly expressed by the equation $\mu=\mu_{1}{ }^{n}$ ，where μ_{1} is the specific viscosity for a normal solution referred to the solvent at the same temperature，and n the number of gramune molecules in the solution under consideration．The same rule may of course be applied to solutions stated in percentages instead of gramme molecules．The table here given has been compiled from the results of Reyher（Zeits．fïr Phys．Chem．vol． 2 ， p．749）and of Wagner（Zeits．für Phys．Chem．vol．5，p．31）and illustrates this rule．The numbers are all for $\mathbf{2 5}^{\circ} \mathrm{C}$ ．

Smithsonian Tables．

Table 121.-VISCOSITY OF GASES AND VAPORS.

The values of μ given in the table are 10^{6} times the coefficients of viscosity in C. G. S. units.

Substance.	${ }^{\text {Temp. }}$ C.	μ.	Reference.	Substance.	Temp.	μ.	Refer ence.
Acetone	18.0	78.	1	Chloroform	0.0	95.9	1
Air	-21.4	163.9	2		17.4	102.9	
${ }^{\prime}$	0.0	173.3	"	"	61.2	189.0	3
" . .	15.0	180.7	"	Ether	0.0	68.9	1
$" \quad$.	99.1	220.3	"	" -	16.1	73.2	"
" . .	182.4	255.9	"	"" .	36.5	79.3	
" 0	302.0	299.3	*	Ethyl iodide	72.3	216.0	3
Alcahol : Methyl	66.8	135.	3	Helium	0.0	189.1	"
" Ethyl	78.4	142.	"	" ${ }^{\prime}$	15.3	196.9	"
" Propyl, norm.	97.4	142.	"	"	66.6	234.8	"
" Isopropyl	82.8	162.	"	" •	184.6	269.9	"
" Butyl, norm.	116.9	143.	"	Hydrogen.	-20.6	$8 \mathrm{8r} .9$	2
" Isobutyl .	108.4	144.	*		15.0	88.9	"
" Tert butyl	82.9	160.	/	\cdots •	99.2	105.9	"
Ammonia . .	0.0	96.	4	"	182.4	121.5	"
Argon	20.0	108.		Mercury	302.0 270.0	139.2 489.*	8
Arg	14.7	220.8	"	"	300.0	532.*	"
"	17.9	224.1	"	" . .	330.0	582.*	"
" .	99.7	273.3	"	" .	360.0	627.*	"
" -	183.7	322.1	"	"	390.0	671.*	"
Benzole.	19.0	79.	6	Methane -	20.0	120.1	4
	100.0	118.		Methyl iodide .	44.0	232.	3
Carbon bisulphide	16.9	92.4	1	" chloride	15.0	105.2	2
" dioxide	-20.7	129.4		"	302.0	213.9	"
" "	15.0	145.7		Nitrogen	-21.5	156.3	7
" " -	99.1	186.1		" .	10.9	170.7	"
" ${ }^{\prime}$ "	182.4	222.1		Oxyen	53.5	189.4	"
" $"$ monoxide	302.0	268.2		Oxygen	15.4	195.7	"
" monoxid	0.0 20.0	163.0 184.0	4	Water vapor	53.5 0.0	215.9 90.4	"
Chlorine	0.0	128.7	"	Water vapor	16.7	96.7	"
"	20.0	147.0	\cdots	* *	100.0	132.0	9
r Puluj, Wien. Ber. 69, (2), 1874. 6 Schumann, Wied. Ann. 23, 1884. 2 Breitenbach, Ann. Phys. 5, 190r. 7 Obermayer, Wien. Ber. 71, (2a), 3 Steudel, Wied. Ann. I6, 1882. 8 Koch, Wied. Ann. I4, I88ı, 19, 1 4 Graham, Philos. Trans. Lond. 1846, III. 9 Meyer-Schumann, Wied. Ann. 13 5 Schultze, Ann. Phys. (4), 5, 6, 190I.							

* The values here given were calculated from Koch's table (Wied. Ann. vol. 19, p. 869) by the formula $\mu=489$ [i+ $746(t-270)$].

Table 122. - VISCOSITY OF AIR. $20.2^{\circ} \mathrm{C}$.

Holman, Phil. Mag. 1886	1.810×10^{-4}	Markowski, ditto. 1904	1.835×10^{-4}
Fischer, Phys. Rev. 1909	1.807	Tanzler, Ver. D. Phys. G. 1906	1.836
Grindlay, Gibson, Pr. Roy. Soc. 1908	1.809	Tomlinson, Phil. Trans. 1886	$\begin{aligned} & 1.8 \mathrm{II} \\ & 1.812 \end{aligned}$
Rankine, ditto. 1910	1.814		1.812
Rapp, unpublished	1.810	Hogg, Am. Acad. Proc. 1905	1.808
Breitenbach, Wied. Ann. 1899	1.833	Gilchrist	1.812
Schultze, Ann. der Phys. 1901	1.837		

The viscosity of air at 20.2° may be taken as $1.812 \times 10^{-}$within a probable error of less than 0.2 per cent. Its variation with the temperature may be obtained from Holman's formula $=1715.50 \times 10{ }^{-7}\left(1+0.00275 t-0.00000034 t^{2}\right)$. See Phys, Rev. 1913, p. 124, where full references may be obtained.

Smithsonian Tables.

Table 123.
COEFFICIENT OF VISCOSITY OF GASES.

Temperature Ooetficients.

If $\mu_{t}=$ the viscosity at $t^{\circ} \mathrm{C}_{,} \mu_{0}=$ the vicosity at $0^{\circ}, a=$ the coefficient of expansion, β, γ, and $n=$ coefficients independent of t, then
(I) $\mu_{t}=\mu_{0}(\mathrm{I}+\boldsymbol{a}) \mathrm{n}_{\mathrm{n}} \quad$ (Meyer, Obermayer, Puluj, Breitenbach.)
(II) $=\mu_{0}(\mathrm{I}+\beta t)$. (Meyer, Obermayer.)
(III) $=\mu_{0}(1+a t)^{\frac{3}{3}}(1+\gamma)^{2}$. (Schumann.)
(IV) $=\mu_{0} \frac{I+\frac{C}{273}}{1+\frac{C}{T}} \sqrt{1+\frac{t}{273}}$. (Sutherland.)

Gas.	$\mu_{010}{ }^{\circ}$.	a	Constants.	Range ${ }^{\circ} \mathrm{C}$.	Reference.
Air*	-	0.003665	$n=0.77$	0-100	1
"	1733.1	. 003665	$C=119.4$		2
$"$ -	1811.		$n=0.7675$		3
4 -	2208.	-	$n=0.7544$	$99.7-182.9$	"
" ${ }^{\text {c }}$	-		$n=0.754 ; C=111.3$		4
Argon . - .	2208	-	$n=0.815 ; C=150.2$	$15-100$ $14.7-907$	4
" \quad.	2208.		$n=0.8227, C=169.9$ $n=0.8119$	$\begin{aligned} & 14.7-99.7 \\ & 99.7-183.7 \end{aligned}$	3 3
Benzole	698.4	. 004	$\boldsymbol{\gamma}=0.00185$	18.7-100	5
Carbon dioxide	1387.9	-	$C=239.7$	-	6
" ${ }^{\text {a }}$	1497.2	.003701.	$\boldsymbol{\gamma}=0.000889$	12.8-100	5
" "	1382.1	.003701	$\beta=0.00348 ; n=0.941$	-21.5-53.5	7
" monoxide	1625.2	.003665	$\beta=0.00269 ; n=0.738$	17.5×53.5	"
Ether .	689.	. 004158	$n=0.94$	0-36.5	8
Ethylene	961.3 922.2	. 003665	$C=225.9$ $\beta=0.00350 ; n=0.958$	-21.5-53.5	6
" chloride	889.03	. 003900	$\beta=0.00381 ; n=09772$	15.6-157.3	"
Helium		-	$n=0.68 \mathrm{I} ; C=72.2$	0-15.0	4
"	1969.		$n=0.6852 ; C=80.3$	15.3 -99.6	3
Mydrogen	2348.		$n=0.677 \mathrm{I}$	99.6-184.6	3
Hydrogen	857.4	.00366	$\begin{aligned} & C=71.7 \\ & n=0.68 \mathrm{I} ; \quad C=72.2 \end{aligned}$	-	2
Mercury	1620.	.003665	$n=1.6$,	273-380	10
Nitrogen	1658.6	. 003665	$\beta=0.00269$; $n=0.738$	-21.5-53.5	7
Nitrous oxide	1353.3	. 003719	$\beta=0.00345 ; n=0.929$	-21.5-100.3	"
Oxygen .			$n=0.782 ; C=128.2$	-	4

I Holman, Proc. Amer. Acad. 12, 1876; 21 ,
1885; Philos. Mag. (5) 3, 1877; 21, 1886.
2 Breitenbach, Wied. Ann. 5, 1901.
3 Schultze, Ann. Phys. (4) 5, 1901.
4 Rayleigh, Proc. Roy. Soc. 62, 1897 ; 66, 1900; 67, 1900.

5 Schumann, Wied. Ann. 23, 1884.
6 Breitenbach, Ann. Phys. 5, 1901 .
7 Obermayer, Wien. Ber. 73 (2A), 1876.
8 Puluj, Wien. Ber. 78 (2), 1878.
9 Schultze, Ann Phys. (4) 6, 1901.
to Koch, Wied. Ann. 19, 1883.

* See Table 122 for viscosity of air.

Compiled from Landolt-Börnstein-Meyerhoffer's Physikalisch-chemische Tabellen.
Smithsonian tables.

Table 124.

DIFFUSION OF AN AQUEOUS SOLUTION INTO PURE WATER.

If k is the coefficient of diffusion, $d S$ the amount of the substance which passes in the time $d t$, at the place x, through q sq. cm . of a diffusion cylinder under the mfluence of a drop of concentration $d c / d x$, then

$$
d S=-k q \frac{d c}{d x} d t
$$

k depends on the temperature and the concentration. c gives the gram-molecules per liter. The unit of time is a day.

Compiled from Landolt-Börnstein-Meyerhoffer's Physikalisch-chemische Tabellen.

Smithsonian Tables.

DIFFUSION OF VAPORS.

Coefficients of diffusion of vapors in C. G. S. units. The coefficients are for the temperatures given io the table and a pressure of 76 centimeters of mercury.*

[^21]
Smithsonian Tables.

DIFFUSION OF GASES, VAPORS, AND METALS.
Table 126. - Coefficients of Diftusion for Varions Gases and Vapors.*

Gas or Vapor diffusing.	Gas or Vapor duffused into.	$\begin{aligned} & \text { Temp. } \\ & T_{\mathrm{D}} . \end{aligned}$	Coefficient of Diffusion.	Authority.
Air	Hydrogen	0	0.661	Schulze. Obermayer.
	Oxygen .	0	$\begin{aligned} & 0.1775 \\ & 0.1422 \end{aligned}$	Loschmidt.
$\underset{*}{\text { Carbon dioxide }}$ * . .	Air . . .	0	0.1360	Waitz.
.6 6	Carbon monoxide	\bigcirc	0.1405	Loschmidt.
" ${ }^{\text {a }}$	" ${ }^{\text {c }}$	0	0.1314	Obermayer.
" ،	Hydrogen . . . -	\bigcirc	0.5437	"
"	Methane	\bigcirc	0.1465	Loschmidt.
6	Nitrous oxide .	0	$\begin{aligned} & 0.0983 \\ & 0.1802 \end{aligned}$	Loschmidt.
Carbon disulphide	Oxygen Air.	0	0.8095	Stefan.
Carbon disulphide Carbon monoxide	Carbon dioxide ${ }^{\text {A }}$	\bigcirc	0.0995 0.1314	Obermayer.
"، "	Ethylene	\bigcirc	0.101	
"	Hydrogen . . .	\bigcirc	0.6422	Loschmidt.
"، "	Oxygen .	0	0.1872	Obermayer.
Ether	Air . .	0	0.0827	Stefan.
"	Hydrogen . .	0	0.3054	
Hydrogen	Air - . ${ }^{\text {c }}$	0	0.6340	Obermayer.
،	Carbon dioxide ${ }^{\text {a }}$ monoxide	0	$\begin{aligned} & 0.5384 \\ & 0.6488 \end{aligned}$	"
"	Ethane . . .	0	0.4593	"
"	Ethylene	0	0.4863	"
"	Methane	0	0.6254	
"	Nitrous oxide	0		"
" .	Oxygen • -	0	0.6788	"
Nitrogen	" ${ }^{\text {c }}$ "	0	0.1787	
Oxygen .	Carbon dioxide -	\bigcirc	0.1357 0.7217	
"	Hydrogen Nitrogen . . .	\bigcirc	0.7 0.1710	Obermayer.
Sulphur dioxide	Hydrogen .	8	0.4828	Loschmidt.
Water . . .	Air . .	8	0.2390	Guglilemo.
"	Hydrogen ${ }^{\text {a }}$.	18	0.2475 0.8710	

* Compiled for the most part from a similar table in Landolt \& Börnstein's Phys. Chem. Tah.

TABLE 127. - Dittusion of Metals into Metals.

$\frac{d v}{d t}=k \frac{d^{2} v}{d x^{2}} ; \quad \begin{aligned} & \text { where } x \text { is the distance in direction of diffusion } ; v, \text { the degree of concentration of }\end{aligned}$ in grams diffusing through a sq. cm. in a day when unit difference of concentration (gr. per cu. cm.) is maintained between two sides of a layer one cm . thick.

Diffusing Metal.	Dissulving Metal.	Temperature ${ }^{\circ} \mathrm{C}$.	k.	Diffusing Metal.	Dissolving Metal.	Temperature ${ }^{\circ} \mathrm{C}$.	$\underline{7}$.
Gold	Lead	555	3.19	Platinum .	Lead	492	1.69
"	"	492	3.00	Lead .	Tin .	555	3.18
" .	"	251	0.03	Rhodium.	Lead .	550	3.04
" 6	"	200	0.008	Tin .	Mercury	15	1.22*
"	"	165	0.004	Lead .	"	15	1.0*
"	${ }^{\prime \prime}{ }^{\text {Bismuth }}$	100	0.00002	Zinc -	،	15	1.0*
"	Bismuth	555	4.52	Sodium .	"	15	0.45**
"	Tin	555	4.65	Potassium		15	0.40 *
Silver		555	4.14	Gold	"	15	0.72 *

From Roberts-Austen, Philosophical Transactions, 187A, p. 383, 1896.

* These values are from Guthrie.

Table 128.

SOLUBILITY OF INORGANIC SALTS IN WATER; VARIATION WITH THE TEMPERATURE.

The numbers give the number of grams of the anhydrous salt soluble in 1000 grams of water at the given temperatures.

Salt.	Temperature Centigrade.										
	${ }^{\circ}$	10°	20°	30°	40°	50°	60°	70°	80°	90°	${ }^{100}{ }^{\circ}$
AgNO_{8}	1150	1600	2150	2700	3350	4000	4700	5500	6500	7600	9100
$\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{8}$	313	335	362	404	457	521	591	662	731	808	891
$\mathrm{Al}_{2} \mathrm{~K}_{2}\left(\mathrm{SO}_{4}\right.$	30	335		84	4	52	248				1540
$\mathrm{Al}_{2}\left(\mathrm{NH}_{4}\right)_{2}\left(\mathrm{SO}_{4}\right)_{4}$	26	45	66	91	124	159	211	270	352	-	
$\mathrm{B}_{2} \mathrm{O}_{8}$	11	15	2		40		62		95		157
BaCl_{2}	316	333	357	382	408	436	464	494	524	556	588
$\mathrm{Ba}\left(\mathrm{NO}_{8}\right)_{2}$	50	70	92	116	142	171	203	236	270	306	342
CaCl_{2}	595	650	745	1010	1153		1368	1417	1470	1527	1590
CoCl_{2}	405	450	500	565	650	935	940	950	960	-	1030
$\mathrm{CsCl}^{\text {c }}$	1614	1747	1865	1973	2080	2185	2290	2395	2500	2601	2705
CsNO_{8}	93	149	230	339	472	644	838	1070	1340	1630	1970
$\mathrm{Cs}_{2} \mathrm{SO}_{4}$	167 I	1731	1787	1841	1899	1949	1999	2050	2103	2149	2203
$\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}$	818		1250		1598		1791		2078		
CuSO_{4}	149	-	$\overline{68}$	255	295	336	390	457	535	627	735
FeCl_{2}.		$\overline{-}$	685			$\stackrel{8}{820}$			1040 5258	1050	1060 5357
${ }_{\text {Fene }} \mathrm{Fe}_{2} \mathrm{Cl}_{8}$	744 156	819 208	918 264	330	402	3151 486	550	560	5258	430	5357
HgCl_{2}	43	66	74	84	96	113	139	173	243	371	540
KBr .	540	-	650		760		860		955		1050
$\mathrm{K}_{2} \mathrm{CO}_{8}$	105°		-	1140	1170	1210	1270	1330	1400	1470	1560
KCl .	285	312	343	373	401	429	455	483	510	538	566
KClO_{3}	33	50	71	101	145	197	260	325	396	475	560
$\mathrm{K}_{2} \mathrm{CrO}_{4}$	589	609	629	650	670	690	710	730	751	771	791
$\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$	50	85	131		292		505		730		
$\underset{\mathrm{KI}}{\mathrm{KH}} \mathrm{HCO}_{3}$.	225 1279	277 1361	${ }_{1442}$	(390	r 453	522 1680	600 1760	1840	1920	2010	2090
K $\mathrm{NO}_{8}{ }^{\text {a }}$	133	209	316	458	639	855	1099	1380	1690	2040	2460
KOH .	970	1030	1120	1260	1360	1400	1460	1510	I 590	1680	1780
$\mathrm{K}_{2} \mathrm{PtCl}_{6}$	7	9	11	14	18	22	26	32	38	45	52
$\mathrm{K}_{2} \mathrm{SO}_{4}$	74	92	111	130	148	165	182	198	214	228	24 L
LiOH	127	127	128	129	130	133	${ }^{1} 3^{8}$	144	153	-	175
MgCl_{2}	528	535	545		575		610		660		730
MgSO_{4} • - (yaq)	260	309	356	409	45^{6}					689	738
${ }^{\prime \prime}{ }^{\text {N }}$ - - (6aq)	408	422	439	453		504 504	550 552	596	642 656	689 713	738
$\stackrel{\mathrm{NH}_{4} \mathrm{Cl}}{\mathrm{NH}_{4} \mathrm{HCO}_{3} \cdot{ }^{-} \cdot}$	297 119	333 159	210	414	458	504	552	602	656	713	773
$\mathrm{NH}_{4} \mathrm{NO}_{8}$	1183	-	-	2418	2970	3540?	4300?	5130?	5800	7400	8710
$\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$.	706	730	754	780	810	844	880	916	953	992	1033
NaBr .	795	845	903		1058	1160	1170		1185		1205
$\mathrm{Na}_{2} \mathrm{~B}_{4} \mathrm{O}_{7}$	7	16	-	39		105	200	244	314	408	${ }_{5}^{53}$
$\mathrm{Na}_{2} \mathrm{CO}_{3}$ - - (${ }_{(0 \mathrm{oaq})}$			214	409							452
${ }^{\mathrm{NaCl}}$.	$\begin{aligned} & 204 \\ & 356 \end{aligned}$	263	335	435	${ }_{\text {(1aq) }}^{363}$	475	$4{ }^{464}$	375	482 380	385	${ }_{391}$
NaClO_{3}.	820	890	990	-	1235		1470		1750		2040
$\mathrm{Na}_{2} \mathrm{CrO}_{4}$	317	502	900	-	960	1050	1150	-	1240	-	1260
$\mathrm{Na}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$	1630	1700	1800	1970	2200	2480	2830	3230	3860	-	4330
NaHCO_{8}	69	82	96	111	127	145	164		-	-	988
$\mathrm{Na}_{2} \mathrm{HPO}_{4}$	25 1590		93 1790		$\begin{array}{r} 639 \\ 2050 \end{array}$			949			3020
$\stackrel{\mathrm{NaI}}{\mathrm{NaNO}} \mathrm{O}_{8}$	1590 730	1690 805	1790 880	1900 962	2050 1049	1140	$\begin{aligned} & 2570 \\ & 1246 \end{aligned}$	1360	1480	1610	1755

Smithsonian Tables.

SOLUBILITY OF SALTS AND GASES IN WATER.

TABLE 128 (concluded) - Solubility of Inorganic Salts in Water ; Varlation with tha Temperature.
The numbers give the number of grams of the anhydrous salt soluble in 1000 grams of water at the given temperatures.

Salt.	Temperature Centigrade.										
	0°	10°	20°	30°	40°	50°	60°	70°	80°	90°	100°
NaOH	420	515	1090	1190	1290	1450	1740	-	3130	-	-
$\mathrm{Na}_{4} \mathrm{P}_{2} \mathrm{O}_{7}$.	32	39	62	99	135	174	220	255	300		-
$\mathrm{Na}_{2} \mathrm{SO}_{3}$.	141	-	287	-	495	-	-	-			330
$\mathrm{Na}_{2} \mathrm{SO}_{4} \cdot$. (roaq)	50 196	90 305	194 447	400	$\} 482$	468	455	445	437	429	427
$\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$. . . ${ }^{\text {a }}$.	196	610	447 700	847	1026	1697	2067	-	2488	2542	2660
NiCl_{2}. . .	5	600	640	680	720	760	810	-	-		-
NiSO_{4}. . . .	272	-	-	425	-	502	548	594	632	688	776
PbBr_{2}.	5	6	8	12	15	20	24	28	33	-	48
$\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$	365	444	523	607	694	787	880	977	1076	1174	1270
RbCl .	770	844	911	976	1035	1093	1155	1214	1272	1331	1389
RbNO_{3}	195	330	533	813	1167	1556	2000	2510	3090	3750	4520
$\mathrm{Rb}_{2} \mathrm{SO}_{4}$	364	426	482	535	585	631	674	714	750	787	818
SrCl_{2}.	44^{2}	483	539	600	667	744	83 I	896	924	962	1019
SnI_{2}.	-		10	12	14	17	21	25	30	34	40
$\mathrm{Sr}\left(\mathrm{NO}_{8}\right)_{2}$	395	549	708	876	913	926	940	956	972	990	1011
$\underset{\sim}{\operatorname{Th}\left(\mathrm{SO}_{4}\right)_{2}} \cdot .(\mathrm{gaq})$	7	10	14	20	30 40	51 25	16	11	-		-
TlCl	2	2	3	5	6	8	10	13	16	20	-
TINO_{3}	39	62	96	143	209	304	462	695	1110	2000	4140
$\mathrm{Tl}_{2} \mathrm{SO}_{4}$.	27	37	49	62	76	92	109	127	146	165	-
$\mathrm{Yb}_{2}\left(\mathrm{SO}_{4}\right)_{8}$	442	-	-	-	6	-	104	72	69	58	47
$\mathrm{ZnSO}_{4}^{\mathrm{Zn}\left(\mathrm{NO}_{3}\right)_{2}}$	948	-		-	2069	768	-	890	-	-	78
ZnSO_{4}.	-	-	-	-	700	768	-	890	860	920	785

TABLE 128. - Solubilly of a Few Organio Salts in Watar ; Variation with the Temperature.

Salt.	\bigcirc	10°	20°	30°	40°	50°	60°	70°	80°	90°	100°
$\mathrm{H}_{2}\left(\mathrm{CO}_{2}\right)_{2}$. -	36	53	102	159	228	32 I	445	635	978	1200	-
$\mathrm{H}_{2}\left(\mathrm{CH}_{2} \cdot \mathrm{CO}_{2}\right)_{2}$	28	45	69	106	162	244	358	511	708	-	1209
Tartaric acid .	1150	1260	1390	1560	1760	1950	2180	2440	2730	3070	3430
Racemic "	92	140	206	291	433	595	783	999	1250	1530	1850
$\mathrm{K}\left(\mathrm{HCO}_{2}\right)$ -	2900	-	3350	-	3810	-	4550				7900
$\mathrm{KH}\left(\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}_{4}\right)$.	3	4	6	9	13	18	24	32	45	57	69

TABLE 130. - Solubility of Gases in Water; Varlation with the Temperatare.
The table gives the weight in grams of the gas which will be absorbed in 1000 grams of water when the partial pressure of the gas plus the vapor pressure of the liquid at the given temperature equals 760 mm .

Gas.	0°	10°	20°	30°	40°	50°	60°	70°	80°
O_{2}	.0705	.0551	.0443	.0368	.0311	.0263	.0221	.0181	.0135
H_{2}	.00192	.00174	.00160	.00147	.00138	.00129	.00118	.00102	.00079
$\mathrm{~N}_{2}$.0293	.0230	.0189	.0161	.0139	.012 I	.0105	.0089	.0069
Br_{2}	43 I.	248.	148.	94.	62.	40.	28.	18.	11.
Cl_{2}	-	9.97	7.29	5.72	4.59	3.93	3.30	2.79	2.23
CO_{2}	3.35	2.32	1.69	1.26	0.97	0.76	0.58	-	-
$\mathrm{H}_{2} \mathrm{~S}$	7.10	5.30	3.98	-	-	-	-	-	-
NH_{8}	987.	689.	535.	422.	-	-	-	-	-
SO_{2}	228.	162.	113.	78.	54.	-	-	-	-

Compiled from Landolt-Börnstein-Meyerhoffer's Physikalisch-chemische Tabellen.
Smithsonian Tables.

CHANGE．OF SOLUBILITY PRODUCED BY UNIFORM PRESSURE．＊

Pressureinatmos－pheres．	$\mathrm{CdSO}_{4} 8 / 3 \mathrm{H}_{2} \mathrm{O}$ at 25°		$\mathrm{ZnSO}_{4.7} \mathrm{H}_{2} \mathrm{O}$ at $5^{\circ}{ }^{\circ}$		Mannite at 24.05°		NaCl at $24.05{ }^{\circ}$	
I	76.80	－	57.95	－	20.66	－	35.90	－
500	78.01	＋ 1.57	57.87	-0.14	21.14	＋2．32	36.55	＋ 1.8 s
1000	78.84	＋2．68	57.65	－0．52	21.40	$+3.57$	37.02	＋3．12
1500	－	－	－	－	21.64	＋ 4.72	37．36	＋4．07

＊E．Cohen and L．R．Sinnige，Z．physik，Chem．67，p．432，1909；69，p．ro2，r909．E．Cohen，K．Inouye and C．Euwen，ibid．75，p．257，19ri．These authors give a critical resume of earlier work along this line．

Smithsonian Tableg．

ABSORPTION OF CASES BY LIQUIDS.*

[^22]Nore. - The effect of increase of pressure is generally to increase the absorption coefficient. The following is approximately the magoitude of the effect in the case of ammonia in alcohol at a temperature of $23^{\circ} \mathrm{C}$.:

$$
\left\{\begin{array}{lllll}
P=45 \mathrm{cms} . & 50 \mathrm{cms} . & 55 \mathrm{cms} . & 60 \mathrm{cms} . & 65 \mathrm{cms} . \\
a_{23}=69 & 74 & 79 & 84 & 88
\end{array}\right.
$$

According to Setschenow the effect of varying the pressure from 45 to 85 centimeters in the case of carbonic acid in water is very small.
Bmithsonian Tables.

CAPILLARITY.-SURFACE TENSION OF LIQUIDS.*

TABLE 133. Water and Alcohol in Contact with Air.

$\begin{gathered} \text { Temp. } \\ \text { C. } \end{gathered}$	Surface tension in dynes per centimeter.		$\begin{aligned} & \text { Temp. } \\ & \text { C. } \end{aligned}$	Surface tension in dynes per centimeter.		Temp. C.	Surface tension in dynes per centimeter.
	Water.	Ethyl alcohol.		Water.	Ethyl alcohol,		Water.
0°	75.6	23.5	40°	70.0	20.0	80°	64.3
5	74.9	23.1	45	69.3	19.5	85	63.6
10	74.2	22.6	50	68.6	19.1	90	62.9
15	73.5	22.2	55	67.8	18.6	95	62.2
20	72.8	21.7	60	67.1	18.2	100	6 I .5
25	72.1	21.3	65	66.4	17.8	-	-
30	71.4	20.8	70	65.7	17.3	-	-
35	70.7	20.4	75	65.0	16.9	-	-

TABLE 134. - Miscellaneons Liquids in Contact with Alr.

| Liquid. | | | |
| :--- | ---: | ---: | :--- | :--- | :--- |

TABLE 135.-Solutions of Saits in Water. \dagger

Salt in solution.	Density.	Temp. C. ${ }^{\circ}$	Tension in dynes per cm.
BaCl_{2}	1.2820	15-16	81. 8
${ }^{6}$	1.0497	15-16	77.5
CaCl_{2}	I.35I I	19	95.0
${ }^{\text {a }}$	1.2773	19	90.2
HCl	1.1190	20	73.6
4	I. 0887	20	74.5
${ }^{4}$	1.0242	20	75.3
KC]	I. 1699	$15-16$	82.8
*	1.1011	I5-16	80.1
*	1.0463	15-16	78.2
MgCl_{2}	1.2338	$15-16$	90.1
	1.1694	$15-16$	85.2
"	1.0362	$15-16$	78.0
NaCl	1.1932	20	85.8
*	1.1074	20	80.5
${ }^{4}$	1.0360	20	77.6
$\mathrm{NH}_{4} \mathrm{Cl}$	1.075^{8}	16	84.3
${ }^{6}$	1.0535	16	81.7
S	1.0281	16	78.8
SrCl_{2}	1.3114	15-16	85.6
*	I. 1204	$15-16$	79.4
$\mathrm{K}^{\text {CO }}$	1.0567	15-16	77.8
$\mathrm{K}_{2} \mathrm{CO}_{4}$	1.3575	$15-16$	90.9
${ }_{6}$	1.157^{6}	$15-16$	8ı. 8
" ${ }^{\circ}$	1.0400	$15-16$	77.5
$\mathrm{Na}_{2} \mathrm{CO}_{8}$	1.1329	14-15	79.3
	1.0605	14-I 5	77.8
KNO	1.0283	$14-15$	77.2
KNO_{3}	I. I 263	14	78.9
$\stackrel{4}{3}$	1.0466	14	77.6
$\mathrm{NaN}_{6} \mathrm{NO}_{8}$	I. 3022	12	83.5
	1.1311	12	80.0
CuSO_{4}	1.1775	$15-16$	78.6
	1.0276	$15-16$	77.0
$\mathrm{H}_{2} \mathrm{SO}_{4}$	1.8278	15	63.0?
،	1.4453	15	79.7
K SO_{4}	1.2636	15	79.7
$\mathrm{K}_{2} \mathrm{SO}_{4}$	1.0744	$15-16$	78.0
	1.0360	$15-16$	77.4
MgSO_{4}	1.2744	$15-16$	83.2 778
	1.0680	$15-16$	77.8
$\mathrm{Mn}_{2} \mathrm{SO}_{4}$	1.1519	$15-16$	79.1
	1.0329	$15-16$	77.3
ZnSO_{66}	1.3981 1.2830	$15-16$	83.3
6	1.2830	$15-16$	80.7 77.8

[^23]
Smithsonian Tables.

TABLE 136. -Surface Tension of Liquids.*

TABLE 137.-Suriaoe Tension of Liquids at Solidifying Polnt. \dagger

Substance.		Temperature of solidification. Cent. ${ }^{\circ}$	Surface tension in dynes per centimeter.	Substance.	Temperature of solidification. Cent. ${ }^{\circ}$	Surface tension in dynes per centimeter.
Platinum	-	2000	1691	Antimony	432	249
Gold	. \cdot	1200	1003	Borax .	1000	216
Zinc	. .	360	877	Carbonate of soda	1000	210
Tin	.	230	599	Chloride of sodium	-	116
Mercury	.	-40	588	Water .	\bigcirc	$87.9 \ddagger$
Lead	- .	330	457	Selenium	217	71.8
Silver	.	1000	427	Sulphur .	111	42.1
Bismuth	- .	265	1390	Phosphorus .	43	42.0
Potassium	- .	58	371	Wax . .	68	34.1
Sodium	- •	90	258			

TABLE 136. - Tenston of Soap Films.
Elaborate measurements of the thickness of soap films have been made by Reinold and Rucker.\| They find that a film of oleate of soda solution containing 1 of soap to 70 of water, and having 3 per cent of KNO_{8} added to increase electrical conductivity, breaks at a thickness varying between 7.2 and 14.5 micro-millimeters, the average being 12.1 micromillimeters. The film becomes black and apparently of nearly uniform thickness round the point where fracture begins. Outside the black patch there is the usual display of colors, and the thickness at these parts may be estimated from the colors of thin plates and the refractive index of the solution (vide Newton's rings, Table 222).

When the percentage of KNO_{3} is diminished, the thickness of the black patch increases. For example, $\quad \mathrm{KNO}_{3}=3 \quad 1 \quad 1 \quad 0.5 \quad 0.0$

Thickness $=12.413 .514 .5 \quad 22.1$ micro-mm.
A similar variation was found in the other soaps.
It was also found that diminishing the proportion of soap in the solution, there being no KNO_{3} dissolved, increased the thickness of the film.

1 part soap to 30 of water gave thickness 21.6 micro-mm.
I part soap to 40 of water gave thickness 22.1 micro-mm.
I part soap to 60 of water gave thickness 27.7 micro-mm.
I part soap to 80 of water gave thickness 29.3 micro-mm.

[^24]Table 139.

VAPOR PRESSURES.

The vapor pressures here tabulated have been taken, with one exception, from Regnault's results. The vapor pressure of Pictet's fluid is given on his own authority. The pressures are iu centimeters of mercury.

Tem-perature Cent.	Acetone. $\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}$	Benzol. $\mathrm{C}_{6} \mathrm{H}_{6}$	Carbon bisul${ }^{\text {phide }}{ }^{2}$	Carbon tetrachloride. CCl_{4}	Chloroform. CHCl_{8}	Ethyl ${ }_{\mathrm{C}_{2} \mathrm{H}_{8} \mathrm{O}}^{\text {alchol. }}$ $\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}$	Ethyl $\stackrel{\text { ether. }}{\mathrm{C}_{4} \mathrm{H}_{16} \mathrm{O}}$	$\begin{gathered} \text { Ethyl } \\ \text { bromide. } \\ \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Br} \end{gathered}$	Methyl alcohol. $\mathrm{CH}_{4} \mathrm{O}$	Turpen $\stackrel{\mathrm{C}_{10} \mathrm{H}_{6}}{\text { time. }}$
-25°	-	-	-	-	-	-	-	4.41	.41	-
-20	-	. 58	4.73	. 98	-	-33	6.89	5.92	. 63	
-15	-	. 88	6.16	1.35	-	. 51	8.93	7.81	. 93	
-10	-	1.29	7.94	1.85		. 65	11.47	10.15	1. 35	
-5	-	1.83	10.13	2.48	-	. 91	14.61	13.06	1.92	-
0	-	2.53	12.79	3.29	$5 \cdot 97$	1.27	18.44	16.56	2.68	. 21
5	-	3.42	16.00	4.32		1.76	23.09	20.72	3.69	
10	-	4.52	19.85	5.60	10.05	2.42	28.68	25.74	5.01	. 29
15	-	5.89	24.41	7.17	6605	$3 \cdot 30$	$35 \cdot 36$	31.69	6.71 8.87	-
20	17.96	7.56	29.80	9.10	16.05	4.45	43.28	38.70	8.87	. 44
25	22.63	9.59	36.11	11.43	20.02	5.94	52.59	46.91	11.60	-
30	28.10	12.02	43.46	14.23	24.75	7.85	63.48	56.45	15.00	. 69
35	34.52	14.93	51.97	17.55	30.35	10.29	76.12 90.70	67.49 80.19	19.20	
40	42.01 50.75	18.36 22.41	61.75 72.95	21.48 26.08	36.93 44.60	13.37 17.22	90.70 107.42	80.19 94.73	24.35 30.61	1.08
45	50.75	22.41	72.95	26.08	44.60	17	107.42	94.73	30.61	
50	62.29	27.14	85.71	31.44	53.50	21.99	126.48	111.28	38.17	1.70
55	72.59	32.64	100.16	37.63	63.77	27.86	148.11	130.03	47.22	
60	86.05	39.01	116.45	44.74	75.54	35.02	172.50	151.19	57.99	2.65
65	101.43	46.34	134.75	52.87	88.97	43.69	199.89	174.95 201.51	70.73 85.71	
70	118.94	54.74	155.21	62.11	104.21	54.11	230.49	201.5I	85.71	4.06
75	138.76	64.32	177.99	72.57	121.42	66.55	264.54	231.07	103.21	
80	161.10	75.19	203.25	84.33	140.76	81.29	302.28	263.86	123.85	6.13
85	186.18	87.46	23 r .17	$\begin{array}{r}97.51 \\ \hline 12.23\end{array}$	162.41 186.52	$\begin{array}{r}98.64 \\ \hline\end{array}$	343.95 389	300.06	147.09 174.17	9.06
90	214.17 245.28	101.27 116.75	261.91 296.63	112.23 128.69	186.52 213.28	118.93 142.51	389.83 440.18	339.89 383.55	174.17 205.17	9.06
95	245.28	116.75	296.63	128.69	213.28	142.51	440.18	383.55	205.17	
100	279.73	134.01	332.51	146.71	242.85	169.75	495.33	431.23	240.51	13.11
105	317.70	${ }_{1} 53.18$	372.72	166.72	275.40	201.04	555.62 621.46	483.12	280.63 325.96	${ }_{18.60}$
110	359.40	174.44	416.41	188.74	311.10 350.10	236.76 277.34	621.46	539.40 600.24	325.96 376.98	18.60
115	405.00	197.82	463.74	212.91	350.10 392.57	277.34 323.17	693.33 771.92	665.80	376.98 434	25.70
120	454.69	223.54	514.88	239.37	392.57	323.17	77.92	665		
125	508.62	251.71	569.97	268.24	438.66	374.69	-	736.22 815.65	498.05	34.90
130	566.97	282.43	629.16	299.69	488.51	432.30	-	811.65 892.19	569.13 647.93	34.90
135	629.87	315.85	692.59 760.40	333.86 370.90	542.25 600.02	496.42 567.46	-	892.19 977.96	647.93 733.71	46.40
140	697.44	352.07 391.21	760.40 832.69	370.90 411.00	600.02 661.92	567.46 645.80	-	977.96	830.89	46.4
145 150	-	391.21 433.37	832.69 909.59	411.00 454.31	728.06	731.84	-	-	936.13	60.50
155	-	478.65	90.	501.02	798.53	825.92	-		-	8.60
160	-	527.14	-	551.31	873.42	-	-	-	-	77.50
165	-	568.30	-	605.38	952.78	-	_			-
170	-	634.07	-	663.44	-	-	-			

Emithsonian Tableg.

VAPOR PRESSURES.

Tem-perature, Centigrade.	$\underset{\mathrm{NH}_{\mathrm{s}}}{\text { Ammonia. }}$	Carbon dioxide. CO_{2}	Ethyl chloride. $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Cl}$	Ethyl iodide. $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{I}$	Methyl chloride. $\mathrm{CH}_{8} \mathrm{Cl}$	Methylic ether. $\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}$	Nitrous oxide. $\mathrm{N}_{2} \mathrm{O}$	$\begin{gathered} \text { Pictet's } \\ \text { fuid. } \\ 64 \mathrm{SO}_{2}+ \\ 44 \mathrm{CO}_{2} \text { by } \\ \text { weight } \end{gathered}$	Sulphur dioxide. SO_{2}	Hydrogen sulphide. $\mathrm{H}_{2} \mathrm{~S}$
-30°	86.6 r	-	11.02	-	57.90	57.65		58.52	28.75	-
-25	110.43	1300.70	14.50	-	71.78	71.61	1569.49	67.64	37.38	37493
-20	139.21	1514.24	18.75	-	88.32	88.20	1758.66	74.48	47.95	443.85
-15	173.65	1758.25	23.96	-	107.92	107.77	1968.43	89.68	60.79	519.65
-10	214.46	2034.02	30.21	-	130.96	130.66	2200.80	101.84	76.25	608.46
-5	264.42	2344.13	37.67	-	I 57.87	157.25	2457.92	121.60	94.69	706.60
0	318.33	2690.66	46.52	4.19	189.10	187.90	2742.10	139.08	116.51	820.63
5	383.03	3075.38	56.93	5.41	225.11	222.90	3055.86	167.20	142.11	949.08
10	457.40	3499.86	6 I .11	6.92	266.38	262.90	3401.91	193.80	171.95	1089.63
15	543.34	3964.69	83.26	8.76	313.41	307.98	3783.17	226.48	206.49	I 244.79
20	638.78	4471.66	99.62	11.00	366.69	358.60	4202.79	258.40	246.20	1415.15
25	747.70	5020.73	118.42	13.69	426.74	415.10	4664.I4	297.92	291.60	1601.24
30	870.10	5611.90	139.90	16.91	494.05	477.80	5170.85	338.20	343.18	1803.53
35	1007.02	6244.73	164.32	20.71	569.11	-	6335.98	383.80	401.48	2002.43
40	1159.53	6918.44	191.96	25.17	5 -	-	-	434.72	467.02	2258.25
45	1328.73	7631.46	223.07	30.38		-	-	478.80	540.35	2495.43
50	1515.83	-	257.94	36.40	-	-	-	52 I .36	622.00	2781.48
55	1721.98	-	266.84	43.32	-	-	-	521.3	712.50	3069.07
60	1948.21	-	340.05	51.22	-	-	-	-	812.38	3374.02
75	2196.51 2467.55	-	387.85	-	-	-	-	-	922.14	3696.15
70	$2467 \cdot 55$	-	440.50	-	-	-	-	-	-	4035.32
75	2763.00		498.27	-	-	-	-	-	-	-
80	3084.31	-	561.41	-	-	-	-	-	-	-
85	3433.09	-	630.16	-	-	-	-	-	-	_
90	3810.92	-	704.75	-	-	-	-	-	-	-
95	4219.57	-	785.39	-	-		-	-	-	-
100	4660.82	-	872.28	-	-	-	-	-	-	-

Smithsonian Tasles.

VAPOR PRESSURE．

Table 140．－Vapor Preosure of Ethyl Alcohol．＊

$\begin{aligned} & \text { U } \\ & \text { 品 } \\ & \text { H } \end{aligned}$	0°	$1{ }^{\circ}$	2°	3°	4°	5°	6°	$7{ }^{\circ}$	8°	9°
	Vapor pressure in millimeters of mercury at $0^{\circ} \mathrm{C}$ ．									
0°	12.24	13.18	14.15	15.16	16．2I	17.31	18.46	19.68	20.98	22.34
10	23.78	25.31	27.94	28.67		32.44	34.49	36.67	38.97	41.40
20	44.00	46.66	49.47	52.44	55.56	58.86	62.33	65.97	69.80	73.83
30	78.06	82.50	87.17	92.07	97．21	${ }_{102.60}$	108.24	I14．15	120.35	1 26.86
40	133.70	140.75	148.10	155.80	163.80	172.20	18 r .00	190.10	199.65	209.60
50	220.00	230.80	242.50	253.80	265.90	278.60	291.85	305.65	319.95	334.85
60	350.30	366.40	383.10	400.40	418.35	437.00	456.35	476.45	497.25	518.85
70	54 I .20	564.35	588.35	613.20	638.95	665.55	693．10	721.55	751．00	781.45

From the formula $\log p=a+b a^{t}+c \beta^{t}$ Ramsay and Young obtain the following numbers．\dagger

Tablez 141．－Vapor Pressure of Methyl Alcohol．f

$\begin{aligned} & \text { ن゙ } \\ & \text { 首 } \\ & \text { Hen } \end{aligned}$	$0{ }^{\circ}$	$1{ }^{\circ}$	2°	3°	$4{ }^{\circ}$	6°	6°	$7{ }^{\circ}$	8°	g°
	Vapor pressure in millimeters of mercury at $0^{\circ} \mathrm{C}$ ．									
0°	29.97	31.6	33.6	35.6	37.8	40.2	42.6	45.2	47.9	50.8
10	53.8	57.0	60.3	63.8	67.5	71.4	75.5	79.8	84.3	89.0
20	94.0	99.2	104.7	110.4	116.5	122.7	129.3	136.2	143.4	151.0
30	158.9	167.1	175.7	184.7	194.1	203.9	214.1	224.7	235.8	247.4
40	259.4	27 r .9	285.0	298.5	3 I 2.6	327.3	342.5	358.3	374.7	391.7
50	409.4	427.7	446.6	466.3	486.6	507.7	529.5	552.0	575.3	599.4
60	624.3	650.0	676.5	703.8	732.0	$76 \mathrm{r} . \mathrm{I}$	791.1	822.0		－

＊This table has been compiled from results published by Ramsay and Young（Jour．Chem．Soc．vol．47，and Phil． Trans．Roy．Soc．， 1886 ）．
\dagger In this formula $a=5.0720301 ; \log b=\overline{\mathbf{5} .6406131 ; ~} \log c=0.6050854 ; \log a=0.003377538 ; \log \beta=\overline{\mathrm{x}} .9968 \mathbf{2 4 2 4}$ （ c is negative）．
\ddagger Taken from a paper by Dittmar and Fawsitt（Trans．Roy．Soc．Edin．val．33）．

Gmithsonian Tables．

VAPOR PRESSURE.*

Carbon Displphide, Chlorobenzene, Bromobenzene, and Aniline.

Temp.	0°	$1{ }^{\circ}$	2°	3°	4°	5°	6°	7°	8°	8°
(a) Carbon Disulphide.										
0°	127.90	133.85	140.05	146.45	153.10	160.00	167.15	174.60	182.25	190.20
10	198.45	207.00	215.80	224.95	234.40	244.15	254.25	264.65	275.40	286.55
20	298.05	309.90	322.10	334.70	347.70	361.10	374.95	389.20	403.90	419.00
30	434.60	450.65	467.15	484.15	501.65	519.65	538.15	557.15	576.75	596.85
40	617.50	638.70	660.50	682.90	705.90	729.50	753.75	778.60	804.10	830.25
(b) Chlorobenzene.										
20°	8.65	9.14	9.66	10.21	10.79	11.40	12.04	12.71	13.42	14.17
30	14.95	15.77	16.63	17.53	18.47	19.45	20.48	21.56	22.69	23.87
40	25.10	26.38	27.72	29.12	30.58	32.10	33.69	35.35	37.08	38.88
50	40.75	42.69	44.72	46.84	49.05	51.35	53.74	56.22	58.79	61.45
60	64.20	67.06	70.03	73.11	76.30	79.60	83.02	86.56	90.22	94.00
70	97.90	101.95	106.10	110.41	114.85	119.45	124.20	129.10	134.15	I 39.40
80	144.80	150.30	156.05	161.95	168.00	174.25	181.70	187.30	194.10	201.15
90	208.35	215.80	223.45	231.30	239.35	247.70	256.20	265.00	274.00	283.25
100	292.75	302.50	312.50	322.80	333.35	344.15	355.25	366.65	378.30	390.25
110	402.55 542.80	415.10 558.70	427.95 575.05	441.15 591.70	454.65 608.75	468.50	482.65	497.20	512.05	527.25
120	542.80 718.95	558.70 738.65	575.05 758.80	591.70	608.75	626.15	643.95	662.15	680.75	699.65
(c) Bromobenzene.										
40°	-	-	-		-	12.40	13.06	13.75	14.47	15.22
50	16.00	16.82	17.68	18.58	19.52	20.50	21.52	22.59	23.71	24.88
60	26.10	27.36	28.68	30.06	31.50	33.00	34.56	36.18	37.86	24.88
70	41.40	43.28	45.24	47.28	49.40	51.60	53.88	56.25	58.71	6I. 26
80	63.90 96.00	66.64	69.48 103.80	7242 10788	$\begin{array}{r}75.46 \\ \\ \hline 12\end{array}$	78.60	81.84	85.20	88.68	92.28
90	96.00	99.84	103.80	107.88	112.08	116.40	120.86	125.46	130.20	135.08
100	I40.10	145.26	150.57	156.03	161.64	167.40	173.32	179.41	185.67	192.10
110	198.70	205.48	212.44	219.58	226.90	234.40	242.10	250.00	258.10	266.40
120	274.90 372.65	283.65	292.60	301.75	311.15	320.80	330.70	340.80	351.15	361.80
130	372.65	383.75	395.10	406.70	418.60	430.75	443.20	455.90	468.90	482.20
140	495.80	509.70	523.90	538.40	553.20	568.35	583.85	599.65	615.75	632.25
150	649.05	666.25	683.80	701.65	719.95	738.55	757.55	776.95	796.70	816.90
(d) Aniline.										
80°	18.80	19.78	20.79	21.83	22.90	24.00	25.14	26.32		28.80
90	30.10	31.44	32.83	34.27	35.76	37.30	38.90	40.56	42.28	44.06
100	45.90	47.80	49.78	51.84	53.98	56.20	58.50	60.88	63.34	
110	68.50	71.22	74.04	76.96	79.98	83.10	86.32	89.66	63.34 93.12	95.88
120	100.40	104.22	108.17	112.25	116.46	120.80	125.28	129.91	134.69	139.62
130	144.70	149.94	155.34	160.90	166.62	172.50	178.56	184.80	191.22	197.82
140	204.60	211.58	218.76	226.14	233.72	241.50	249.50	257.72	266.16	274.82
150	283.70	292.80	302.15	311.75	321.60	331.70		352.65		
160	386.00	397.65	409.60	421.80	434.30	447.10	460.20	473.60	487.25	374.60 501.25
170 180	515.60 677.15	530.20	545.20	560.45	576.10	592.05	608.35	625.05	642.05	659.45
180	677.15	695.30	713.75	732.65	751.90	771.50		-	-	5

[^25]Smithsonian Tables.

Table 142 (continued).
VAPOR PRESSURE.
Methyl Sallcylato, Bromonaphthaline, and Mercury.

$\begin{aligned} & \text { Temp. } \\ & \mathbf{C .} . \end{aligned}$	0°	$1{ }^{\circ}$	$2{ }^{\circ}$	3°	4°	6°	6°	7°	8°	8°
(e) Methyl Salicylate.										
70°	2.40	2.58	2.77	2.97	3.18	3.40	3.62	3.85	4.09	$4 \cdot 34$
80	4.60	4.87	5.15	5.44	5.74	6.05	6.37	6.70	7.05	$7 \cdot 42$
90	7.80	8.20	8.62	9.06	9.52	9.95	10.44	10.95	11.48	12.03
100	12.60	13.20	13.82	14.47	15.15	15.85	16.58	17.34	18.13	18.95
110	19.80	20.68	21.60	22.55	23.53	24.55	25.61	26.71	27.85	29.03
120	30.25	31.52	32.84	34.21	35.63	37.10	38.67	40.24	41.84	43.54
130	45.30	47.12	49.01	50.96	52.97	55.05	57.20	59.43	61.73	64.10
140	66.55	69.08	71.69	74.38	77.15	80.00	82.94	85.97	89.09	92.30
150	95.60	99.00	102.50	106.10	109.80	113.60	117.51	121.53	125.66	129.90
160	134.25	138.72	143.31	148.03	152.88	157.85	162.95	168.19	173.56	179.06
170	184.70	190.48	196.41	202.49	208.72	215.10	221.65	228.30	235.15	242.15
180	249.35	256.70	264.20	271.90	279.75	287.80	296.00	304.48	313.05	321.85
190	330.85	340.05	349.45	359.05	368.85	378.90	389.15	399.60	410.30	421.20
200	432.35	443.75	$455 \cdot 35$	467.25	479.35	491.70	504.35	517.25	530.40	543.80
210	557.50	571.45	585.70	600.25	615.05	630.15	$645 \cdot 55$	661.25	677.25	693.60
220	710.10	727.05	744.35	761.90	779.85	798.10				
(f) Bromonaphthaline.										
110°	3.60	3.74	3.89	4.05	4.22	4.40	4.59	4.79	5.00	5.22
120	5.45	5.70	5.96	6.23	6.51	6.80	7.10	$7 \cdot 42$	7.76	8.12
130	8.50	8.89	9.29	9.71	10.15	10.60	11.07	11.56	12.07	12.60
140	13.15	13.72	14.31	14.92	15.55	16.20	16.87	17.56	18.28	19.03
150	19.80	20.59	21.41	22.25	23.11	24.00	24.92	25.86	26.83	27.83
160	28.85	29.90	30.98	32.09	33.23	34.40	35.60	36.83	38.10	39.41
170	40.75	42.12	43.53	44.99	46.50	48.05	49.64	51.28	52.96	54.68
180	56.45	58.27	60.14	62.04	64.06	66.10	68.19	70.34	72.55	74.82 101.05
190	77.15	79.54	81.99	84.51	87.10	89.75	92.47	95.26	98.12	101.05
200	104.05	107.12	110.27	113.50	116.81	120.20	123.67	127.22	130.86	134.59
210	138.40	142.30	146.29	150.38	1 54.57	I 58.85	163.25	167.70	172.30	176.95
220	181.75	186.65	191.65	196.75	202.00	207.35 26785	212.80 274.65	218.40 281.60	224.15 288.70	230.00 295.95
230	235.95	242.05	248.30	254.65	261.20	267.85	274.65	281.60 359.65	288.70 368.40	295.95 377.30
240	303.35	310.90	318.65	326.50	334.55	342.75	351.10	359.65	368.40	377.30
250	386.35		405.05	414.65	424.45	434.45	444.65	455.00	465.60	476.35
260	487.35	498.55	509.90	52 I .50	533.35	$545 \cdot 35$	557.60	570.05	582.70	595.60
270	608.75	622.10	635.70	649.50	663.55	677.85	692.40	707.15	722.15	$737 \cdot 45$

(g) Mercury.

270°	123.92	126.97	130.08	133.26	136.50	139.8 I	143.18	146.61	150.12	153.70
280	157.35	161.07	164.86	168.73	172.67	176.79	180.88	185.05	189.30	193.63
290	198.04	202.53	207.10	211.76	216.50	221.33	226.25	231.25	236.34	241.53
300	246.81	252.18	257.65	263.21	268.87	274.63	280.48	286.43	292.49	298.66
310	304.93	311.30	317.78	324.37	331.08	337.89	344.8 I	351.85	359.00	366.28
320	373.67	38 I .18	388.8 I	396.56	404.43	412.44	420.58	428.83	437.22	445.75
330	454.41	463.20	472.12	481.19	490.40	499.74	509.22	518.85	528.63	538.56
340	548.64	558.87	569.25	579.78	590.48	601.33	612.34	623.51	634.85	646.36
350	658.03	669.86	681.86	694.04	706.40	718.94	731.65	744.54	757.61	770.87
360	784.31									

VAPOR PRESSURE OF SOLUTIONS OF SALTS IN WATER.*
The first column gives the chemical formula of the salt. The headings of the other columns give the pumber of gram-molecules of the salt in a liter of water. The numbers in these columns giveters barometric pressure. pressure produced by the salt at the temperature of boiling water under 76 centimeters barometric pressure.

[^26]Smithsonian Tables.

VAPOR PRESSURE OF SOLUTIONS OF SALTS IN WATER.

Substance		0.5	1.0	2.0	3.0	4.0	5.0	6.0	8.0	10.0
MgSO_{4}	- .	6.5	12.0	24.5	47.5					
MgCl_{2}.	-	16.8	39.0	100.5	183.3	277.0	377.0			
$\mathrm{Mg}\left(\mathrm{NO}_{8}\right)_{2}$	- .	17.6	42.0	101.0	174.8					
MgBr_{2}	.	17.9	44.0	115.8	205.3	298.5				
$\mathrm{MgH}_{2}\left(\mathrm{SO}_{4}\right)_{2}$	- .	18.3	46.0	116.0						
MnSO_{4}	- -	6.0	10.5	21.0						
MnCl_{2}.	- .	15.0	34.0	76.0	122.3	167.0	209.0			
$\mathrm{NaH}_{2} \mathrm{PO}_{4}$ -	- \cdot	10.5	20.0	36.5	51.7	66.8	82.0	96.5	126.7	157.1
NaHSO_{4} -	- \cdot	10.9	22.1	47.3	75.0	100.2	126.1	148.5	189.7	231.4
NaNO_{8}	- .	10.6	22.5	46.2	68.1	90.3	111.5	131.7	167.8	198.8
NaClO_{8}	- •	10.5	23.0	48.4	73.5	98.5	123.3	147.5	196.5	223.5
$\left(\mathrm{NaPO}_{3}\right)_{6}$ NaOH	$\cdots \quad$.	11.6	22.8	48.2	77.3	107.5	I 39.1	172.5	243.3	314.0
NaNO_{2}	$\cdots \cdot$	11.6	24.4	50.0	75.0	98.2	122.5	146.5	189.0	226.2
NaHPO_{4}	- .	12.1	23.5	43.0	60.0	78.7	99.8	122.1		
NaHCO_{2}	- -	12.9	24.1	48.2	77.6	102.2	127.8	152.0	198.0	239.4
NaSO_{4}	. .	12.6	25.0	48.9	74.2					
NaCl .	- .	12.3	25.2	52.1	80.0	III.O	143.0	176.5		
NaBrO_{8}	- -	12.1	25.0	54.1	81.3	108.8	136.0			
NaBr -	- .	12.6	25.9	57.0	89.2	124.2	159.5	197.5	268.0	
NaI .	- .	12.1	25.6	60.2	99.5	136.7	177.5	221.0	301.5	370.0
$\mathrm{Na}_{4} \mathrm{P}_{2} \mathrm{O}_{7}$	- \cdot	13.2	22.0							
$\mathrm{Na}_{2} \mathrm{CO}_{8}$	- .	14.3	27.3	53.5	80.2	111.0				
$\mathrm{Na}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$	-	14.5	30.0	65.8	105.8	146.0				
$\mathrm{Na}_{2} \mathrm{WO}_{4}$	- .	14.8	33.6	71.6	115.7	162.6				
$\mathrm{Na}_{8} \mathrm{PO}_{4}$	-	16.5	30.0	52.5						
$\left(\mathrm{NaPO}_{3}\right)_{8}$ $\mathrm{NH}_{4} \mathrm{NO}_{3}$.	\cdots	17.1 12.8	36.5 22.0	42.1	62.7	82.9	103.8	121.0	152.2	180.0
$\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SiFF}_{6}{ }^{\text {a }}$	$\cdot \quad \cdot$	11.5	25.0	44.5						
$\mathrm{NH}_{4} \mathrm{Cl}$ -	- .	12.0	23.7	45.I	69.3	94.2	118.5	138.2	179.0	213.8
$\mathrm{NH}_{4} \mathrm{HSO}_{4}$.	-	11.5	22.0	46.8	71.0	$94 \cdot 5$	118.	139.0	181.2	218.0
$\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$.	- \cdot	11.0	24.0	46.5	69.5	93.0	117.0	141.8		
$\mathrm{NH}_{4} \mathrm{Br}$.	- -	11.9	23.9	48.8	74.1	99.4	12 I .5	145.5	190.2	228.5
$\mathrm{NH}_{4} \mathrm{I}$.	- .	12.9	25.1	49.8	78.5	104.5	132.3	I 56.0	200.0	243.5
NiSO_{4}	- -	5.0	10.2	21.5						
NiCl_{2}.	- -	16.1	37.0	86.7	147.0	212.8				
$\mathrm{Ni}\left(\mathrm{NO}_{8}\right)_{2}$	- .	16.1	37.3	91.3	156.2	235.0				
$\stackrel{\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}}{ }$	- \cdot	12.3	23.5	45.0	63.0					
$\mathrm{Sr}_{(}\left(\mathrm{SO}_{8}\right)_{2}$	- •	7.2 158	20.3 31.0	47.0 64.0	97.4	131.4				
$\mathrm{Sr}\left(\mathrm{NO}_{3}\right)_{2}$	- -	15.8	3.0							
SrCl_{2}.	- •	16.8	38.8	91.4	156.8	223.3	281.5			
SrBr_{2}.	- \cdot	17.8	42.0	101.1 21.5	179.0 42.1	267.0 66.2				
ZnSO_{4}	- \cdot	4.9 9.2	10.4 18.7	21.5 46.2	42.1 75.0	107.0	153.0	195.0		
ZnCl $\mathrm{Zn}\left(\mathrm{NO}_{8}\right)_{2}$	\cdot	9.2 16.6	39.0	93.5	157.5	223.8				

Emithsonian Tables.

PRESSURE OF SATURATED AQUEOUS VAPOR.
table 144. - At Low Teriperature. Over Ice.
Temperatures Centigrade.

	0	1	2	3	4	5	6	7	8	9
	mm.	mm.	mm	mm	mm	mm	mm .	mam.	mm.	mm.
-60	0.008	0.007	0.005	0.004	0.003	0.003				
- 50	. 029	. 026	. 023	. 021	. 018	. 016	0.014	0.012	0.010	0.009
-40	. 094	. 083	. 074	. 066	. 059	. 052	. 047	. 042	. 037	. 033
30	. 280	. 252	. 226	. 203	.182	. 163	. 146	. 131	. 117	. 105
20	0.770	0.699	0.633	0.574	0.519	0.469	0.424	0.383	. 345	. 31 I
-10	1.947	1.780	1.627	r. 486	I. 356	1.237	1.127	1.026	0.933	0.848
-	4.579	4.215	3.879	$3 \cdot 566$	3.277	3.009	2.762	2.533	2.322	2.127

Taken from Landolt-Börnstein, Physikalisch-Chemische Tabellen, 1912.
TABLE 145. - At Low Temperature. Over Water.

	0	1	2	3	4	5	6	7	8	8
	mm .	mm.	mm.	mm.	mm.	mm .	nım.	mm.	mm.	mm.
-10	2.144	1.979	1.826	1.684	1.551	1.429	I. 315			
-0	$4 \cdot 579$	4.255	3.952	3.669	3.404	3.158	2.928	2.712	2.509	2.321
+o	4.579	4.926	5.294	5.685	6.101	6.543	7.014	7.514	8.046	8.610

Taken from Landolt-Börnstein, Physikalisch-Chemische Tabellen, igı2.
TABLE 146. - $\mathbf{0}^{\circ}$ to $\mathbf{5 0} 0^{\circ} \mathbf{0}$. Hydrogen Scale.
Values interpolated between those given by Scheel and Heuse for every degree between 0° and $50^{\circ} \mathrm{C}$. Annalen der Physik. (4), 31, p. 731 , 9910.

	. 0	. 1	. 2	. 3	. 4	. 5	. 6	. 7	. 8	. 9
	mm.	mm.	mm.	mm.	mm.	mm.		mm .	mm.	mm.
0°	4.579	4.613	4.647	4.68 I	4.715	4.750	4.785	4.820	4.855	4.890
1.	4.926	4.962	4.998	5.034	5.07 I	5.107	5.144	5.18 I	5.218	5.256
2.	5.294	$5 \cdot 332$	5.370	5.408	5.447	5.486	$5 \cdot 5^{25}$	5.564	5.604	5.644
3.	5.685	5.725	5.766	5.807	5.848	5.889	5.93 I	5.973	6.015	6.058
4.	6.10I	6.144	6.187	6.230	6.274	6.318	6.363	6.408	6.453	6.498
5.	6.543	6.589	6.635	6.681	6.728	6.775	6.822	6.870	6.918	6.966
6.	7.014	7.063	7.112	7.171	7.210	7.260	7.310	7.361	6.412	7.463
7.	7.514	7.566	7.618	7.670	7.723	7.776	7.829	7.883	7.937	7.991
8.	8.046 8.609	8.101	8.156	8.212 8.786	8.268 8.845	8.324	8.381	8.438	8.495	8.552
9.	8.609	8.668	8.727	8.786	8.845	8.905	8.965	9.026	9.087	9.148
10.	9.210	9.272	9.334	9.396	9.459	9.522	9.586	9.650	9.715	9.780
11.	9.845	${ }^{9.911}$	$\begin{array}{r}9.3977 \\ \hline\end{array}$	10.043	10.110	10.177	10.245	10.313	9.715 10.381	9.780 10.450
12.	10.519	10.589	10.659	10.729	10.800	10.871	10.943	11.015	11.087	11.160
13.	11.233	11.307	11.381	11.455	11.530	11.605	11.681	11.757	11.834	11.912
14.	11.989	12.067	12.146	12.225	12.304	12.384	12.464	12.545	12.626	12.708
15.	12.790	12.873	12.956	13.039	13.123	r 3.207	13.292	13.378	13.464	
16.	13.637	13.724	13.812	13.900	13.989	14.078	14.168	14.258	14.350	14.441
17. 18.	14.533 15.480	14.625 15.578	14.718 15.676	14.811 15.775	14.905 15.874	14.999 15974	15.094	1 1 5.190	15.386 16.276	15.481 15.383 1
18. 19.	15.480 16.481	15.578 16.584	15.676 16.688	15.775 16.792	15.874 16.897	15.974 17.003	16.074 17.109	16.175	16.276	16.378
				16.792	16.897	17.003	17.109	17.216	${ }^{1} 7.323$	17.430
20.	17.539	17.648	17.757	${ }^{1} 7.867$	17.977	18.088	18.200	18.313	18.426	18.540
21.	18.655	18.770	18.886	19.002	19.119	19.236	19.354	19.473	19.592	18.712
22.	19.832 21.074	19.953 2 L .202	20.075	20.197	20.320	20.444	20.569	20.694	20.820	20.947
23. 24.	21.074 22.383	21.202 22.518	21.330	21.459	21.589	21.720	21.851	21.983	22.116	22.249
24.	22.383	22.518	22.654	22.790	22.927	23.065	23.203	23.342	23.482	23.622
25.	23.763	23.905	24.048	24.192	24.336	24.481	24.627	24.773	24.920	25.068

Smithsonian Tables.

Tables 146-147 (continued).
PRESSURE OF SATURATED AQUEOUS VAPOR.
TABLE 146 (continued). -0° to 50° O. Hydrogen Scale.

	. 0	. 2	+2	. 3	. 4	. 5	. θ	.7	. 8	. 9
26°	$\mathrm{mm}_{\mathbf{2 5 . 2 1 7}}$		mm.	mm.	mm.	mm.		mm .	min.	mm.
26.	25.217 26.747	25.367	25.517	25.668	25.820	25.972	26.125	26.279	26.434	26.590
27.	26.747 28.358	26.904 28.524	27.062 28.690	27.221	27.381	27.542	27.704	27.866	28.029	28.193
29.	28.358 30.052	28.524 30.226	28.690 30.401	28.857 30.577	29.025	29.194 30.932	29.364	29.535	29.707	29.879
30.	31.834	32.017	32.201	32.386	32.572	32.759	32.947	33.135	33.324	3.514
31.	3.3 .706	33.899	34.093	34.288	34.483	34.679	34.876	35.074	35.273	35.473
32.	35.674	35.876	36.079	36.283	36.488	36.694	36.901	37.109	37.318	37.529
33.	37.741	37.953	38.166	38.380	38.595	38.812	39.030	39.249	39.469	39.689
34.	39.915	40.134	40.358	40.583	40.809	41.036	41.264	41.493	41.723	41.955
35.	42.188	42.422	42.657	42.893	43.130	43.368	43.607	43.847	44.089	44.332
36.	44.577	44.82	45.06	45.30	45.55	45.80	46.05	46.30	46.56	46.82
37.	47.082	47.34	47.60	47.86	48.12	48.38	48.64	48.90	49.17	49.44
38.	49.708	49.98	50.25	50.52	50.79	51.06	51.33	51.60	51.88	52.16
39.	52.459	52.74	53.02	53.30	53.58	53.87	54.16	54.45	54.75	55.05
40.	55.341	55.63	55.93	56.23	56.53	56.83	57.13	57.43	57.74	58.05
41.	58.36	58.67	58.98	59.29	59.60	59.92	60.24	60.56	60.88	61.20
42.	61.52	61.84	62.16	62.49	62.82	63.15	63.48	63.81	64.14	64.48
43.	64.82	65.16	65.50	65.84	66.18	66.53	66.88	67.23	67.58	67.93
44.	68.28	68.63	68.99	69.35	69.71	70.07	70.43	70.79	71.16	71.53
45.	71.90	72.27	72.64	73.01	73.38	73.76	74.14	74.52	74.90	75.28
46.	75.67	76.06	76.45	76.84	77.23	77.62	78.02	78.42	78.82	79.22
47.	79.62	80.03	80.43	80.84	81.25	81.66	82.07	82.48	82.90	83.32
48.	83.74	84.16	84.59	85.02	85.45	85.88	86.31	86.74	87.17	87.65
49.	88.05	88.49	88.93	89.37	89.82	90.27	90.72	91.17	$9 \times .62$	92.08

TABLE 147. 50° to 374° O. Hydrogen Scale.

	0	1	2	3	4	6	6	7	8	9
	mm.	mm.	mm.	mm.		mm.			mm.	
50°	92.54	97.24	102.13	107.24	112.56	118.11	123.89	129.90	136.16	142.68
60.	149.46	$\times 56.52$	163.85	171.47	179.40	187.64	196.19	205.07	214.29	223.86
70.	233.79	244.11	254.82	265.91	277.41	289.32	30×65	314.42	327.64	341.32
80.	355.47	370.11	385.25	400.90	417.08	433.79	451.07	468.91	487.33	506.36
90.	526.00	546.27	567.19	588.77	611.04	634.01	657.69	682.11	707.29	733.24
100.	760.00	787.57	815.9	845.1	875.1	go6.1	937.9	970.6	1004.3	1038.8
110.	1074.5	IIII.1	1148.7	1187.4	1227. 1	1267.9	1309.8	1352.8	1397.0	1442.4
120.	1488.9	1536.6	1585.7	1636.0	1687.5	1740.5	1794.7	1850.3	1907.3	1965.8
130.	2035.6	2086.9	2149.8	2214.0	2280.0	2347.5	2416.5	2487.3	2559.7	2633.8
140.	2709.5	2787.1	2866.4	2947.7	3030.3	3115.3	3202.1	3290.8	3381.3	3474.0
150. 150.	3568.7	${ }^{3665.3}$	3764.1 4874	$3864-9$ 4998		4073. 5253	4181. 5384	4290. 5518		4517 5794
150. 170.	$4 * 33$ 5937	4752 6081	4874 6229	4998 6379	5124 6533	$\begin{aligned} & 5253 \\ & 6689 \end{aligned}$	5384 6848	$\begin{aligned} & 5518 \\ & 7010 \end{aligned}$	$\begin{aligned} & 5655 \\ & 7175 \end{aligned}$	$\begin{aligned} & 5794 \\ & 7343 \end{aligned}$
170. 180.	5937 7514	7688	7866	8379 8046	8230	8417	8608	8802	8999	9200
190.	9404	9612	9823	10038	10256	10479	10705	10934	11168	11406
200.	11647	11893	12143	12397	12654	12916	13183	13453	13728	14007
21	1429 r	14578	14875	15167	15469	15774	16085	16401	16721	17046
220	17376	17710	18049	18394	18743	19098	19458	19823	20193	20570
230.	20950	21336	21728	22125	22528	22936	23350	23770	24195	24626
240.	25064	25506	25956	26412	26873	27341	27815	28294	28780	29272
250.	29771	30276	30788	31308	31833	32364	32903	33448	34001	3456x
260.	35127	35700	36280	36868	37463	38065	38675	39291	39915	40547
270.	41186	41832	42487	43150	43820	44498	45184	45879 53288	46580	47290
280.	48011	48738	49474	50219	50972	51734 59860	52506 60730	53288 61610	54079 62490	54878 63390
290.	55680	56500	57330	58170	59010	59860	60730	61610	62490	63390
300. 310.	64290 73860	65200 74880	66120 75900			68950 79040	69910 80110	70890 81880	71870 82270	72860 83370
310. 320.	73860 84480	74880 856 r	75900 86750	76940 87900	77980 89050	79040 90220	80110 91400	81180 92600	82270 93820	83370 95040
320. 330.	84480 96270	85610 97510	86750 98770	87900 100040	89050 101320	90220 102610	91400 103930	$\begin{array}{r}92650 \\ 10525 \\ \hline 15920\end{array}$	106580	107930
340.	109300	110670	112050	113450	114870	116300	117750	159210	120680	122160
		125170	126690	128230	129790	131370	132960	134560	136180	137820
360.	139480	141550	142850	144560	146300	148100	149900	151700	153500	155300
370.	157200	159100	161000	163000	164900					

Taken from Landolt-Börnstein Tables and based upon the following data: $50-70^{\circ}$, Nernst, Verh. d. D. Phys. Ges. 12 , P. $565,1910: 70-100^{\circ}$, Regnault, computed by Broch, r88ı, improved by Wiebe, ZS. fur Instrum. 13, P. 329, 1893, also Tafeln fïr die Spannkraft des Wasserdampfes, Braunschweig, 1903 ; 100-374 ${ }^{\circ}$, Holborn, Henning, Baumann, Annalen der Physik, 26, p. 833, 1908, 31 , p. 945, 1910.

Smithsonian Tables.

TABLE 148. - Welght in Gralns of the Aqueous Vapor oortained in a Ouble Foot of Saturated Air.*

Temp.	0.0	1.0	2.0	3.0	4.0	6.0	6.0	7.0	6.0	9.0
-10	0.285	0.270	0.257	0.243	0.231	0.218	0.207	0.196	0.184	0.174
-0	0.48 I	0.457	0.434	0.411	0.389	0.370	0.350	0.332	0.316	0.300
+0	0.48 I	0.505	0.529	0.554	0.582	0.610	0.639	0.671	0.704	0.739
10	0.776	0.816	0.856	0.898	0.94 I	0.985	1.032	1.079	1.128	1.181
20	1.235	1.294	1.355	1.418	1.483	1.551	1.623	1.697	1.773	1.853
30	1.935	2.022	2.153	2.194	2.279	2.366	2.457	2.550	2.646	2.746
40	2.849	2.955	3.064	3.177	3.294	3.414	3.539	3.667	3.800	3.936
50	4.076	4.222	$4 \cdot 372$	4.526	4.685	4.849	5.018	5.191	5.370	5.555
60	5.745	5.941	6.142	6.349	6.563	6.782	7.009	7.241	7.480	7.726
	7.980	8.240	8.508	8.782	9.066	9.356	9.655	9.962	10.277	10.601
80	10.934	I 1.275	11.626	11.987	12.356	12.736	13.127	13.526	13.937	14.359
90	14.790	15.234	15.689	16.155	16.634	17.124	17.626	18.142	18.671	19.212
100	19.766	20.335	20.917	21.514	22.125	22.750	23.392	24.048	24.720	25.408
110	26.112	26.832	27.570	28.325	29.096	29.887	-	-	-	-

*See "Smithsonian Meteorological Tables," pp 132-133.
TABLE 149. - Weight in Grams of the Aqueons Vapor contained in a Oublo Meter of Saturated Air.

Temp. 8 C.	0.0	1.0	2.0	3.0	4.0	6.0	6.0	7.0	8.0	8.0
-20	0.892	0.810	0.737	0.673	0.613	0.557	0.505	0.457	0.413	0.373
-10	2.154	1.978	1.811	1.658	1.519	1. 395	1.282	1.177	1.079	0.982
\rightarrow	4.835	4.468	4.130	3.813	3.518	3.244	2.988	2.752	2.537	2.340
+0	4.835	5.176	5.538	5.922	6.330	6.761	7.219	7.703	8.215	8.757
10	9.330	9.935	10.574	11.249	11.961	12.712	13.505	14.339	15.218	16.144
20	17.118 30.039	18.143 31.704	19.222	20.355	21.546	22.796	24.109	25.487	26.933	28.450
30	30.039	31.704	33.449	35.275	37.187	39.187	41.279	43.465	45.751	48.138

Smithsonian Tables.

Table 150.
PRESSURE OF AQUEOUS VAPOR IN THE ATMOSPHERE.
This table gives the vapor pressure corresponding to various values of the difference $t-t_{1}$ between the readings of dry and wet bulb thermometers and the temperature t_{1} of the wet bulb thermometer. The differences $t-t_{1}$ are given by two-degree steps in the top line, and t_{1} by degrees in the first column. Temperatures in Centigrade degrees and Regnault's vapor pressures in millimeters of mercury are used throughout the table. The table was calculated for barometric pressure B equal to 76 centimeters, and a correction is given for each centimeter at the top of the columns.* Ventilatiog velocity of wet thermometer about 3 meters per second.

[^27]The first column of this table gives the temperatures of the wet-bulb thermometer, and the top lioe the difference the table. The dew-points were computed for a barometric pressure of 76 centimeters. When the barometer differa and the resulting number added to or subtracted from the tabular number according as the barometer is below or

between the dry and the wet bulb, when the dew-point has the values given at corresponding points in the body of above 7^{6}. See examples. Thermometer ventilated at about 3 marked $\delta T / \delta B$ are to be multiplied by the difference,

RELATIVE HUMIDITY.*

This table gives the humidity of the air, for temperature t and dew-point d in Centigrade degrees, expressed in percentages of the saturation value for the temperature t.

Depression of the dew-point. $t-\boldsymbol{d}$	Dew-point (d).					Depression of the dew-point. t - \boldsymbol{a}	Dew-point (d).				
	-10	-	+ 10	+20	$+30$		- 10	-	+10	+20	$+30$
$\begin{gathered} C . \\ 0^{C} .0 \end{gathered}$	100	100	100	100	100	$8^{\text {C. }}$	54	57	60	62	64
0.2	98	99	99	99	99	8.2	54	56	59	62	63
0.4	97	97	97	98	98	8.4	53	56	58	60	63
0.6	95	96	96	96	97	8.6	52	55	57	60	62
0.8	94	94	95	95	96	8.8	5 I	54	57	59	61
1.0	92	93	94	94	94	9.0	51	53	56	58	6 r
1.2	91	92	92	93	93	9.2	50	53	55	58	60
1.4	90	90	91	92	92	9.4	49	52	55	57	59
1.6	88	89	90	91	91	9.6	48	51	54	56	59
1.8	87	88	89	90	90	9.8	48	$5{ }^{1}$	53	56	58
2.0	86	87	88	88	89	10.0	47	50	53	55	57
2.2	84	85	86	87	88	10.5	45	48	51	54	
2.4	83	84	85	86	87	11.0	44	47	49	52	
2.6	82	83	84	85	86	11.5	42	45	48	51	
2.8	80	82	83	84	85	12.0	41	44	47	49	
3.0	79	81	82	83	84	12.0	39	42	45	4^{8}	
3.2	78	80	8 I	82	83	13.0	38	41	44	46	
3.4	77	79	80	8 I	82	13.5	37	40	43	45	
3.6	76	77	79	80	82	14.0	35	3^{8}	41	44	
3.8	75	76	78	79	8I	14.5	34	37	40	43	
4.0	73	75	77	78	80	15.0	33	36	39	42	
4.2	72	74	76	77	79	15.5	3^{2}	35	38	40	
4.4	71	73	75	77	78	r6.0	31	34	37	39	
4.6	70	72	74	76	77	16.5	30	33	36	38	
4.8	69	71	73	75	76	17.0	29	3^{2}	35	37	
5.0	68	70	72	74	75	17.5	28			36	
5.2	67	69	71	73	75	18.0	27	30	33	35	
5.4	66	68	70	72	74	18.5	26	29	32	34	
5.6	65	67	69	71	73	19.0	25	28	31	33	
5.8	64	66	69	70	72	19.5	24	27	30	33	
6.0	63	66	68	70	71	20.0	24	26	29	32	
6.2	62	65	67	69	71	21.0	22	25	27	32	
6.4	6 I	64	66	68	70	22.0	21	23	26		
6.6	60	63	65	67	69	23.0	19	22	24		
6.8	60	62	64	66	68	24.0	18	21	23		
7.0	59	61	63	66	68	25.0			22		
7.2	58	60	63	65	67	26.0	16	18	21		
7.4	57	60	62	64	66	27.0	15	17	20		
7.6	56	59	61	63	65	28.0	14	16	19		
7.8	55	58	60	63	65	29.0	${ }^{1} 3$	15	18		
8.0	54	57	60	62	64	30.0	12	14	17		

* Abridged from Table 45 of "Smithsonian Meteorological Tables."

Smithsonian Tables.

Table 153.

VALUES OF 0.378e.*

This table gives the humidity term $0.378 e$, which occurs in the equation $\delta=\delta_{0} \frac{h}{760}=\delta_{0} \frac{B-0.378 e}{760}$ for the calculation of the density of air containing aqueous vapor at pressure $e ; \delta_{0}$ is the density of dry air at normal temperature and barometric pressure, B the observed barometric pressure, and $h=B-0.378 e$, the pressure corrected for humidity. For values of $\frac{h}{760}$ see Table 154 . Temperatures are in degrees Centigrade, and pressures in millimeters of mercury.

Dew Point. ${ }^{\circ} \mathrm{C}$.	Vapor Pressure (ice).	0.378e.	Dew Point. ${ }^{\circ} \mathrm{C}$.	Vapor Pressure (water).	0.378 e.	Dew Point. ${ }^{\circ} \mathrm{C}$.	Vapor Pressure (water).	0.378 e.
-50	0.034	0.01	0	$4 \cdot 579$	1.73	$+30$	31.555	
45	. 061	. 02	+1	4.921	1.86	3 r	33.416	12.63
40	.105	. 04		5.286	2.00	32	35.372	13.37
35	.173	. 07	3	5.675	2.15	33	37.427	14.15
30	. 292	. 11	4		2.30	34	39.586	14.96
-25	0.484	0.18	5	6.528	2.47	35	41.853	15.82
24	. 534	. 20	6	6.997	2.65	36	44.23	16.72
23	. 589	. 22	7	7.494	2.83	37	46.73	17.66
22	.648	. 24	8	8.023	3.03	38	49.35	18.65
21	.714	.27	9	8.584	3.24	39	52.09	19.69
-20	0.787	0.30	10	9.179	3.47	40	54.97	20.78
19	. 868	. 33	11	9.810	3.71	4 I	57.98	21.92
18	. 955	. 36	12	10.479	3.96	42	6 r .13	23.12
17	1.048	. 40	13	11.187	4.23	43	64.43	24.35
16	1.148	. 44	14	11.936	4.5 I	44	67.89	25.66
-15	I. 257	0.48	15	12.728	4.81	45	71.50	27.02
14	1. 375	. 52	16	13.565	5.13	46	75.28	28.46
13	1.506	. 57	17	14.450	5.46	47	79.23	29.95
12	1.650	. 62	18	15.383	5.82	48	83.36	31.51
1 I	1.806	. 68	19	16.367	6.19	49	87.67	33.14
-10	1.974	0.75	20	17.406	6.58	50	92.17	34.84
9	2.154	. 81	21	18.503	6.99	51	96.87	36.62
8	2.347	. 89	22	19.66 I	7.43	52	101.77	38.47
76	2.557 2.785	.97 1.05	23	20.883	7.90 8.38	53	106.88	40.40
6	2.785	1.05	24	22.178	8.38	54	112.21	42.42
-5				23.546	8.90			
4	3.299	1.25	26	24.987	9.45	56	123.56	46.71
3	3.586	1.36		26.505			129.59	48.98
2	3.894	1.47 1.60	28	28.103 29.785	10.62 11.26	58	135.87	51.36
1	4.223	1.60	29	29.785	11.26	59	142.41	53.83
\bigcirc	4.579	1.73	30	31.555	I 1.93	60	149.21	56.40

* This table is quoted from "Smithsonian Meteorological Tables," p. 225.

Smithsonian Tables.

Tables 154-155.

RELATIVE DENSITY OF MOIST AIR FOR DIFFERENT PRESSURES AND HUMIDITIES.

TABLE 164. - Valuea of $\frac{h}{760}$, from $\boldsymbol{h}=1$ to $\boldsymbol{h}=9$, for the Computation of Different Values of the Ratio
of Actual to Normal Barometrio Preesure.
This gives the deasity of moist air at pressure h in terms of the density of the same air at normal atmosphere pressure. When air contains moisture, as is usually the case with the atmosphere, we have the following equation for pressure term : $h=B-0.378 e$, where e is the vapor pressure, and B the corrected barometric pressure. When the neces sary psychrometric observations are made the value of e may be taken from Table ryo, and then $0.378 e$ from Table 153, or the dew-point may be found and the value of $0.37^{8 c}$ takeo from Table 153 .

Examples of Usb of the Table.

To fiod the value of $\frac{h}{760}$ when $h=754.3$

$$
\begin{aligned}
& \begin{array}{ccc}
50 \\
4.3 & \text { ". } & \begin{array}{l}
.065789 \\
.005263
\end{array} \\
\hline .3 & \\
\hline \underline{754 \cdot 3} & \\
\hline
\end{array}
\end{aligned}
$$

To find the value of $\frac{h}{760}$ when $h=5.73$

$$
\begin{aligned}
& \hbar=5 \text { gives } .0065789
\end{aligned}
$$

TABLE 156. - Values of the logarithms of $\frac{h}{760}$ for values of h between 80 and 340.
Values from 8 to 80 may be got by subtracting 1 from the characteristic, and from 0.8 to 8 by subtractiag 2 from the characteristic, and so on.

h	Values of $\log \frac{h}{760}$.									
	0	1	2	3	4	6	8	7	8	θ
80	1. 1.02228	1. 1.02767	1. 03300	1.03826	1. 04347	İ.04861	1.05368	İ.05871	İ.06367	1. 06858
90	. 07343	. 07823	. 08297	.08767	.09231	.09691	. 10146	. 10596	. 11041	. 11482
100	İ.11919	$\overline{1} .12351$	İ.12779	I. 13202	I. 13622	İ.14038	1. 14449	T. 14857	I. $15 z 61$	İ.1566ı
0	. 16058	. 16451	. 16840	. 17226	.17609	. 17988	. 18364	. 18737	. 19107	. 19473
120	. 19837	. 20197	. 20555	. 20909	. 21261	. 21611	. 21956	. 22299	. 22640	. 22978
130	. 23313	. 23646	. 23976	. 24304	. 24629	. 24952	. 25273	. 25591	. 25907	. 26220
140	. 26531	. 26881	.27147	. 27452	. 27755	. 28055	. 28354	. 28650	. 28945	. 29237
150	1.29528	İ.29816	-1.30103	I. 30388	1.30671	-1. 30952	1.31231	1. 31509	I. 31784	İ.32058
160	. 32331	-32601	-32870	. 33137	. 33403	. 33667	. 33929	. 34190	. 34450	. 34707
178	- 34964	- 35218	-35471	$\cdot 35723$. 35974	- 36222	. 36470	. 36716	-36961	. 37204
180	- 37446	. 37686	- 37926	. 38164	. 38400	. 38636	. 38870	. 39128	. 39334	. 39565
190	. 39794	. 40022	. 40249	. 40474	. 40699	-40922	-41144	. 41365	.41585	. 41804
200	1. 42022	İ.42238	İ. 42454	I. 42668	1. 42882	I. 43094	I. 43305	1.43516	1.43725	I. 43933
210	.44141	. 44347	. 44552	- 44757	. 44960	. 45162	. 45364	. 45565	. 45764	. 45963
220	-46161	-46358	. 46554	. 46749	. 46943	-47137	. 47329	-47521	-47712	-47902
230	. 48091	. 48280	. 48467	. 48654	. 48840	. 49025	. 49210	- 49393	. 49576	. 49758
240	. 49940	. 50120	. 50300	. 50479	. 50658	-50835	.51012	. 51188	.51 364	- 51539
250	I.51713	I. 51886	I. 52059	1. 52231	I. 52402	- 1.52573	$\overline{\text { İ }} 52743$	T. 52912	1.53081	I. 53249
260 270	. 53416	. 53583	- 53749	. 53914	. 54079	- 54243	. 54407	. 54570	. 54732	. 54894
270 280	- 55055	- 55216	-55376	- 55535	- 55694	- 55852	. 56010	. 56167	. 56323	- 56479
290	-58158	. 567898	. 56944	. 57097	- 57250	- 57403	- 57555	. 57707	-57858	. 58008
300	1.5963I	1. 59775	I. 59919	1. 60063	İ.60206	İ. 60349	I. 60491	1.60632	1. 60774	I. 60914
310	. 61055	. 61195	. 61334	. 61473	.61611	. 61750	. 61887	. 62025	.6216I	. 62298
320	. 62434	. 62569	. 62704	. 62839	. 62973	. 63107	. 63240	.63373	. 63506	. 63638
$33{ }^{\circ}$. 63770	. 63901	. 64032	. 64163	. 64293	. 64423	. 64553	.64682	. 64810	. 64939
340	. 65067	. 65194	.6532I	. 65448	. 65574	.65701	. 65826	. $6.595{ }^{2}$. 66077	.66z01

Smithsonian Tables.

DENSITY OF AIR.

Valnes of logarithms of $\frac{h}{760}$ for valuee of h between 350 and 800 .

\boldsymbol{h}	$\text { Values of } \log \frac{h}{760} \text {. }$									
	0	1	2	3	4	5	6	7	8	8
350	1. 66325	I. 66449	1. 66573	I. 66696	-1.66819	1. 66941	$\overline{\mathrm{I}} .67064$	I. 67185	İ. 67307	- 1.67428
360	. 67549	. 67669	. 67790	. 67909	. 68029	.68148	. 68267	. 68385	. 68503	. 68621
370	. 68739	. 6885^{6}	. 68973	. 69090	. 69206	. 69322	. 69437	. 69553	. 69668	. 69783
380	. 69897	. 70011	. 70125	. 70239	. 70352	. 70465	. 70577	. 70690	. 70802	. 70914
390	.71025	.71136	. 71247	.71358	.71468	. 71578	. 71688	. 71798	. 71907	. 72016
400	T. 72125	1.72233	I. 72341	1.72449	1. 72557	1. 72664	1.72771	-1.72878	I. 72985	1.73091
410	.73197	- 73303	. 73408	. 73514	.73619	. 73723	.73828	. 73932	. 74036	.74140
420	. 74244	. 74347	. 74450	. 74553	. 74655	. 74758	. 74860	. 74961	.75063	.75164
430	.75265	. 75366	.75467	. 75567	. 75668	. 75768	. 75867	. 75967	. 76066	.76165
440	.76264	.76362	.76461	. 76559	.76657	$\cdot 76755$. 76852	. 76949	. 77046	.77143
450	1.77240	1.77336	I. 77432	- 1.77528	- 1.77624	1.77720	-1.77815	İ.77910	1. 78005	1.78100
460	.78194	. 78289	.78383	. 78477	. 78570	. 78664	. 78757	. 78850	. 78943	. 79036
470	. 79128	.7922	. 79313	. 79405	. 79496	. 79588	. 79679	. 79770	. 79861	. 79952
480	. 80043	. 80133	. 80223	. 80313	. 80403	. 80493	. 80582	. 80672	.80761	. 80850
490	. 80938	.81027	.81115	.81203	.81291	. 81379	. 81467	. 81554	.81642	.81729
500	$\overline{1} .81816$	1.81902	İ.81989	T. 82075	1. 82162	1. 82248	$\overline{1} .82334$	1.82419	-1.82505	1.82590
510	. 82676	. 82761	. 82846	. 82930	. 83015	. 83899	. 83184	. 83268	. 83352	. 83435
520	. 83519	. 83602	. 83686	. 83769	. 83852	. 83935	. 84017	. 84100	. 84182	. 84264
530	. 84346	. 84428	. 84510	. 8459 I	. 84673	. 84754	. 84835	. 84916	. 84997	. 85076
540	. 8558	. 85238	. 85319	. 85399	. 85479	. 85558	. 85638	. 85717	. 85797	.85876
550	1. 85955	1. 86034	$\overline{\mathrm{I}} .86113$	I. 86191	I. 86270	1. 86348	T. 86426	1. 865504	1. 86582	1.86660
560	. 86737	.86815	. 86892	. 86969	. 87047	. 87123	. 87200	. 87277	. 87353	. 87430
570	. 87506	. 87582	. 87658	. 87734	. 87810	. 87885	. 87961	. 88036	. 88111	. 88186
580	. 88261	. 88336	. 88411	. 88486	.88560	. 88634	. 88708	. 88782	. 88856	. 88930
590	. 89004	. 89077	.89151	. 89224	. 89297	. 89370	. 89443	. 89516	. 89589	.89661
600	1. 89734	1. 89806	1. 89878	$\overline{\mathrm{I}} .89950$	I. 90022	I. 90094	1. 90166	1. 90238	I. 90309	1.90380
610	. 90452	. 90523	. 90594	. 90665	. 90735	. 90806	. 90877	. 90947	. 91017	. 91088
620	. 91158	. 91228	. 91298	.91367	. 91437	. 91507	. 91576	. 91645	. 91715	. 91784
630	. 91853	. 91922	. 91990	. 92259	. 92128	. 22196	. 922264	. 92333	. 92401	. 92469
640	. 92537	. 92604	. 92672	. 92740	. 92807	. 92875	. 92942	. 933009	. 93076	. 93143
650	I. 93210	1.93277	1.9334 .3	1.93410	1. 9.3476	1.93543	1. 93609	I. 93675	1.9374I	I. 93807
660	. 93873	. 93939	. 94004	. 94070	. 94135	. 94201	-94266	. 94331	. 94396	. 94461
670	. 94526	. 94591	. 94656	. 94720	. 94785	. 94849	.94913	. 94978	. 95042	-95106
680	. 95170	. 95233	. 95297	. 95361	. 95424	. 95488	.95551	. 95614	. 95677	.95741
690	. 95804	. 95866	. 95929	. 95992	. 96055	. 96117	. 96180	. 96242	. 96304	. 96366
700	I. 96428	I. 96490	1.96552	1.96614	1.96676	- T .96738	1.96799	T. 96861	1. 96922	1.96983
710	. 97044	. 97106	. 97167	. 97228	. 97288	. 97349	. 97410	. 97471	. 97531	. 97592
720	. 97652	. 97712	. 97772	. 97832	. 97892	.97951	. 98012	. 98072	. 98132	.98191
730	. 98851	. 98310	. 98370	. 98429	. 98488	. 98547	. 98606	. 98665	. 98724	.98783
740	. 98842	. 98900	. 98959	. 99018	. 99076	.99134	. 99193	. 99251	. 99309	. 99367
750	1. 99425	IT. 99483	I. 99540	1. 99598	1.99656	1.99713	1.99771	I. 99828	-1.99886	T. 99942
760	0.00000	0.00057	0.00114	0.00171	0.00228	0.00285	0.00342	0.00398	0.00455	0.00511
770	. 00568	. 00624	. 00688	.00737	. 00793	. 00849	. 00905	. 00961	.01017 .01571	.01072 .01626
780	. 01128	. 01184	. 01239	.01295	. 01350	. 01406	. 01461	. 01516	.01571 .02119	
790	. 01681	. 01736	. 01791	. 01846	. $\mathrm{O1} 901$. 01955	. 02010	. 02064	. 02119	. 02173

Smithsonian Tables.

VOLUME OF CASES.

Values of $1+.00367 \mathrm{t}$.

The quantity $1+.00367 t$ gives for a gas the volume at ρ when the pressure is kept constant, or the pressure at ρ° when the volume is kept constant, io terms of the volume or the pressure at o°.
(a) This part of the table gives the values of $\mathrm{x}+.00367 t$ for values of t between o° and $10^{\circ} \mathrm{C}$. by tenths of a degree.
(b) This part gives the values of $1+.00367 t$ for values of t between -90° and $+1990^{\circ}$ C. by 10° steps.

These two parts serve to give any intermediate value to ooe tenth of a degree by a simple computation as follows:-In the (b) table find the number corresponding to the oearest lower temperature, and to this number add the decimal part of the number in the (a) table which corresponds to the difference between the nearest temperature in the (b) table and the actual temperature. For example, let the temperature he $682^{\circ} .2$:

$$
\begin{aligned}
& \text { We have for } 680 \text { in table (b) the number } 3.49560 \\
& \text { And for } 2.2 \text { in table }(a) \text { the decimal } \\
& \text { Hence the number for } 682.2 \text { is } \\
& 3.50367
\end{aligned}
$$

(0) This part gives the logarithms of $1+.00367 t$ for values of t between -49° aud $+399^{\circ} \mathrm{C}$. by degrees.
(d) This part gives the logarithms of $1+.00367 t$ for values of t between 400° and 1990° C. by 10° steps.
(a) Values of $1+.00387 t$ for Values of t between 0° and $10^{\circ} \mathrm{C}$. by Tenths of a Degree.

t	0.0	0.1	0.2	0.3	0.4
0	1.00000	1.00037	I. 00073	1.00110	1.00147
I	. 00367	. 00404	. 00440	. 00477	. 00514
2	. 00734	. 00771	. 00807	. 00844	. 00881
3	.orior	. 01138	.01174	. 01211	. 01248
4	. 01468	. 01505	. 01541	. 01578	. 01615
5	1.01835	1.01872	1.01908	1.01945	1.01982
6	. 02202	. 02239	. 02275	. 02312	. 02349
7	. 02569	. 02606	. 02642	. 02679	. 22716
8	. 02936	. 02973	. 03009	. 03046	.03083
9	. 03303	. 03340	. 03376	. 03413	. 03450
t	0.5	0.6	0.7	0.8	0.8
0	1.00184	1.00220	1.00257	1.00294	1.00330
I	. 00550	. 00587	. 00624	.0066I	. 00697
2	.00918	. 00954	. 00991	. 01028	. 01064
3	. 01284	. 0132 I	. 01358	. Or 395	. 01431
4	. 01652	. 01688	.01725	. 01762	.01798
5	1.02018	1.02055	1.02092	1.02129	1.02165
6	. 02386	. 02422	. 02459	. 02496	. 02533^{2}
7	. 02752	. 02789	. 02826	. 02863	. 02899
8	. 03120	. 03156	. 03193	. 03290	. 03266
9	. 03486	. 03523	. 03560	. 03597	. 03633

Bmithsonian Tables.

Table 156 (continued).
(b) Values of $1+.00387 t$ ior Values of t between -90° and $+1990^{\circ} \mathrm{O}$. by 10° Steps.

t	00	10	20	30	40
-000	1.00000	0.96330	0.92660	0.88990	0.85320
+000	1.00000	1.03670	1.07340	I.11010	1.14680
100	I. 36700	1.40370	1.44040	1.47710	1.51380
200	I.73400	1.77070	1.80740	1.84410	r. 88080
300	2.10100	2.13770	2.17440	2.21110	2.24780
400	2.46800	2.50470	2.54140	2.57810	2.61480
500	2.83500	2.87170	2.90840	2.94510	2.98180
600	3.20200	3.23870	3.27540	3.31210	3.34880
700 800	3.56900	3.60570	3.64240	3.67910	3.71580
800	3.93600	3.97270	4.00940	4.04610	4.08280
900	4.30300	4.33970	4.37640	4.41310	4.44980
1000	4.67000	4.70670	4.74340	4.78010	4.81680
1100	5.03700	5.07370	5.11040	5.14710	5.18380
1200	5.40400	5.44070	5.47740	5.51410	5.55080
1300 1400	5.77100	5.80770	5.84440	5.88 I 10 6.248 I	5.91780 6.28480
1400	6.13800	6.17470	6.21140	6.24810	6.28480
1500	6.50500	6.54170	6.57840	6.61510	6.65180
1600	6.87200	6.90870	6.94540	6.98210	7.01880
1700	7.23900	$7.2757{ }^{\circ}$	7.31240	7.34910	7.38580
1800	7.60600	7.64270	7.67940	7.71610	7.75280
1900	7.97300	8.00970	8.04640	8.08310	8.11980
2000	8.34000	8.37670	8.41340	8.45010	8.48680
t	50	80	70	во	в0
-000	0.81650	0.77980	0.74310	0.70640	0.66970
+000	1.18350	1.22020	1.25690	1.29360	1.33030
100	I. 55050	1.58720	1. 62390	1.66060	1.69730 2.06430
200	I. 91750	1.95420	1.99090	2.02760	2.06430
300	2.28450	2.32120	2.35790	2.39460	2.4313°
400	2.65150	2.68820	2.72490	2.76160	2.79830
500	3.01850	3.05520	3.09190	3.12860	3.16530
600	3.38550	3.42220	3.45890 3.82590	3.49560 3.86260	3.53230 3.89030
700 800	3.75250 4.11950	3.78920 4.15620	3.82590 4.19290	3.86260 4.22960	${ }^{3.89930}{ }_{4}{ }^{26630}$
900	4.48650	4.52320	4.55990	4.59660	$4.6333{ }^{\circ}$
1000	4.85350	4.89020	4.92690	4.96360	5.00030
1100	5.22050	5.25720	5.29390	5.33060	5.36730
1200	5.58750	5.62420	5.66090 6.02790	5.69760 6.06460	5.73430 6.10130
1300 1400	5.95450 6.32 I 50	5.99120 6.35820	6.02790 6.39490	6.06460 6.43160	6.10130 6.46830
1400	6.32150	6.35820	6.39490	6.43160	6.46830
1500	6.68850	6.72520	6.76190	6.79860	6.83533°
1600	7.05550	7.09220	7.12890 7.49590	7.16560 7.53260	7.20230 7.56930
1700	7.42250	7.45920 7.82620	7.49590 7.86290	7.53260 7.89960	7.959630
1800	7.78950 8.15650	7.82620 8.19320	7.06290 8.22990	8.26660	8.30330
2000	8.52350	8.56020	8.59690	8.63360	8.67030

Gmithsonian Tasles.

(c) Logarithms of $1+.00367 t$ for Values

t	0	1	2	3	4	Mean diff. per degree.
-40	I 931051	İ.929179	1. 927299	1. 925410	I. 923513	1884
-30	. 949341	. 947546	. 945744	. 943934	. 942117	1805
- 20	. 966892	.965169	. 963438	.961701	. 959957	1733
-10	. 983762	. 982104	. 980440	. 978769	. 977092	1667
0	0.000000	.998403	.99680I	. 995192	. 993577	1605
+0	0.000000	0.001591	0.003176	0.004755	0.006329	1582
10	. 015653	. 017188	. 018717	. 02024 I	. 021760	1526
20	. 030762	. 032244	.033721	.035193	.036661	1474
30	. 045362	. 046796	. 048224	. 049648	.051068	1426
40	. 059488	.060875	. 062259	. 063637	.065012	1381
50 60	0.073168 .036431	0.074513	0.075853	0.077190	0.078522	1335
60	. 036431	. 087735	.089036	. 090332	. 091624	1299
70 80	.099301	. 100567	. 101829	.103088	. 104344	1259
80 90	.111800 .123950	.113030 .125146	. 114257	.115481 .127529	.116701	1226
					,	1191
100	0.135768	0.136933	0.138094	0.139252	0.140408	1158
110	.I 47274	. 248408	.149539	. 150667		1129
120	. 58483	. 159588	.160691	. 161790	. 162887	1101
${ }^{1} 30$.169410	. 170488	.171563	. 172635	. 173705	1074
140	.180068	.181120	.182169	.183216	. 184260	1048
150	0.190472	0.191498	0.192523	0.193545	0.194564	1023
160	.200632	. 201635	. 202635	. 203634	. 204630	1000
170 180	. 210559	. 211540	. 212518	. 213494	. 214468	976
180	.220265	. 221224	. 222180	. 223135	.224087	956
190	. 229759	.230697	. 231633	. 232567	. 233499	935
200	0.239049	0.239967	0.240884	0.241798	0.242710	916
210	.248145	. 249044	. 249942	. 250837	. 251731	897
220	.257054 .265784	. 257935	.258814	.259692	. 260567	878
230 240	.265784	. 266648	. 267510	. 268370	. 269228	861
240	. 274343	.275189	. 276034	.276877	. 277719	844
250	0.282735		0.284395	0.285222	0.286048	828
260	290969	$.291784$. 292597	. 293409	. 294219	813
270 280	.299049 .306982	.299849 .307768	. 300648	.301445	. 302240	798
290	. 31314773	-307768	- 308552	-309334	-3IOII 5	784
2	-314773	-315544	.316314	$\cdot 317083$.317850	769
300	0.322426	0.323184	0.323941	0.324696	0.325450	756
310 320	.329947 .337339	.330692 .338072	. 331435	-332178	. 332919	743
320 330	-337339	. 338072	.338803 .346048	. 339533	-340262	$73{ }^{\circ}$
340	-351758	. 3452466	-346048	- 346766	. 347482	719
34	-351758	-352466	-353174	-353880	. 354585	707
350	0.358791	0.359488	0.360184	0.360879	0.361573	
360 370	.365713 .372525	. 366399	$\cdot 367084$. 367768	$.36845 \mathrm{I}$	684
370 380	.372525 .379233	.373201 .379898	.373875 .380562	. 374549	. 375221	674
390	. 385439	- 37989894	.380562 .387148	.381225 .387801	$\begin{array}{r} .31887 \\ .388453 \end{array}$	664 654

Smithsonian Tables.

TABLE 156 (continued).
GASES.
of t between -49° and $+399^{\circ} \mathrm{O}$. by Degrees.

t	5	8	7	8	9	Mean diff. per degree.
-40	1. 921608	T.919695	I. 917773	T. 915843	I. 913904	1926
- 30	. 940292	. 938460	. 936619	.934771	. 932915	1845
- 20	. 958205	. 956447	-95468I	. 952909	. 951129	1771
Io	. 975409	. 973719	. 972022	. 970319	. 968609	1699
0	. 991957	. 990330	. 988697	.987058	.985413	1636
+0	0.007897	0.009459	0.011016	0.012567	0.014113	1554
10	. 023273	. 024781	. 026284	. 027782	. 029274	1500
20	.038123	. 039581	.041034	.04248I	. 043924	1450
30	. 052482	.053893	. 055298	. 056699	.058096	1402
40	.066382	.067748	.069109	.070466	.071819	1359
50	. 0.079847	0.081174	0.082495	0.083811	0.085123	
60	- 0.092914	. 094198	. 095486	$.096765$. 09803 I	1281
70	. 105595	. 106843	. 108088	. 109329	. 110566	1243
80	. 117917	.119130	. 120340	. 121547	. 122750	1210
90	.129899	. 31079	. 32256	. 33430	. 34601	1175
100	0.141559	0.142708	0.143854	0.144997	0.146137	1144
110	. 152915	. 154034	.155151	. 156264	. 157375	1115 1087
120	.163981	. 164072	. 166161	. 167246	.168330 .179014	1087 1060
130	.174772	. 175836	.176898 .187377	. $\mathrm{I} 77958{ }^{\text {. } 88411}$.179014 .189443	1060 1035
140	.185301	. 186340	. 187377	.1884II	.189443	1035
150	0.19558 I	0.196596	0.197608	$\begin{array}{r}0.198619 \\ \hline .208592\end{array}$	0.199626 .209577	1011 988
160 170	$\begin{array}{r} .205624 \\ .215439 \end{array}$. 206615	. 207605	.208592	$\begin{aligned} & .209577 \\ & .219304 \end{aligned}$	988
170 180	.215439 .225038	. 216409	. 217376	.218341	.219304	966 946
190	. 234429	.235357	.236283	. 237207	.238129	925
200	0.243621	$\begin{array}{r}0.244529 \\ \hline 25512\end{array}$	0.245436 .254400	0.246341 .255287	0.247244 .256172	906 887
210 220	.252623 .261441	.253512 .262313	.254400 .263184	.255287 .264052	.256172 .264919	887 870
230	. 270085	.270940	.271793	. 272644	. 273494	853
240	.278559	. 279398	. 280234	.281070	.281903	836
250	0.286872	0.287694	$\begin{array}{r} 0.288515 \\ .206640 \end{array}$	0.289326 .297445	$\begin{array}{r} 0.290153 \\ .298248 \end{array}$	820
260	. 295028	.295835 .303827	.296640 .304618	. 297445	.298248 .306196	790
270 280	.303034 .310895	.303827 .311673	.304618 .312450	. 3054226	. 31306000	776
290	-318616	-319381	.320144	. 320906	. 321667	763
300	0.326203	0. 326954	0.327704	0.328453 .33871	0.329201 .336606	750 737
310	. 333659	. 334397	.335 ${ }^{\text {I }} 345$. 3343871	.336688 .34387	724
320	-340989	.34 I .348912 .3599	-. 34249624	. 350337	.351048	713
330 340	-348198	-355991	. 356693	. 357394	. 358093	701
350	0.362266	0.362957	0.363648	0.364337	0.365025	690
350 360	0.362266 .369132	. 369813	. 370493	. 371171	. 371849	678
360 370	. 375892	. 376562	. 377232	. 377900	. 378567	668
380	. 382548	. 383208	. 383868	.384525 .391052	.385183 .391699	658 648
390	.389104	. 389754	-390403	-391052	-391699	

Emithsonian Tables.

VOLUME OF GASES.

(d) Logarithms of $1+.00367 t$ for Values of t between 400° and $1990^{\circ} \mathrm{O}$. by 10° Steps.

t	00	10	20	30	40
400	0.392345	0.398756	0.405073	0.411300	0.417439
500	0.452553	0.458139	0.463654	0.469100	0.474479
600	. 505421	.510371	. 515264	. 520103	. 524889
700	. 552547	. 556990	. 561388	. 565742	. 570052
800 900	.595055 .633771	.599086 .637460	. 603079	. 607037	.610958 .648341
900	. 633771	. 637460	.641117	. 644744	.64834
1000	0.669317	0.672717	0.676090	0.679437	0.682759
1100	. 702172	.705325	. 708455	. 711563	.714648
1200	. 732715	.735655	. 738575	. 741475	. 744356
1300	.761251	. 764004	. 766740	. 769459	.772160
1400	.788027	.7906I6	.793190	. 795748	.798292
1500	0.813247	0.815691	0.818120	0.820536	0.822939
1600	. 837083	. 839396	. 841697	. 843986	. 846263
1700	. 859679	. 861875	. 864060	. 866234	. 868398
1800	. 881156	.883247	. 885327	. 887398	. 889459
1900	. 901622	.903616	. 905602	. 907578	. 909545
t	60	60	70	80	90
400	0.423492	0.429462	0.435351	0.441161	0.446894
500 600	0.479791	0.485040	0.490225	0.495350	0.500415
700	- 529623	. 534305	. 538938	- 543522	-548058
800	. 574321	. 578548	. 582734	- 586880	- 590987
900	. 651908	.655446	. 658955	. 662437	. 665890
1000	0.686055	0.689327	0.692574	0.695797	0.698996
1100	.717712	.720755	. 723776	. 726776	. 729756
1200	. 747218	. 750061	. 752886	. 755692	.758480
1300	. 774845	. 777514	. 780166	. 782802	.785422
1400	. 800820	. 803334	. 805834	.808319	.810790
1500	0.825329	0.827705	0.830069	0.832420	
1600	. 848528	. 85078 r	. 853023	. 855253	. 857471
1700	. 870550	. 872692	. 874824	. 876945	. 879056
1800	.891510	. 893551	. 895583	. 897605	. 899618
1900	.911504	.913454	.915395	.917327	.919251

Smithsonian Tables.

DETERMINATION OF HEIGHTS BY THE BAROMETER.

> Formula of Babinet : $Z=C \frac{B_{0}-B}{B_{0}+B}$
> C (in feet) $=52494\left[\mathrm{x}+\frac{t_{0}+t-64}{900}\right]$ English measures.
> C (in meters) $=16000\left[\mathrm{x}+\frac{2\left(t_{0}+t\right)}{1000}\right]$ metric measures.

In which $Z=$ difference of height of two stations in feet or metera.
$B_{0}, B=$ barometric readings at the lower and upper stations respectively, corrected for all sources of instrumental error.
$t_{0}, t=$ air temperatures at the lower and upper stations respectively.
Values of C.

English Measures.			Metric Measures.		
$\frac{1}{1}\left(t_{0}+t\right)$.	c	$\log C$	$\frac{1}{2}\left(t_{0}+t\right)$.	C	$\log C$
Fahr.	Feet.		Cent.	Meters.	
10°	49928	4.69834	-10°	15360	4.18639
15	50511	. 70339	-8	r 5488	-19000
			-6	15616	. 19357
20 25	51094	4.70837	-4	${ }^{1} 5744$. 19712
25	51677	.71330	-2	15872	. 20063
30	5226 x	4.71818	0	16000	4.20412
35	52844	. 72300	$+2$	16128	. 20758
			4	16256	.21101
40	53428	4.72777	8	16384	. 21442
45	5401 I	. 73248	8	16512	.21780
50	54595	4.73715	10	16640	4.22115
55	55178	.74177	12	16768	. 22448
			14	16896	. 22778
60	55761	4.74633	16	17024	. 23106
65	56344	. 75085	18	17152	. 23431
70	56927	4.75532	20	17280	4.23754
75	57511	. 75975	22	17408	. 24075
			24	17536	. 24393
80	58094	4.76413	26	17664	.24709
85	58677	.76847	28	17792	. 25022
90	59260	4.77276	30	17920	4.25334
95	59844	. 77702	32	18048	. 25643
100			34	18176	. 25950
100	60427	4.78123	36	r8304	. 26255

Values only approximate. Not good for great altitudes. A more accurate formula with corresponding tables may be found in Smithsonian Meteorological Tables, 3 revised ed, rgo6.

Smithsonian Tables.

Barometric pressures corresponding to different This table is useful wheo a boiliog-point apparatus is used
(a) Oommon Measure.*

Temp. ${ }^{\circ} \mathrm{F}$.	. 0	. 1	. 2	. 3	. 4	. 6	. 6	. 7	. 8	. 9
185	17.06	17.09	17.13	17.17	17.20	17.24	17.28	17.32	17.35	17.39
186	17.42	17.47	17.51	17.54	17.58	17.62	17.66	17.70	17.74	17.77.
187	17.81	17.85	17.89	17.93	17.97	18.01	18.05	18.08	18.12	18.16
188	18.20	18.24	18.28	18.32	18.36	18.40	18.44	18.48	18.52	18.56
189	18.60	18.64	18.68	18.72	18.76	18.80	18.84	18.88	18.92	18.96
190	19.00	19.04	19.08	19.12	19.16	19.21	19.25	19.29	19.33	19.37
191	19.41	19.45	19.49	19.54	19.58	19.62	19.66	19.70	19.75	19.79
192	19.83	19.87	19.91	19.96	20.00	20.04	20.08	20.13	20.17	20.21
193	20.26	20.30	20.34	20.38	20.43	20.47	20.51	20.56	20.60	20.64
194	20.68	20.73	20.78	20.82	20.86	20.91	20.95	20.99	21.04	21.08
195	21.13	21.17	21.22	21.26	21.31	21.35	21.40	21.44	21.48	21.53
196	21.58	21.62	21.67	21.71	21.76	21.80	21.85	21.90	21.94	21.99
197	22.03	22.08	22.13	22.17	22.22	22.27	22.31	22.36	22.41	22.45
198	22.50	22.55	22.59	22.64	22.69	22.73	22.78	22.83	22.88	22.92
199	22.97	23.02	23.07	23.12	23.16	23.21	23.26	23.31	23.36	23.40
200	23.45	23.50	23.55	23.60	23.65	23.70	23.75	23.79	23.84	23.89
201	23.94	23.99	24.04	24.09	24.14	24.19	24.24	24.29	24.34	24.39
202	24.44	24.49	24.54	24.59	24.64	24.69	24.74	24.79	24.85	24.90
203	24.95	25.00	25.05	25.10	25.15	25.20	25.26	25.31	25.36	25.41
204	25.46	25.52	25.57	25.62	25.67	25.72	25.78	25.83	25.88	25.94
205	25.99	26.04	26.09	26.15	26.20	26.25	26.31	26.36		26.47
206	26.52	26.58	26.63	26.68	26.74	26.79	26.85	26.90	26.96	27.01
207	27.06	27.12	27.17	27.23	27.28	$27 \cdot 34$	27.39	27.45	27.51	27.56
208	27.62	27.67	27.73	27.78	27.84	27.90	2795	28.01	28.07	28.12
209	28.18	28.24	28.29	28.35	28.41	28.46	28.52	28.58	28.63	28.69
210	28.75	28.81	28.87	28.92	28.98	29.04	29.10	29.16	29.2 I	29.27
211 212	29.33 29.92	29.39 29.98	29.45 30.04	29.51 30.10	29.57	29.63	29.68			
212	29.92	29.98	30.04	30.10	30.16	30.22	30.28	30.34	30.40	30.46

[^28]The values at the lower temperatures are perhaps $\frac{1}{2} \%$ too low. Table (b) is based on more recent data (19:3).

Smithsonian Tables.

PRESSURES.

temperatures of the boiling-point of water.
in place of the barometer for the determination of heights.
(b) Metric Measare.*

Temp. ${ }^{\circ} \mathrm{C}$.	. 0	. 1	.2	. 3	. 4	. 5	. 8	. 7	. 8	. 9
80°	$355 \cdot 5$	356.9	358.4	359.8	361.3	362.7	364.2	365.7	367.1	368.6
8!	370.1	37 I .6	373.1	374.6	376.1	377.6	379.1	380.6	382.2	383.7
82	$3^{8} 5.2$	386.8	388.3	389.9	$39^{1} .4$	393.0	394.6	396.2	397.7	399.3
83	400.9	402.5	404.1	405.7	407.3	408.9	410.5	412.2	413.8	415.4
84	417.1	418.7	420.4	422.0	423.7	425.4	427.0	428.7	430.4	432.1
85	433.8	$435 \cdot 5$	437.2	438.9	440.6	442.4	444.I	445.8	447.6	449.3
86	451.1	452.8	454.6	456.4	458.1	459.9	461.7	463.5	$465 \cdot 3$	467.1
87	468.9	470.7	472.5	474.4	476.2	478.0	479.9	481. 7	483.6	485.5
88	487.3	489.2	491.1	493.0	494.9	496.8	498.7	500.6	502.5	504.4
89	506.4	508.3	510.2	512.2	514.1	516.1	518.1	520.0	522.0	524.0
90	526.0	528.0	530.0	532.0	534.0	536.0	538.1	540.1	542.2	544.2
91	546.3	548.3	550.4	552.5	554.6	556.6	558.7	560.8	563.0	565.I
92	567.2	569.3	57 I .4	573.6	$575 \cdot 7$	577.9'	580.1	582.2	584.4	586.6
93	588.8	591.0	593.2	$595 \cdot 4$	597.6	599.8	602.0	604.3	606.5	608.8
94	6ri.O	613.3	6I5.6	617.8	620.1	622.4	624.7	627.0	629.4	63 L .7
95	634.0	636.3	638.7	641.0	643.4	645.8	648.1	650.5	652.9	655.3
96	657.7	660.I	662.5	664.9	667.4	669.8	672.2	674.7	677.2	679.6
97	682.1	684.6	687.1	689.6	692.1	694.6	697.1	699.6	702.2	704.7
98	707.3	709.8	712.4	715.0	717.6	720.2	722.8	725.4	728.0	730.6
99	733.2	735.9	738.5	741.2	743.8	746.5	749.2	751.9	754.6	757.3
100	760.0	762.7	765.4	768.2	770.9	773.7	776.4	779.2	782.0	784.8

* Pressure in millimeters of mercury.

Smithsonian Tables.

STANDARD WAVE-LENGTHS.

TABLE 159. - Absolute Wave-length of Red Cedmlum Line in Air, 760 mm . Pressure, $15^{\circ} \mathrm{C}$.
6438.4722 Michelson, Travanx et Mém. du Bur. intern. des Poids et Mesures, 11, 1895.
6438.4700 Michelson, corrected by Benoit, Fabry, Perot, C. R. 144, 1082, 1907.
6438.4696 (accepted primary standard) Benoit, Fabry, Perot, C. R. 144, 1082, 1907.

TABLE 160. - Internetional Secondary Standards. Iron Are Lineo

Adopted as secondary standards at the International Union for Coöperation in Solar Research (transactions, 1910). Means of measures of Fabry-Buisson (1), Pfund (2), and Eversheim (3). Referred to primary standard $=$ Cd. line, $\lambda=6438.4696$ Ångströms (serving to define an Ångström). 760 mm ., $15^{\circ} \mathrm{C}$. Iron rods, 7 mm . diam. length of arc, 6 mm ; 6 amp . for λ greater than 4000 Angströms, 4 amp . for lesser wave-lengths ; continuous current, + pole above the -, 220 volts; source of light, 2 mm . at arc's center. Lines adopted in 1910.

Wave-length.	Wave-length.	Wave-length.	Wave-length.	Wave-length.	Wave-length.	Wave-length.
4282.408	4547.853	4789.657	5083.344	5405.780	5615.66 I	6230.734
4315.089	4592.658	4878.225	5110.415	5434.527	5658.836	6265.145
4375.934	4602.947	4903.325	5167.492	5455.614	5763.013	6318.028
4427.314	4647.439	4919.007	5192.363	5497.522	6027.059	6335.34 I
4466.556	4691.417	5001.88 I	5232.957	5506.784	6065.492	6393.612
4494.572	4707.288	5012.073	5266.569	5569.633	6137.701	6430.859
453 I .155	4736.786	5049.827	5371.495	5586.772	6191.568	6494.993

TABLE 161. - International Secondary Standarde. Iron Arc Lineo.
Adopted in 1913. (4) Means of measures of Fabry-Buisson, Pfund, Burns and Eversheim.

Wave-length.	Wave-length.	Wave-length.	Wave-length.	Wave-length.	Wave-length.	Wave-length.
3370.789	3606.682	3753.615	3906.482	4076.642	4233.615	6750.250
3399.337	3640.392	3805.346	3907.937	4118.552	5709.396	5857.759 Ni
3485.345	3676.313	3843.261	3935.818	4134.685	6546.250	5892.882 Ni
3513.821	3677.629	3850.820	3977.746	4147.676	6592.928	
3556.88 I	3724.380	3865.527	4021.872	4191.443	6678.004	

(1) Astrophysical Journal, 28, p. 169, 1908; (2) Ditto, 28, p. 197, 1908; (3) Annalen der Physik, 30, p. 815, 1909. See also Eversheim, ibid. 36, p. 1071, 1911; Buisson et Fabry, ibid. 38, p. 245, 1912; (4) Astrophysical Journal, 39, p. 93, 1914.

TABLE 162. - Some of the Stronger Limes of Some of the Elements.

Barium	5535.7	Helium	5875.8	Magnesium	5167.5	Sodium	5890.2
Cæsium	4555.4 4593	Hydrogen	5876.2 4101.8		5172.9 5183.8	Strontium	5896.2 4607.5
Calcium	5589.0	Hydrogen	4340.7	Mercury	5461.0	".	448 I .2
Cadmium	4799.9		4861.5	Potassium.	7668.5		6408.6
"	5085.8 6438.5	Lithium	6563.0 6708.2	Rubidium.	7701.9	Thallium.	5350.6

Smithsonian Tableb.

STANDARD SOLAR WAVE-LENGTHS. ROWLAND'S VALUES.
Wave-lengths are in Ångström units ($10^{-7} \mathrm{~mm}$.), in air at $20^{\circ} \mathrm{C}$ and 76 cm . of mercury pressure. The intensities run from 1 , just clearly visible on the map, to 1000 for the H and K lines; below I in order of faintness to 0000 as the lines are more and more difficult to see. This table contains only the lines above 5 .

N indicates a line not clearly defined, probably an undissolved multiple line; s, a faded appearing line; d, a double. In the "substance" column, where two or more elements are given, the line is compound; the order in which they are given indicates the pertion of the line due to each element; when the solar line is too strong to be due wholly to the element given, it is represented, -Fe, for example; when commas separate the elements instead of a dash, the metallic lines coincide with the same part of the solar line, Fe, Cr, for example.

Capital letters nexi the wave-length numbers are the ordinary designations of the lines. A indicates atmospheric lines, ($w v$), due to water vapor, (O), due to Oxygen.

Waveleogth.	Substance,	Intensity.	Wave-length.	Substance.	$\begin{aligned} & \text { Inten- } \\ & \text { sity. } \end{aligned}$	Wavelength.	Substance.	Inteasity.
3037.510s	Fe	10 N	3372.947	Ti-Pd	Io d?	3533.345	Fe	6
3047.7255	Fe	20 N	3380.722	Ni	6 N	3536.709	Fe	7
$3053 \cdot 5305$		7 d ?	3414.911	Ni	15	3541.237	Fe	7
3054.429	Mn , Ni	10	3423.848	Ni	7	3542.232	Fe	6
3057.552s	Ti, Fe	20	3433.715	Ni, Cr	8 d ?	3555.079	Fe	9
3059.2125	Fe	20	3440.762 S \} 0	Fe	20	3558.672 s	Fe	8
3067.3695	Fe	8	3441.1555	Fe	15		Fe	20
3073.091	Ti, -	6 Nd ?	3442.118	Mn	6	3566.522	Ni	10
3078.7695	Ti, -	8 d ?	3444.020s	Fe	8 N	3570.273 s	Fe	20
3088.145 s	Ti	7 d ?	3446.406	Ni	15	3572.014	Ni	6
3134.2305	Ni, Fe	8	3449.583	Co	6 d ?	3572.712	Se, -	6
3188.656	- - Fe	6 d ?	3453.039	Ni	6 d ?	3578.832	Cr	10
3236.7035	Ti	7 N	3458.601	Ni	8	3581.349 s	Fe	30
3239.170	Ti	7	3461.801	Ni	8	3584.800	Fe	6
3242.125	Ti, -	8	3462.950	Co	6	3585.105	Fe	6
3243.189	-, Ni	6	3466.0155	Fe	6	3585.479	Fe	7
3247.688 s	Cu	10	3475.594 s	Fe	10	3585.859	Fe	6
3256.021	Fe ?	6	3476.849 s	Fe	8	3587.130	Fe	8
3267.834 s	V	6	3483.923	Ni	6d?	3587.370	Co	7
3271.129	Fe	6	3485.493	Fe Co	6	3588.084	Ni	6
3271.791	Ti, Fe	6d?	3490.733s	Fe	io N	3593.636	Cr	9
3274.096 s	Cu	10	3493.1 14	Ni	10 N	3594.784	Fe	6
3277.482	$\mathrm{Co}-\mathrm{Fe}$	7 d ?	3497.982s	Fe	8	3597.854	Ni	8
3286.898	Fe	7 N	3500.996s	Ni	6d?	3605.479 s	Cr	
3295.951 S	Fe, Mn	6	3510.466	Ni	8	3606.838 s	Fe	6
3302.510 S	Na	6	3512.785	Co	6	3609.008 s	Fe	20
3315.807	Ni	7 d ?	3513.965 s	Fe	7	36 I 2.882	Ni	6 d ?
3318.1605	Ti	6	3515.206	Ni	12	3617.9345	Fe	6
3320.391	$\mathrm{Ni}^{\text {i }}$	8^{7}	3519.904	N	7	3618.919 s	Fe	20
3336.820	Mg	8 N	$3521.410 s$	Fe	8	3619.539	Ni	8
3349.597	Ti	7	3524.677	Ni	20	3621.612 s	Fe	6
3361.327	Ti	8	3526.183	Fe	6	3622.147 S	Fe	6
3365.908	$\mathrm{Ni}^{\text {i }}$	6	3526.988	${ }^{\text {Co }}$	6	$3631.605 s$	Fe	15
3366.31 I	Ti, Ni	6 d ?	3529.964	$\mathrm{Fe}-\mathrm{Co}$	6	$3640.535 s$	$\mathrm{Cr}-\mathrm{Fe}$	6
3369.713	Fe, Ni	6	3533. 56	Fe	6	3642.820	Ti	7

Corrections to reduce Rowland's wave-leogths to standards of Table 160 (the accepted standards, 1913). Temperature $15^{\circ} \mathrm{C}$, pressure 760 mm .
The differences "(Fabry-Buissoo-arc-iron) - (Rowland-solar-iron)" lines were plotted, a smooth curve drawn, and the following values obtaioed:
$\begin{array}{llllllllll}\text { Wave-length } & 3000 & \mathbf{3 1 0 0 .} & \mathbf{3 2 0 0} & 3300 . & 3400 . & 3500 . & \mathbf{3 6 0 0} & \mathbf{3 7 0 0} . \\ \text { Correction } & -.106 & -.115 & -.124 & -.137 & -.148 & -.154 & -.155 & -.140\end{array}$
H. A. Rowland, "A preliminary table of solar-spectrum wave-lengths," Astrophysical Journal, $\mathrm{r}-6,1895-1897$. Smithsonian Tables.

Table 163 (continued).
STANDARD SOLAR WAVE-LENGTHS. ROWLAND'S VALUES.

Wave-length.	Substance.	$\begin{aligned} & \text { Inten- } \\ & \text { sity. } \end{aligned}$	Wave-length.	Substance.	Intensity.	Wave-length.	Substance.	Intensity.
3647.988 s	Fe	12	3826.027 s	Fe	20	4045.975 S	Fe	30
3651.247	Fe,-	6	3827.980	Fe	8	4055.7015	Mn	6
3651.614	Fe	7	3829.5015	Mg	10	4057.668		7
3676.457	Fe, Cr	6	383 I .837	Ni	6	4063.759 s	Fe	20
3680.069 s	Fe	9	3832.4505	Mg	15	4068.137	$\mathrm{Fe}-\mathrm{Mn}$	6
3684.258 s	Fe	7 d ?	3834.364	Fe	10	4071.908 s	Fe	15
3685.339	Ti	rod?	3838.4355	$\mathrm{Mg}-\mathrm{C}$	25	4077.885 S	Sr	8
3686.141	$\mathrm{Ti}-\mathrm{Fe}$	6	3840.580 s	$\mathrm{Fe}-\mathrm{C}$	8	4102.000 H 8	H , In	40 N
$3687.610 s$	Fe	6	3841.195	$\mathrm{Fe}-\mathrm{Mn}$	10	4121.477 s	$\mathrm{Cr}-\mathrm{Co}$	6d?
3689.614	Fe	6	3845.606	$\mathrm{C}-\mathrm{Co}$	8d ?	4128.251	Ce-V,-	6d
3701.234	Fe	8	3850.118	$\mathrm{Fe}-\mathrm{Cr}$	10	4132.235	$\mathrm{Fe}-\mathrm{Co}$	10
3705.708s	Fe	9	3856.5245	Fe	8	4137.156	Fe	6
3706.175	Ca, Mn	6d?	3857.805	$\mathrm{Cr}-\mathrm{C}$	6d ?	4140.089	Fe	6
3709.3898	Fe	8	3858.442	Ni	7	4144.038	Fe	15
3716.5915	Fe	7	$3860.055 s$	$\mathrm{Fe}-\mathrm{C}$	20	4167.438	-	8
3720.084 s	Fe	40	3865.674	$\mathrm{Fe}-\mathrm{C}$	7	4187.204	Fe	6
3722.692 s	Ni	10	3872.639	Fe	6	4191.595	Fe	6
3724.526	Fe	6	3878.152	$\mathrm{Fe}-\mathrm{C}$	8	4202.198s	Fe	8
3732.545s	$\mathrm{Co-Fe}$	6	3878.720	Fe	7 Nd ?	4226.904sg	Ca	20 d ?
3733.4698	Fe-	7 d ?	3886.4345	Fe	15	4233.772	Fe	6
3735.0148	Fe	40	3887.196	Fe	7	4236.112	Fe	8
3737.28 Is	Fe	30	3894.2 [1	$\bar{\square}$	8d	4250.287 s	Fe	8
3738.466		6	3895.803	Fe	7	$4250.945 s$	Fe	8
3743.508 3745.7175	$\underset{\mathrm{Fe}}{\mathrm{Fe}-\mathrm{Ti}}$	6	3899.850	$\mathrm{Ce}^{\mathrm{Fe}}$	8	$4254 \cdot 505 \mathrm{~s}$	Cr	8
3745.717 s	$\stackrel{\mathrm{Fe}}{ }$	8	3903.090	$\mathrm{Cr}, \mathrm{Fe}, \mathrm{Mo}$	10	4260.6405	Fe	10
3746.058 s	Fe	6	3904.023		8d	4271.9345	Fe	15
3748.408 s	Fe	10	3905.660s	Si	12	4274.958 s	Cr	7 d ?
3749.6315	$\stackrel{\mathrm{Fe}}{\mathrm{Fe}}$	20	3906.628	Fe	10	$4308.0815 G$	Fe	6
3753.732	$\underset{\mathrm{Fe}}{ } \mathrm{Ti}$	6d?	3920.410	Fe	10	4325.939 s	Fe	8
3758.375 S	Fe	15	3923.054	Fe	12 d ?	$4340.634 \mathrm{H} \mathrm{\gamma}$	H	20 N
3759.447	Ti	12d?	3928.0755	Fe	8	4376.107s	Fe	6
3760.196	Fe	5	3930.450	Fe	8	4383.7205	Fe	15
3761.464	Ti	7	3933.523		8 N	4404.9275	Fe	10
3763.945s	$\stackrel{\mathrm{Fe}}{ }$	10	3933.825 sK	$\stackrel{\mathrm{Ca}}{\mathrm{V}}$	1000	4415.2935	Fe	8
3765.689	$\stackrel{\mathrm{Fe}}{ }$	6	3934.108	$\mathrm{Ca}, \mathrm{V}-\mathrm{Cr}$	8 N	4442.510	Fe	6
3767.3415	Fe	8	3944.1605	Al	15	4447.892 s	Fe	6
3775.717 3783.674 S	$\stackrel{\mathrm{Ni}}{\mathrm{Ni}}$	7	3956.819	Fe	6	4494.738 s	Fe	6
3783.674 S 3788.046 s	Fi	6	3957.177s	$\mathrm{Fe}-\mathrm{Ca}$	7 d ?	4528.798	Fe	8
3788.046 s 3795.147 s	Fe Fe	8	3961.6745	Al	20	4534.139	$\mathrm{Ti}-\mathrm{Co}$	6
3798.655 s	Fe	6	3968.625 sH	Ca	700	4549.808	Ti-Co	$6{ }_{8}$?
3799.6935	Fe^{F}	7	3968.886	-	6 N	4572.156 s	Ti-	6
3805.486s	$\underset{\mathrm{Mn}-\mathrm{Fe}}{\mathrm{Fe}}$	6	3969.413	Fe	10	4603.126	Fe	6
3806.865 3807.293	$\underset{\mathrm{Ni}}{\mathrm{Mn}-\mathrm{Fe}}$	8d ?	3974.904	$\underset{\mathrm{Fe}}{ } \mathrm{Co}$	6d ?	4629.5215	$\mathrm{Ti}-\mathrm{Co}$	6
3807.293 3807.68 I	$\xrightarrow[\mathrm{V}-\mathrm{Fe}]{ }$	6	3977.8 g is	Fe	6	4679.027 s	Fe	6
3807.681 3814.698	$\mathrm{V}-\mathrm{Fe}$	6	3986.903 s 4005.408	Fe	6	4703.177s	Mg	10
3814.6887s	$\underset{\mathrm{Fe}}{\mathrm{Fe}}$	15	4005.408 4030.918 s	$\stackrel{\mathrm{Fe}}{\mathrm{Mn}}$	$\stackrel{7}{\text { rod? }}$	$4714.599 s$ 4736.963	Ni	6
3820.586 sL	$\mathrm{Fe}-\mathrm{C}$	25	4033.224 s	Mn	8d ?	4736.963 $4754.225 s$	Fe Mn	6
3824.591	Fe	6	4034.644 s	Mn	6d	4783.613^{s}	Mn	6

Corrections to reduce Rowland's wave-lengths to standards of Table 160 (the accepted standards, r9r3). Temperature
$5^{\circ} \mathrm{C}$, pressure 760 mm :
Wave

Smithsonian Tagleg.

Table 163 (continued).
STANDARD SOLAR WAVE-LENGTHS. ROWLAND'S VALUES.

Wave-length.	Substance.	Intensity.	Wave-length.	Substance.	Intensity.	Wave-length.	Substance.	Intensity.
486r.527sF	H	30	5948.765s	Si	6	6563.045 SC	H	
4890.948 s	Fe	6	5985.040 s	Fe	6	6593.1615	Fe	40
4891.683	Fe	8	6003.2395	Fe	6	6867.457 sB	A (O)	6d?
4919.174 S	Fe	6	6008.785 s	Fe	6	6868.336	A(O)	6d?
4920.685	Fe	10	6013.715 s	Mn	6	6868.478 \} s	A(O)	6
4957.785 s 5050.008 s	Fe	8	6016.861 s	Mn	6	6869.142s	A (0)	7
5050.008 s 5 r 67.497 sb	Fe	6	6022.016 s	Mn	6	6869.353 s	A(0)	6
${ }_{5}^{5167.497 \mathrm{sb}_{4}}$	Mg	15	6024.2815	Fe	7	$6870.116\}_{s}$	A (O)	73 d
5171.778 s $5172.856 \mathrm{sb}_{2}$	$\stackrel{\mathrm{Fe}}{\mathrm{Mg}}$	6	6065.709 s	Fe	7	6870.249 \} ${ }^{\text {s }}$	A(O)	7 d
$5 \mathrm{I} 83.79 \mathrm{Isb}_{1}$	$\mathrm{Mg}^{\mathrm{Mg}}$	20	6102.392 s	Fe	6	6871.180s	A(O)	8
$5233.122 s$	Fe	3	6102.937 s	Ca	9	6871.532 s	A(O)	10
5266.738 s	Fe	6	6122.4345	Ca	10	6872.486 s 6873.08 s	A(O) A (O)	11
5269.723 SE	Fe	8 d ?	6136.829 s	Fe	+80	6873.080 s 6874.037 s	A(O) A (O)	12
5283.802 s	Fe	6	6137.915	Fe	7	6874.899 s	A (O)	12
5324.3735	Fe	8	614 r .938 s	Fe, Ba	7	6875.83 os	A(O)	13
5328.236	Fe	8 d ?	6155.350	-	7	6876.958 s	A (O)	13
5340.121	Fe	6	6162.390 s	Ca	15	6877.888 zs	A (O)	12
5341.213	Fe	7	6169.249 s	Ca	6	6879.288 s	A(O)	12
5367.669 s	Fe	6	6169.778 s	Ca	7	6880.172 s	A(O)	6
5370.166 s	Fe	6	6170.730	$\mathrm{Fe}-\mathrm{Ni}$	6	6884.076 s	A (O)	10
5383.578 s	Fe	6	6191.393 s	Ni	6	6886.000s	A(O)	11
5397.344 S	Fe	7 d ?	6191.779 s	Fe	9	6886.990s	A(O)	12
5405.989s	Fe	6	6200.527 s	Fe	6	6889.192s	A(O)	13
5424.290s	Fe	6	6213.6445	Fe	6	6890.1515	A(O)	14
5429.911	Fe	6 d ?	6219.4945	Fe	6	6892.618 s	A(O)	14
5447.130s	Fe	6 d ?	6230.9435	$\mathrm{V}-\mathrm{Fe}$	8	6893.560s	A(O)	15
5528.641 s	Mg	8	6246.5355	Fe	8	6896.28 gs	A(O)	14
5569.848	Fe	6	6252.773 s	${ }_{-} \mathrm{Fe}$	7	6897.208 s	A(0)	15
5573.075	Fe	6	6256.5725	$\mathrm{N} \mathbf{-} \mathrm{Fe}$	6	6900.1995	A(O)	14
5586.991	Fe	7	6301.718	Fe		6901.1175	A(O)	15
5588.985 s	Ca	6	6318.239	Fe	6	6904.362 s	A(O)	14
5615.877 s	Fe	6	6335.554	Fe	6	6905.2715	A(O)	14
5688.4365	Na	6	6337048	Fe	7	6908.783 s	A(O)	13
5711.313 s	Mg	6	6358.898	Fe	6	$6909.676 s$	A(O)	13
5763.218 s	Fe	6	6393.820 s	Fe	7	6913.448 s	A(O)	11
5857.674 s	Ca	8	6400.217 s	Fe	8	6914.337 s	A(O)	II
5862.582 s	Fe	6	$6411.865 s$	Fe	7	6918.370 S	A(O)	9
$5890.186 \mathrm{sD}_{2}$	Na	30	6421.5705	Fe	7	6919.2505	A(O)	9
$5896.155 \mathrm{D}_{1}$ 5901.682 S	$\xrightarrow[\mathrm{A}(\mathrm{wv})]{\mathrm{Na}}$	20 6	6439.2935 6450.0335	Ca	8	6923.553 s	A(O)	9
5901.682 S 5914.430 S	$A(w v)$,$- A(w v)$	6	6450.033 s 6494.004 s	Ca Ca	6	6924.4275 7191.755	A(O) A, -	69
5919.860 s	A(wv)	7	6495.213	Fe	8	7206.692	\rightarrow A	6
$5930.406 s$	Fe	6	6546.479s	$\mathrm{Ti}-\mathrm{Fe}$	6			

Currections to reduce Rowland's wave-lengths to standards of Table $x 60$ (the accepted standards, 1983). Temperature $15^{\circ} \mathrm{C}$, pressure 760 mm . :

	$\begin{array}{r} 4800 . \\ -.179 \end{array}$		$-.173$							$\begin{array}{r} 5700 . \\ -.213 \end{array}$	
orrection	.209	209	13	4	$-.2$	$-.210$		$\begin{array}{r} 6500 . \\ -.250 . \end{array}$	o.	700.	6800.

Smithsonian Tables.

TERTIARY STANDARD WAVE-LENCTHS. IRON ARC LINES.

For arc conditions see Table 160, p. 172. For lines of group c class 5 for best results the slit should be at right angles to the arc at its middle point and the current should be reversed several times during the exposure.

Wave-lengths.	Class.	Intensity.	Wave-lengths.	Class.	Intensity.	Wave-lengths.	Class.	Intensity.
$*_{2781} 8.840$		4	4337.052	b3	5	5332.909	34	2
*2806.985		7	4369.777	b3	3	5341.032	a4	5
*2831.559		3	4415.128	bi	8 r	5365.404	al	2
*2858.341		3	4443.198	b3	3	5405.780 5434.528	a	6
*2901.382		4	446 I .658	a3	4	5434.528	a	6
*2926.584		5	4489.746	a3	3	5473.913	a	4
*2986.460		3	4528.620	c4	7	5497.521	a	4
*3000.453		4	4619.297	c4	4	5501.471	a	4
*3053.070		4	4786.81 II	c4	3	5506.784 +5535.419	a	3
*3100.838		2	487 I .331	c5	8	\$5535.419	a	2
*3154.202		4	4890.769	c5	7	5563.612 5975.352	b	$\begin{array}{r}3 \\ 2 \\ \\ \hline\end{array}$
*3217.389		4	4924.773	a	3	5975.352 6027.059	b	3
$* 3257.603$ $* 3307.238$		4	4939.685	a	3 2	6067.595	b	4
*3347.932		4	4994.133	a	3	6136.624	b	5
*3389.748		3	5041.076	a	3	6157.734	b	4
*3476.705		5	5041.760	a	4	6165.370	b	3
*3506.502		5	5051.641	a	4	6173.345	b	4
*3553.741		5	5079.227	a	3	6200.323	b	4
*3617.789		6	5079.743	a	3	6213.44 I	b	5
*3659.521		${ }_{5}$	5098.702	a	4	6219.290	b	5
* 3705.567		6R	5123.729	a	4	6252.567	b	6
* 3749.487		$8 \mathrm{8R}$	5127.366	a	3	6254.269	b	4
*3820.430		8 R	5150.846	a	4	6265.145 6297	b	5
*3859.913			5151.917	a	3	6297.802 6335.342	b	4
*3922.917		6 6	5194.950	a	5	6335.342 6430.859	b	6
$* 3956.682$ $*$ $*$		6 5	5202.341 5216.279	a	5	6430.859 6494.992	b	6
* 4062.451		4	5227.191	24	8			
$\dagger 4132.063$	br	7	5242.495	a	3			
+4175.639	b	4	5270.356	34	8			
$\dagger 4202.031$	bi	7 r	5328.043	a	7			
†4250.791	b2	7	5328.537	34	4			

[^29]For class and pressure shifts see Gale and Adams, Astrophysical Journal, 35, p. 10, 1912. Class a: "This involves the well-known flame lines (de Watteville, Phil. Trans. A 204, p. 139. 1904), i.e. the lines relatively strengthened in low-temperature sources, such as the flame of the arc, the low-current arc, and the electric furnace. (Astrophysical Journal, z4, p. 185, 1906, 30, p. 86, 1909, 34, p. 37, 1911, 35, p. 185, 1912.) The lines of this group in the yellow-green show small but definite pressure displacements, the mean being 0.0036 Angström per atmosphere in the arc." Class b: "To this group many lines belong; in fact all the lines of moderate displacement under pressure are assigned to it for the present. These are bright and symmetrically widened under pressure, and show mean pressure displacements of 0.009 Angström per atmosphere for the lines in the region $\lambda 5975-6678$ according to Gale and Adams. Group c contains lines showing much larger displacements. The numbers in the class column have the following meaning: 1 , symmetrically reversed; 2 , unsymmetrically reversed; 3, remain bright and fairly narrow under pressure; 4, remain bright and symmetrical under pressure but become wide and diffuse; 5, remain bright and are widened very unsymmetrically toward the red under pressure."

For further measures in International units see Kayser, Bericht ïber den gegenwärtigen Stand der Wellenlängenmessungen, International Union for Coöperation in Solar Research, 19r3. For further spectroscopic data see Kayser's Handbuch der Spectroscopie.

WAVE-LENGTHS OF FRAUNHOFER LINES.
For convenience of reference the values of the wave-lengths corresponding to the Fraunhofer lines usually designated by the letters in the column headed "index letters," are here tabulated separately. The values are in ten millionths of a millimeter, on the supposition that the D line value is 5896.155 . The table is for the most part taken from Rowland's table of standard wavelengths.

Index Letter.	Line due to -	Wave-length in ceatimeters $\times 10^{8}$,	Index Letter.	Line due to-	Wave-leagth in centimeters $\times{ }_{10}{ }^{3}$.
A	$\left\{^{0}\right.$	7621.28*	G	$\left\{\begin{array}{l}\mathrm{Fe} \\ \mathrm{Ca}\end{array}\right.$	4308.08I
	0	7594.06*			4307.907
a	-	7164.725	g	Ca	4226.904
B	0	$6870.182 \dagger$	h or H_{δ}	H	4102.000
C or Ha_{a}	H	6563.045	H	Ca	3968.625
$\boldsymbol{\alpha}$	0	$6278.303 \ddagger$	K	Ca	3933.825
D_{1}	Na	5896.15 5	L	Fe	3820.586
D_{2}	Na	5890.186	M	Fe	3727.778
D_{3}	He	5875.985	N	Fe	3581. 349
E_{1}	$\left\{\begin{array}{l} \mathrm{Fe} \\ \mathrm{Ca} \end{array}\right.$	5270.558	0	Fe	3441.155
		5270.438	P	Fe	336 r .327
E_{2}	Fe	5269.723	Q	Fe	3286.898
b_{1}	Mg	5183.791	R	$\left\{\begin{array}{l}\mathrm{Ca} \\ \mathrm{Ca}\end{array}\right.$	318 r .387
b_{2}	Mg	5172.856			3179.453
	$\left\{\begin{array}{l}\mathrm{Fe} \\ \mathrm{Fe}\end{array}\right.$	5169.220	$\left.\begin{array}{l}S_{1} \\ S_{2}\end{array}\right\}$	${ }^{\mathrm{Fe}}$	3100.787
b_{3}		5169.069		$\left\{\begin{array}{l}\mathrm{Fe} \\ \mathrm{Fe}\end{array}\right.$	3100.430
b_{4}	$\left\{\begin{array}{l} \mathrm{Fe} \\ \mathrm{Mg} \end{array}\right.$	5167.678	S_{2}		3100.046
		5167.497	s	Fe	3047.725
F or H_{β}	H	4861.527	T	Fe	3020.76
d	Fe	4383.721	t	Fe	2994.53
G^{\prime} or H_{γ}	H	4340.634	U	Fe	2947.99
f	Fe	4325.939			

[^30]Gmithsonian Tables.

TABLE 166. - Photometric Standards.

No primary photometric standard has been generally adopted by the various governments. In Germany the Herner lamp is most used; in England the Pentane lamp and sperm candles are used; in France the Carcel lamp is preferred; in America the Pentane and Hefner lamps are used to some extent, but candles are more largely employed in gas photometry. For the photometry of electric lamps, and generally in accurate photometric work, electric lamps, standardized at a national standardizing institution, are commonly employed.
The "International candle" is the name recently employed to designate the value of the candle as maintained by coöperative effort between the national laboratories of England, France, and America; and the value of various photometric units in terms of this international candle is given in the following table (taken from Circular No. 15 of the Bureau of Standards).

> I International Candle $=$ I Pentane Candle.
> I International Candle $=1$ Bougie Decimale.
> I International Candle $=1$ American Candle.
> i International Candle $=1.11$ Hefner Unit.
> I International Candle $=0.104$ Carcel Unit.

Therefore I Hefner Unit $=0.90$ International Candle.
The values of the flame standards most commonly used are as follows:

2. Standard Hefner Lamp, burning amyl acetate 0.9 candles. 3. Standard Carcel Lamp, burning colza oil 9.6 candles	

Slight differences in candle power are found in different lamps, even when made as accurately as possible to the same specifications. Hence these so-called primary standards should be themselves standardized.

TABLE 167. - Intrinsio Brightness of Various Light Sources.

	Barrows.	Ivea \& Luckieah.		National Electric Lamp Association.
	C. P. per Sq. In. of surface of light.	C. P. per Sq. In. of surface of light.	C. P. per Sq. Mm. of surface of light.	C. P. per Sq. In. of aurface of light.
Sun at Zenith Crater, carbon arc .	$\begin{aligned} & 600,000 \\ & 200,000 \end{aligned}$	84,000		$\begin{aligned} & 600,000 \\ & 200,000 \end{aligned}$
Crater, carbon arc . . .	10,000-50,000	84,000	${ }^{130}$	
Open carbon arc Flaning arc . . .	10,000-50,000 5,000			10,000-50,000 5,000
Magnetite arc		4,000	6.2	
Nernst Glower . . .	800-1,000	(115v.6 amp. d.c.) 3,010	4.7	(1.5 W.p.c.) 2,200
Tungsten incandescent, $1.15 \mathrm{w} . \mathrm{p} . \mathrm{c}$.		-		1,000
Tungsten incandescent, $1.25 \mathrm{w} . \mathrm{p} . \mathrm{c}$ -	1,000	1,000	1.64	875
Tantalum incandescent, 2.0 w. p.c.	75°	580	0.9	750
Graphitized carbon filament, 2.5 w.p. c.	625	750	1.2	625
Carbon incandescent, 3.1 w. p.c.	480	485	0.75	480
Carbon incandescent, 3.5 w. p. c.	375	400	0.63	375
Carbon incandescent, 4.0 w. p.c.	-300	325	0.50	
Inclnsed carbon arc (d.c.) .	100-500	5	-	100-500
lnclosed carbon arc (a.c.)	-			75-200
Acetylene flame (ft f. burner).	75-100	53.0	0.082	75-100
Acetylene flame ($1 / 4 \mathrm{ft}$. burner)	-	33.0	0.057	-
Welsbach mantle .	20-25	31.9	0.048	20-50
Welsbacl (mesh) .	-	56.0	0.067	-
Cooper Hewitt mercury vapor lamp	16.7	14.9	0.023	${ }_{8}^{17}$
Kerosene flame - . . -	4-8	9.0	0.014	3-8
Candle flame . -	3-4	-	-	3-4
Gas flame (fish tail) . . .	3-8	2.7	0.004	3-8
Frosted incandescent lamp Moore carbon-dioxide tube lamp	$4-8$ 0.6	-	-	$\stackrel{2-5}{0.3}$

Taken from Data, igir.
TABLE 168. - Visibility of Whits Lights.

${ }^{1}$ Paterson and Dudding.
${ }^{2}$ Deutsche Seewarte.
The energy falling on x sq. cm, at mm . from a candle is about 4 ergs per sec. (Rayleigh, about 8 according to Ang ström.)

Table 169.
EFFICIENCY OF VARIOUS ELECTRIC LIGHTS.

| | | | | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |

Paper by Prof. J. M. Bryant and Mr. H. G. Hake, Engineering Experiment Station, University of Illinois.

SENSITIVENESS OF THE EYE TO RADIATION.

(Compiled from Nutting, Bulletin of the Bureau of Standards.)

Radiation is easily visible to most eyes from 0.330μ in the violet to 0.770μ in the red. At low intensities approaching threshold values (rcd vision) the maximum of spectral sensibility lies in the green at about 0.510μ for 90% of all persons. At higher intensities with the establishment of cone vision the maximum shifts towards the yellow at least as far as 0.560μ.

TABLE 170. - Varietion of the Sonsitiveness of the Eye with the Wave-length at Low Intensities (near Threahold Valnes). Köng.

| λ | .410 | .430 | .450 | .470 | .490 | .510 | .530 | .550 | .570 | .590 | .610 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Mean sensitiveness | 0.02 | 0.06 | 0.23 | 0.49 | 0.8 I | $\mathbf{1} .00$ | 0.81 | 0.49 | 0.22 | 0.077 | 0.026 |

TABLE 171. - Variation of Sensitiveness to Rediation of Greater Intensities.

The sensibility is approximately proportional to the intensity over a wide range. The ratio of optical- to radiation-intensity increases more rapidly for the red than for the blue or green (Purkinje phenomenon).

The intensity is given for the spectrum at 0.535μ (green).

TABLE 172. - Sensibility to Small Differences in Intensity measured as a Fraction of the Whole.

	. 670	.605 0.0056	-575 0.0029	$\begin{gathered} .505 \\ 0.00017 \end{gathered}$	$\left\lvert\, \begin{gathered} .470 \\ 0.00012 \end{gathered}\right.$	$\begin{gathered} .430 \\ 0.00012 \end{gathered}$	White 0.00072
I	סI: I Köoig's data, measures from one normal person ooly.						
1,000,000							. 036
200,000		. 042	-				. 027
100,000	-	. 024	. 032			-	. 019
50,000	. 021	. 025	. 026				. 017
20,000	.016	. 018	. 020	. 019		-	. 017
10,000	. 016	. 016	. 018	. 018			. 018
5,000	. 018	.016	. 017	.or 6	-		.or8
2,000	. 016	. 018	.018	. 017	. 018	-	.or8
1,000	.017	. 020	-018	.018	. 017	. 018	. 018
500	. 020	. 021	-018	. 019	. 018	. 021	. 019
200	. 022	. 022	. 022	. 022	. 021	. 024	. 022
100	. 029	. 028	. 027	. 024	. 022	. 025	. 030
50	. 038	. 038	. 032	. 025	. 025	. 027	. 032
10	.065	.06I	. 058	. 036	. 037	. 040	. 048
5	. 092	${ }^{103}$. 089	. 049	. 046	. 049	. 059
${ }^{1}$. 258	. 212	. 170	.080	. 088	. 074	. 123
0.5	. 376	. 276	. 21	. 095	.096	. 097	. 188
0. 10	-	-	.40	. 133	. 138	. 137	. 377
0.05			-	. 183	. 185	. 154	. 484
0.01 0.005				. 271	. 289	. 249	-
0.005				. 325	-300	$\cdot 312$	

The sensibility to small differences in intensity is independent of the intensity (Fechner's law). About 0.016 for moderate intensities. Greater for extreme values. It is independent of wave-length, extremes excepted (König's law).
Sensibility to slight differences in wavelength has two pronounced maxima (one in the yellow, one in the green) and two slight maxima (extreme blue, extreme red).
The visual sensation as a function of the time approaches a constant value with the lapse of time. With blue light there seems to be a pronounced maximum at 0.07 sec. , with red a slight one at 0.12 seconds, with green the sensation rises steadily to its final value. For lower intensities these max. occur later.
An intensity of 500 metre-candles is about that on a horizontal plane on a cloudy day.

Smithsonian Tables.

TABLE 173. - The Solar Constant.

Solar constant (amount of energy falling at normal incidence on one square centimeter per minute on body at earth's mean distance) $=1.932$ calories $=$ mean 696 determinations 1902-12. Apparently subject to variations, usually within the range of 7 per cent, and occurring irregularly in periods of a week or ten days.

Computed effective temperature of the sun: from form of black-body curves, 6000° to 7000° Absolute ; from $\lambda \max .=2930$ and $\max .=0.470 \mu, 6230^{\circ} ;$ from total radiation, $\mathrm{J}=76.8 \times 10^{-12} \times \mathrm{T}^{4}$, 5830°.

TABLE 174. - Solar spectrum energy (arbitrary unite) and its transmission by the oarth's atmosphere.

Values computed from $e_{m}=e_{o} a^{m}$, where e_{m} is the intensity of solar energy after transmission through a mass of air $m ; m$ is unity when the sun is in the zenith, and approximately $=\mathrm{sec}$. zenith distance for other positions (see table 180); $e_{0}=$ the energy which would have been observed had there been no absorbing atmosphere; a is the fractional amount observed when the sun is in the zenith.

Transmission coefficients are for period when there was apparently no volcanic dust in the air.

* Possibly too high because of increased humidity towards noon.

Table 175. - The intensity of Solar Radiation in different aections of the spoctrum, ultra-violet, visual infra-red. Calories.

Wave-length.	Mount Whitney.					Mount Wilson.				Washiogton.			
μ	$\mathrm{m}=0$	m=	2	3	4	$\mathrm{m}=1$	2	3	4	$\mathrm{m}=\mathrm{x}$	2	3	4
	.3 r .7 .71 .91	.25	. 6	. ${ }_{\text {. }}^{68}$.13 .84 .80 .80	.23 .65 .69	$\begin{array}{r}.16 \\ .58 \\ .68 \\ \hline\end{array}$.12 .85 .66 .68	.09 .45 .63	.13 .53 .69		.04 .30 .58	.02 .24 .53
	x.93	1.78	\%.66	r.56	x.47	1.57	$\stackrel{\text { T. }{ }^{\text {2 }} \text { - }}{ }$	${ }_{\text {1.28 }}^{\text {. } 28}$. 1.17	r.35	r. 08	. 98	. ${ }^{.53}$

TABLE 176. - Diatribation of brightness (Radiation) over the Solar Diek.
(These observations extend over only a small partion of a sun-spot cycle.)

Wavelength.	$\underset{\text { v. } 323}{ }$	${ }_{0}^{\mu}$	$\stackrel{\mu}{\mu}$	${ }_{0.456}$	${ }_{0}^{\mu} 0$	${ }_{\text {O. }}^{\text {\% }}$ /	${ }_{\text {0. }}{ }^{\mu}$	$\stackrel{\mu}{0.604}$	${ }_{0.670}^{\mu}$	${ }_{0.699}$	${ }_{0}^{\mu} .86$	$\underset{\mathrm{r} .0 \mathrm{O}_{3}}{\mu}$	${ }_{\text {x. } 225}^{\mu}$	$\stackrel{\mu}{\mu}$	${ }_{2.097}^{\mu}$
	${ }_{4} 4$	338	456	515	511	489	463	399	333	307	174	115	77.6	39.5	14.0
	128	3 l 2	423	486	483	463	$44{ }^{\circ}$	382	320	295	${ }^{169}$		75.7	38.9	13.8
	120	289 267	395	455	456	437	457	365	308	284	163	$105 \cdot 5$	73.8	${ }^{38.2}$	13.6
	122	267 240	333	3490	430 394	414 380	3	346 326	281	273 258	152	103 99	69.8	37.6 36.7	13.4 r3.7
	86	214	296	351	358	347	337	304	262	243	145	94.5	67.1	$35 \cdot 7$	r2.8
	76	188	266	317	324	323	312	284	247	229	13^{8}	90. 5	64.7	34.7	22.5
	64	163	233	277	290	286	281	259	227	212	${ }^{130}$	86	61.6	33.6	12.2
	49	141	205	242	255	254	254	237	210	195	122	8r	58.7	32.3	51.7

Taken from vols. II and III and unpublished data of the Astrophysical Observatory of the Smithsonian Institution. Schwartzchild and Villiger : Astrophysical Journal, 23, 1906.
Smithsonian Tables.

ATMOSPHERIC TRANSPARENCY AND SOLAR RADIATION.

TABLE 177. - Transmission of Radiation Through Moiat and Dry Air.

This table gives the wave-length, $\boldsymbol{\lambda}$; a the transmission of radiation by dry air above Mount Wilson (altitude $=1730 \mathrm{~m}$. barometer, 620 mm .) for a body in the zenith; finally a correction factor, a_{w}, due to such a quantity of aqueous vapor in the air that if condensed it would form a layer I cm. thick. Except in the bands of selective absorption due to the air, a agrees very closely with what would be expected from purely molecular scattering. a_{w} is very much smaller than would be correspondingly expected, due possibly to the formation of ions by the ultra-violet light from the sun. The transmission varies from day to day. However, values for clear days computed as fol lows agree within a per cent or two of those observed when the altitude of the place is such that the effect due to dust may be neglected, e. g. for altitudes greater than 1000 meters. If $\mathrm{B}=$ the barometric pressure in mm., w, the amount of precipitable water in cm., then $a_{B}=a^{\frac{B}{620}} a_{w}^{w} . w$ is best determined spectroscopically (Astrophysical Journal, 35, p. 149, 1912, 37, p.359, 1913) otherwise by formula derived from Hann, $w=2.3 \mathrm{e}_{\mathrm{w} 10^{-\frac{h}{2000}}}$, e_{w} being the vapor pressure in cm . at the station, h , the altitude in meters.

$\lambda(\mu)$. 360	. 384	. 413				. 574	. 624	. 653	. 720	. 986	
λ	(.660)	. 713	. 783	. 840	. 885	. 898	. 905	. 929	.938	. 970	. 986	. 990
a_{w}	. 950	. 960	. 965	. 967	. 977	. 980	. 974	. 978	. 985	. 988	. 990	. 990

Fowle, Astrophysical Journal, 38, 1913.
TABLE 178. - Brightness of (radietion from) Sky at Mt. Wilson (1730 m.) and Filnt Isiand (see level).

	$0-15$ r500* 115 51.0 3.9	$15-35^{\circ}$ 400 122 58.8 17.9	$35-50^{\circ}$ 520 128 91.5 22.5	$50-60^{\circ}$ 610 150 87.2 21.4	$60-70^{\circ}$ 660 185 104.3 29.2	($70-80^{\circ}$	$80-90^{\circ}$ 720 460 125.3 80.0	-	Sun. - 636 210
Altitude of sun ${ }^{\text {Sun's brightness, cal. per cm. }}{ }^{2}$ per mio.Ditto on horizootal surfaceMean hrightness on normal surface sky \times.Total sky radiation on horizontal cal. per $\mathrm{cm}^{8} \mathrm{~cm}^{2}$.	1	-	5°	15°	25°	35°	$473^{\frac{1}{3}}$	65°	$82 \frac{1}{2}^{\circ}$
			. 533	.900	2.233	7.358	1.413	1. 496	1.521
			. 046	. 233	. 524	. 780	1.041	1. 355	1.507
			423	403	.385	365	346	326	310
			. 056	. 110	. 682	. 189	. 205	. 226	. 240
Total sun + aky, ditto			. 502	. 343	. 686	. 969	1.246	1.581	1.747

* Includes allowance for bright region near sun. For the dates upon which the observation of the upper portion of table were taken, the mean ratios of total radiation sky/sun, for equal angular areas, at normal incidence, at the islaud and on the mountain, respectively, were $636 \times 10-8$ and $210 \times 10-8$, on a horizontal surface, $305 \times 10-8$ and $77 \times 10-8$; for the whole sky, at normal incidence, 0.57 and 0.20 ; on a horizontal surface 0.27 and 0.07 . Annals of the Astro physical Observatory of the Smithsonian Institution, vols. II and III, and unpublished researches (Abbot).

TABLE 178.-Relative Distribution in Normal Spectrum of Sunight and Sky-Hght at Mount Wilison.
Zenith distance about 50°.

	μ	μ	μ	μ	μ	μ	C	D	b	F
Place in Spectrum	0.422	0.457	0.49 I	0.566	0.614	0.660				
Intensity Sunlight	186	232	227	2 II	191	166				
Intensity Sky-light	$\mathbf{1 1 9 4}$	986	701	395	23 I	174				
Ratio at Mt. Wilson	642	425	309	187	12 I	105	102	143	246	316
Ratio computed by Rayleigh	-	-	-	-	-	-	102	164	258	328
Ratio observed by Rayleigh		-	-		-	-	102	168	291	369

TABLE 180. - Air Masses.
See Table 174 for definition. Besides values derived from the pure secant formula, the table contains those derived from various other more complex formula, taking into account the curvature of the earth, refraction, etc. The most recent is that of Bemporad.

Zenith Dist.	0°	20°	40°	60°	70°	75°	80°	85°	88°
Secant	1.00	1.064	1.305	2.000	2.924	3.864	5.76	11.47	28.7
Forbes	1.00	1.065	1.306	1.995	2.902	3.809	5.57	10.22	18.9
Bouguer	1.00	1.064	1.305	1.990	2.900	3.805	5.56	10.20	19.0
Laplace	1.00	-	-	1.993	2.899	-	5.56	10.20	18.8
Bemporad	1.00	-	-	1.995	2.904	-	5.60	10.39	19.8

The Laplace and Bemporad values, Lindholm, Nova Acta R. Soc. Upsal. 3, 1913 ; the others, Radau's Actino metric, 1877 .
Smithsonian tables.

RELATIVE INTENSITY OF SOLAR RADIATION.

TAble 181. - Mean intensity J for 24 houre of aolar radiation on a horizontal aurtaoe at the top of the atmoaphere and the eolar radiation A, in terms of the solar radiation, A_{0}, at earth'e mean distanoe from the sun,

Date.	Motion ol the sua in longitude.	Relative Mban Vbrtical Intensity $\left(\frac{J}{A_{0}}\right)$.										$\frac{A}{A_{0}}$.
		latttude north.										
		0°	10°	20°	30°	40°	50°	80°	700	80°	80°	
Jan. 1	0.0	0.303	0.265	0.220	0. 169	0.117	0.066	0.018				1.0335
Feb. 1	31.54	. 312	. 282	. 244	. 200	. 150	. 100	. 048	0.006			1.0288
Mar. I	59.14	. 320	- 303	. 279	. 245	. 204	. 158	. 108	. 056	0.013		1.0173
Apr. 1	89.70	.317	-319	. 312	. 295	. 269	. 235	. 195	. 148	. 101	0.082	1.0009
May I	119.29	. 303	. 318	. 330	-329	-320	. 302	. 278	. 253	.255	. 259	0.9841
「une I	149.82	. 287	.315	. 334	- 345	. 349	. 345	. 337	- 344	. 360	. 366	0.9714
July 1	179.39	. 283	. 312	. 333	. 347	-352	.351	. 345	. 356	. 373	- 379	0.9666
Aug. I	209.94	. 294	. 316	- 330	. 334	-330	. 318	$\cdot 300$. 282	. 295	- 300	0.9709
Sept. 1	240.50	. 310	. 318	. 316	. 305	. 285	. 256	. 220	. 180	. 139	. 140	0.9828
Oct. I	270.07	- 317	- 308	. 289	. 261	. 225	. 183	. 135	. 084	. 065		0.9995
Nov. I	300.63	. 312	. 286	. 251	. 211	. 164	. 114	. 063	. 018			1.0164
Dec. I	330.19	. 304	. 267	. 224	.175	. 124	. 072	. 024				1.0288
Year....		0.305	0.301	0.289	0.268	0.24 I	0.209	0.173	0.144	0.133	0.126	

TABLE 182. - Mean Monthly and Yearly Temperatures.
Mean temperatures of a few selected American stations, also of a station of very high, one of very low and one of very small, range of temperature.

	Jan.	Feb.	Mar.	Apr.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.	Year.
${ }^{1}$ Hebron-Rama (Labr.)	-20.7	-20.9	-15.6	- ${ }^{6.9}$,			-0.8	6.2	-12.2	5.2 0.6
2 Winnipeg (Caoada) :	. 6	-18.8	- $\begin{array}{r}17.0 \\ 4.3 \\ \hline\end{array}$	1.9	-10.9	-77. -18.3	-18.9		${ }_{-14.7}^{11.6}$		7.6		0.6 5.5
4 Boston	8	- 2.2		7.3	13.6	9.x	-21.8	-20.6	-16.9	11.1	4.8	0.5	9.2
5 Chicago	8	- 2.9	1.2	7.9	. 6	99.7	${ }^{-22.2}$	+21.6	+17.9	+11.1	3.6	1.5	9. P
6 Denver	7	0.1	+ 3.8	8.3			2.1	+21.2	+	+10.3		0.0	9.7
78 Washington	+ 0.7	${ }_{15}^{2.15}$	+ 5.2	-11.7	7.7	- 4		+23.7 +3.6	$\begin{array}{r}19.9 \\ \hline 0.3\end{array}$	$\begin{array}{r}\text { + } \\ +5.4 \\ \hline 5.8\end{array}$			
${ }_{9} 8$ Pikes Peak ${ }^{\text {St. }}$ Stis	-16.4	15.6	-13.4	13.4	- 5.3								
ro San Francisco	+10.1	+10.9	12.0	12.6	+ ${ }^{13} 5$	+14.7	+14.6	+ 4.8	+15.8	15.2	5	\% 8	13.2
is Yuma ${ }^{\text {a }}$	${ }^{12.3}$	+14.9	+88.1		+25.1		-33.1	-32.6	- 29.1	+22.8	16.6	13.3	22.3
12 New Orleans	12.1	-14.5	${ }^{+16.7}$	20.6	+23.7	-26.8	-27.9	${ }^{-27.5}$	-23.7	+21.0	+15.9	-13.1	20.4
${ }^{13} 3$ Massaua ${ }^{\text {F }}$ (Greenl'd)	+ 25.6	+26.0	- 27.1	+29.0	+ 31.1 -10.0	-33.5	-34.8	-34.7	$\begin{array}{r}\text { +33.3 } \\ \hline 9.0\end{array}$	${ }_{+22.7}^{+31.7}$	+29.0	${ }_{-33.4}^{+27.0}$	30.3 20.0
${ }_{15}{ }^{1} 4 \mathrm{Ft}$ Werchojansk (Greenl'd)	-39.0	-40.1		-25.3	- ${ }^{\text {-10.0 }}$	+0.4			- ${ }^{9.0}$		-30.9 -37.8		
15 16 Satavia	- 51.0 +25.3	- ${ }^{45.3}$	+ ${ }_{\text {+ }} \mathbf{3 2 5} 5$	\| $\begin{gathered}13.7 \\ +26.3\end{gathered}$	$\square_{\text {+ }}{ }^{2.0}$	+12.3	+15.5 +25.7	$+^{10.1}$	+26.3	+15.0	- ${ }^{\text {+26.2 }}$	+25.6	+25.9

Lat., Long., Alt. respectively: (r) $+58^{\circ} .5,63^{\circ} .0 \mathrm{~W},-$; (2) $+49.9,97.1 \mathrm{~W}, 233 \mathrm{~m} . ;(3)+45.5,73.6 \mathrm{~W}, 57 \mathrm{~m}$. (4) $+42.3,71.1 \mathrm{~W}, 38 \mathrm{~m} . ;(5)+4 \mathrm{r} .9,87.6 \mathrm{~W}, 25 \mathrm{~mm} . ;(6)+39.7,105.0 \mathrm{~W}, 16 \mathrm{r} 3 \mathrm{~m} . ;(7)+38.9,77.0 \mathrm{~W}, 34 \mathrm{~m} . ;(8)$ $+38.8,105.0 \mathrm{~W}, 4308 \mathrm{~m}$. ; (9) +38.6 , $90.2 \mathrm{~W}, 173 \mathrm{~m} . ;(10)+37.8,122.5 \mathrm{~W}, 47 \mathrm{~m} . ;$ (11) $+32.7,114.6 \mathrm{~W}, 43 \mathrm{~m} . ;$
 $106.8 \mathrm{E}, 7 \mathrm{~m}$.

Taken from Hann's Lehrbuch der Meteorologie, z'nd editiou, which see for further data.

Smithsonian Tables.

The following constants are for glasses made by Schott and Gen, Jena: $n_{\mathrm{A}}, n_{\mathrm{C}}, n_{\mathrm{D}}, n_{\mathrm{p}}, n_{\mathrm{G}}$, are the indices of refraction in air for $\mathrm{A}=0.7682 \mu, \mathrm{C}=0.6563 \mu, \mathrm{D}=0.5893, \mathrm{~F}=0.4861, \mathrm{G}^{\prime}=0.434 \mathrm{I}$. $v=\left(n_{\mathrm{D}}-1\right) /\left(n_{\mathrm{F}}-n_{\mathrm{c}}\right)$. Ultra-violet indices: Simon, Wied. Ann. 53, I894. Infra-red: Rubens, Wied. Ann. 45, 1892. Table is revised from Landolt, Börnstein and Meyerhoffer, Kayser, Handbuch der Spectroscopie, and Schott and Gen's list No. 75I, 1909. See also Hovestadt's "Jena Glass."

Percentage composition of the above glasses
$\mathrm{O} 546, \mathrm{SiO}_{2}, 65.4 ; \mathrm{K}_{2} \mathrm{O}, \mathrm{I} 5.0 ; \mathrm{Na}_{2} \mathrm{O}, 5.0 ; \mathrm{BaO}, 9.6 ; \mathrm{ZnO}, 2.0 ; \mathrm{Mn}_{2} \mathrm{O}_{3}, 0.1 ; \mathrm{As}_{2} \mathrm{O}_{3}, 0.4$; $\mathrm{B}_{2} \mathrm{O}_{3}$, 2.5 .
$\mathrm{O}_{3} 8 \mathrm{I}, \mathrm{SiO}_{2}, 68.7$; $\mathrm{PbO}, 13.3 ; \mathrm{Na}_{2} \mathrm{O}, 15.7 ; \mathrm{ZnO}, 2.0 ; \mathrm{MnO}_{2}, 0.1 ; \mathrm{As}_{2} \mathrm{O}_{5}$, 0.2.
$\mathrm{O}_{184}, \mathrm{SiO}_{2}, 53.7 ; \mathrm{PbO}, 36.0 ; \mathrm{K}_{2} \mathrm{O}, 8.3 ; \mathrm{Na}_{2} \mathrm{O}$, ı.0; $\mathrm{Mn}_{2} \mathrm{O}_{3}, 0.06 ; \mathrm{As}_{2} \mathrm{O}_{3}, 0.3$.
$\mathrm{O}_{102}, \mathrm{SiO}_{2}, 40.0 ; \mathrm{PbO}, 52.6 ; \mathrm{K}_{2} \mathrm{O}, 6.5 ; \mathrm{Na}_{2} \mathrm{O}, 0.5 ; \mathrm{Mn}_{2} \mathrm{O}_{8}, 0.09 ; \mathrm{As}_{2} \mathrm{O}_{5}, 0.3$.
$\mathrm{O}_{165}, \mathrm{SiO}_{2}, 29.26 ; \mathrm{PbO} ; 67.5 ; \mathrm{K}_{2} \mathrm{O}, 3.0 ; \mathrm{Mn}_{2} \mathrm{O}_{3}, 0.04 ; \mathrm{As}_{2} \mathrm{O}_{3}$, 0.2
$\mathrm{S} 57, \mathrm{SiO}_{2}, 21.9 ; \mathrm{PbO}, 78.0 ; \mathrm{As}_{2} \mathrm{O}_{5}$, o.1.

TABLE 184. - Jens Glasses.

TABLE 185. - Change of Indices of Ratraction for 100 in Units of the Fifth Decimal Place.

No. and Designation.	Mean Temp.	C	D	F	G^{\prime}	$\frac{-\Delta n}{n}$ noo
S 77 Heavy silicate flint	58.80	1.204		2.090	2.810	. 166
${ }^{1}{ }_{\text {r54 }}$ Light silicate fint . . .	58.4	0.225	0.261	0.334	0.407	0.0078
O 327 Baryt flint light	58.3	$\bigcirc 0.008$	0.014	-. 080	0. 137	0.0079
O 225 Light phosphate crown .	58.1	-0.202	-0.190	-0.168	-0.142	0.0049

Pulfrich, Wied. Ann. 45, p. 609, 1892.

Tables 186-488. INDEX OF REFRACTION.
TABLE 188. - Index of Refraotion of Rook Salt in Air.

$\lambda(\mu)$.	\boldsymbol{n}.	Observer.	${ }^{\lambda(\mu) .}$	n.	$\begin{aligned} & \text { Obser- } \\ & \text { ver. } \end{aligned}$	$\lambda(\mu)$.	n.	${ }_{\text {O }}^{\text {Obser }}$ ver.
0.185409	1. 89348	M	0.88396	I. 534011				
. 2044780	1.76964	"	. 972298	1.534011 I. 532532	$\stackrel{1}{4}$	$5.8{ }^{3}{ }^{2}$	1.516014 1.515553	$\stackrel{\mathrm{P}}{\mathrm{L}}$
	1.61325		. 98220	I. 532435	P	6.4825	1.51 3628	${ }_{P}$
. 34515787	I. 57932 r. 55962	"	1.036758	1. 531762	L		I.513467	L
.441587 .486149	1.55962 $\mathbf{1 . 5 5 3 3}$	"	${ }^{1.1786}$	1.530372	P	7.0718	1.511062	P
.40649	1.55338 $\mathbf{1 . 5 5 3 4 0 6}$			I. 530374	L	7.6611	1.508318	
،	1.553406 $\mathbf{1} 553399$	$\stackrel{\mathrm{L}}{\mathrm{P}}$	1.555137	1. 528211		7.9558	1. 506804	"
. 58902	1.553399 r. 544340	$\stackrel{\mathrm{P}}{\mathrm{L}}$	I.7680	I. 527440	P	8.8398	1. 502035	"
. 58932	1.544313	$\stackrel{1}{P}$	2.073516	I. 52744 I r .526554	$\stackrel{1}{4}$	${ }^{10.0184}$	1.494722	"
. 656304	I. 540672	$\stackrel{P}{P}$	2.35728	1.52654 I. 525863	P	11.7864 12.9650	I. 4818816 I.471720	"
	1.540702	L		I. 525849	L	12.1436	1.476720 1.460547	"
.706548	1.538633	$\stackrel{\mathrm{P}}{\mathrm{P}}$	2.9466	I. 524534	P	14.7330	I. 454404	"
.766529	1. 536712	P	3.5359	1. 523173	"	15.3223	I. 447494	"
.76824	${ }_{\text {I }}$ 1.53666	$\xrightarrow[\mathrm{P}]{\mathrm{M}}$	4.125	1.521648	P	15.915	I.441032	"
.78576 .8896	I. 536138 I. 534011	P \mathbf{P}		1.521625	$\stackrel{\text { L }}{ }$	20.57		RN
. 88396	1.534011	P	5.0092	1.518978	P	22.3	1. 340	
$n^{2}=a^{2}+\frac{M_{1}}{\lambda^{2}-\lambda_{1}{ }^{2}}+\frac{M_{2}}{\lambda^{2}-\lambda_{2}{ }^{2}}-k \lambda^{2}-h \lambda^{4} \text { or }=b^{2}+\frac{M_{1}}{\lambda^{2}-\lambda_{1}{ }^{2}}+\frac{M_{2}}{\lambda^{2}-\lambda_{2}{ }^{2}}-\frac{M_{3}}{\lambda_{8}{ }^{2}-\lambda^{2}}$								
where a^{2} $=2.330165$ $\lambda_{2}{ }^{2}=0.02547414$ $b^{2}=5.680137$ M_{I} $=0.01288685$ k $=0.0009285837$ λ_{I} $=0.0148500$ h $M_{3}=0.000000286086$								

TABLE 187.- Change of Index of Refraction for 10 C in Unite of the 6 th Decimal Place.

0.202μ .210 .224 .298	+3.134 +1.570 -0.187 -2.727.	Mi $"$ $" 6$	$\begin{gathered} 0.441 \mu \\ .508 \\ .643 \end{gathered}$	-3.425 -3.517 -3.636	$\underset{\text { Mi }}{\text { Mi }}$	C line D ${ }^{\text {d }}$ (F $\mathrm{G}^{\prime} " ،$	-3.749 -3.739 -3.648 -3.585	Pl "، "	0.760 μ 1.368 1.88 4.3	$\begin{aligned} & -3.73 \\ & -3.88 \\ & -3.85 \\ & -3.82 \end{aligned}$	L L L L

L Annals of the Astrophysical Observatory P Paschen, Wied. Ann. 26, 1908. of the Smithsonian Institution, Vol. I, igoo. Fl Pulfrich, Wied. Ann. 45, 1892.
M Martens, Ann. d. Phys. 6, igoi, 8, 1902.
RN Rubens and Nichols, Wied. Ann. 60, 1897.
Mi Micheli, Ann. d. Phys. 7, 1902.
TABLE 188. - Index of Refraction of Silvine (Potessium Chioride) in Air.

$\lambda(\mu)$.	n	Obser- ver.	$\lambda(\mu)$.	n.	Obser	$\lambda(\mu)$.	n	Obser- ver.
0.185409	1.82710	M	${ }_{1.1786}$	1.478311	$\stackrel{\mathrm{P}}{\mathrm{W}}$	8.2505	1.462726	
. 2000090	1.71870 1.64745		" 1.7680	1.47824 1.475800	$\underset{\mathrm{P}}{\mathrm{W}}$		1. 46276 1.460858	$\underset{\mathrm{P}}{\mathrm{W}}$
. 21946	I. 64745 I. 58125	"	1.7680	1.475890 1.47589	P ${ }_{\text {W }}$	$8.83{ }^{68}$	I. 460858 1.46092	$\stackrel{\mathrm{P}}{\mathrm{W}}$
.257317 .281640	I. 58125 I. 58836	"	${ }^{2.35728}$	1.47589 1.474751	P	10.0184	1.46062 1.45672	P
. 308227	1.54136	"	2.9466	1.473834	"		I. 45673	W
. 358702	I. 52115	"	2. 6	1.47394	W	11.786	I.44919	$\stackrel{\mathrm{P}}{\mathrm{W}}$
- 394415	1.51219		3.5359	I. 473049	$\stackrel{\mathrm{P}}{\mathrm{W}}$		I. 44941	$\underset{\mathrm{P}}{\mathrm{W}}$
. $468783{ }^{2}$	I. 50044	"	4.7146	I. 473304 I.471122	W	${ }^{12.965}$	I. 44346 I. 44385	$\stackrel{\mathrm{P}}{\mathrm{W}}$
. 508606	I. 4.9620 I. 49044	P	$4.71{ }^{146}$	1.471122	$\stackrel{\mathrm{W}}{\mathrm{W}}$	14.144	1.44365 1.43722	P
. 67082	I. 48669	M	O39	1.470013	$\stackrel{\mathrm{P}}{\mathrm{W}}$	15.912	1.42617	"
. 78.856	I. 483282	$\stackrel{\text { P }}{P}$	\%	1.47001	W	17.680	1.41403	
.88398 .98220	$\begin{aligned} & 1.4814222 \\ & 1.480084 \end{aligned}$	P	${ }^{5} 8932$	$\begin{aligned} & \text { I. } 468804 \\ & \mathrm{I} .46880 \end{aligned}$	$\stackrel{\mathrm{P}}{\mathrm{W}}$	20.60 22.5	I.3802	${ }_{\text {R }}$

$$
\begin{align*}
& n^{2}=a^{2}+\frac{M_{1}}{\lambda^{2}-\lambda_{1}{ }^{2}}+\frac{M_{2}}{\lambda^{2}-\lambda_{2}{ }^{2}}-k \lambda^{2}-l i \lambda^{4} \text { or }=b^{2}+\frac{M_{1}}{\lambda^{2}-\lambda_{1}{ }^{2}}+\frac{M_{2}}{\lambda^{2}-\lambda_{2}{ }^{2}}+\frac{M_{8}}{\lambda_{8}{ }^{2}-\lambda^{2}} \\
& \begin{array}{rlrl}
a^{2} & =2.174967 & \lambda_{2}{ }^{2} & =0.0255550 \\
h & =0.000513495 & b^{2}=3.866619 \\
M_{1} & =0.008344206 & k & M_{3}=5569.715 \\
\lambda_{1}{ }^{2}=0.0119082 & h & =0.000000167587 & \lambda_{3}{ }^{2}=3^{29} 22.47
\end{array} \tag{P}\\
& \text { 左 }
\end{align*}
$$

Other references as under Table 187 , above.

Tables 189-192.
INDEX OF REFRACTION.
table 189. - Index of Refraction of Finorite in Air.

$\lambda(\mu)$	\%	Observer	$\lambda(\mu)$	7	Observer	$\lambda(\mu)$	2	Observer.
0.1856	1.50940	S	1.4733	1.42641	\mathbf{P}	4.1252	1.40S55	\mathbf{P}
.19881	1.49629	*	1.5715	1.42596	"	4.4199	I. 40559	*
.21441	1.48462	"	1.6206	1.42582	*	4.7146	1.40238	*
. 22645	1.47762	${ }^{6}$	1.7680	1.42507	4	5.0092	1.39898	*
. 25713	1.46476	"	1.9153	I. 42437	*	5.3036	I. 39529	*
.32525	1.44987	"	1.9644	I.42413	${ }^{4}$	5.5985	1.39142	
. 34555	I. 44697	"	2.0626	I. 42359	"	5.8932	1.38719	*
. 39681	I. 44214	"	2.1608	1.42308	"	6.4825	1.37819	*
. 48607	1.43713	P	2.2100	1.42288	${ }^{6}$	7.0718	I. 36805	
. 58930	I. 43393	P	2.3573	I. 42199	،	7.6612	135680	
. 65618	1.43257	S	2.5537	1.42088	"	8.2505	I. 34444	,
. 68671	1.43200	*	2.6519	I. 42016	${ }^{6}$	8.8398	1.33079	
.71836	I. 43157	"	2.7502	I. 41971	6	9.4291	1.31612	
.76040	1.43101	"	2.9466	1.41826	*	51.2	3.47	RA
. 8840	1.42982	P	3.1430	1.41707	"	61.1	2.66	
1.1786	1.42787	,	3.2413	1.41612	*	∞	2.63	S
1. 3756	1.42690	"	3.5359	1.41379				
1.4733	1.42641	*	3.8306	1.41120		References under Table 173.		

$$
\begin{array}{rlrl}
n^{2} & =a^{2}+\frac{M_{1}}{\lambda^{2}-\lambda_{1}^{2}}-e \lambda^{2}-f \lambda^{4} \text { or }=b^{2}+\frac{M_{2}}{\lambda^{2}-\lambda_{0}^{2}}+\frac{M_{3}}{\lambda^{2}-\lambda_{r}^{2}} \\
\text { where } a^{2} & =2.03882 & f & =0.000002916 \\
M_{1} & =0.0062183 & b_{8}=5114.65 \\
\lambda_{1}^{2} & =0.007706 & M_{2}=6.09651 & \lambda_{r}^{2}=1260.56 \\
e & =0.00319999 & \lambda_{v}{ }^{2}=0.0061386 & \lambda_{v}=0.0940 \mu
\end{array}
$$

TABLE 190. - Ohange of Index of Refreotion for $1^{\circ} \mathrm{O}$ In Units of the 5th Docimal Place.
C line, -I.220; D, -I.206; F; -1.170; G, -1.142. (Pl)
TABLE 191. - Inder of Refreotion of Ioeland Spar (CaCO_{3}) in Air.

$\lambda(\mu)$	n_{0}	n_{0}	Observer.	$\lambda(\mu)$	n_{0}	n^{*}	Observer.	$\lambda(\mu)$	n_{0}	n_{8}	Obser ver.
0.198	-	1.5780	M	0.508	1. 6653	I. 4896	M	0.991	1. 6438	1.4802	C
. 200	1.9028	1.5765	"	. 533	1. 6628	I. 4884	"	1.229	1.6393	1.4787	${ }^{6}$
. 208	1.8673	1. 5664	"	. 589	1. 6584	I. 4864	"	1.307	1. 6379	1.4783	"
. 226	1.8130	I. 5492	$\bar{\square}$. 643	I. 6550	I. 4849	"	I. 497	1.6346	1.4774	"
. 298	1.7230	I. 5151	C	. 656	I. 6544	I. 4846	"	1.682	1.6313	-	"
. 340	1.7008	1.5056	M	. 670	1. 6537	1. 4843	"	1.749		1.4764	"
. 361	1.6932	1.5022	C	. 760	1.6500	1.4826	-	I. 849	1.6280	-	"
. 410	1.6802	I. 4964	M	. 768	1.6497	1. 4826	M	1.908	-	1.4757	"
. 434	1.6755	I. 4943	M	. 801	1. 6487	I. 4822	C	2.172	1.6210	-	،
. 486	1.6678	1.4907	"	.905	1.645^{8}	1.4810	"	2.324	-	1. 4739	"

C Carvallo, J. de Phys. (3), 9, 1900.
M Martens, Ann. der Phys. (4) 6, 1901, 8, 1902.
P Paschen, Wied. Ann. 56, 1895.

Pl Pulfrich, Wied. Ann 45, 1892.
RA Rubens-Aschkinass, Wied. Ann. 67, 1899.
S Starke, Wied. Ann. 60, I897.

TABLE 192. -Index of Refraction of Nitroso-dimethyl-andine. (Wood.)

$\boldsymbol{\lambda}$	n	λ	n	λ	n	λ	n	λ	n
0.497	2.140	0.525	1.945	0.584	1.815	0.636	1.647	0.713	1.718
.500	2.114	.536	1.909	.602	1.796	.647	1.758	.730	1.713
.506	2.074	.546	1.879	.611	1.783	.659	1.750	.749	1.709
.508	2.025	.557	1.857	.620	1.778	.669	1.743	.763	1.697
.516	1.985	.569	1.834	.627	1.769	.696	1.723		

Nitroso-dimethyl-aniline has enormous dispersion in yellow and green, metallic absorption in violet. See Wood,
Smithsonian Tables.

Tables 193-194.
INDEX OFREFRACTION.
TABLE 193. - Index of Retraotion of Quartz (SiO_{2}).

$\xrightarrow{\text { Wave-- }}$ length.	Index Ordinary Ray.	Index Extraordinary Ray.	Temperature ${ }^{\circ} \mathrm{C}$.	Waveleagth.	Index Ordinary Ray.	Index Extraordinary Ray.	Temperature ${ }^{\circ} \mathrm{C}$.
0.185	1. 67582	1. 68999	18	0.656	1.54189	1.55091	18
. 193	. 65997	. 67343	"	. 686	. 54099	. 54998	18
. 198	. 65090	. 66397	"	. 760	. 53917	. 5481 I	"
. 206	. 64038	. 65300	"	1.160	. 5329.		
. 214	. 63041	. 64264	"	. 969	. 5216		-
. 219	. 62494	. 63698	"	2.327	. 5156		-
. 231	. 61399	. 62560	"	. 84	. 5039		-
. 2574	.59622 .58752	.60712	"	3.18	. 4944		-
. 274	. 58752	. 59811	"	. 63	. 4799	Rubens.	-
. 396	. 558 I 5	. 56771	"	.98 4.20	. 4679		
. 410	. 55650	. 56600	"	5.0	. 417		-
. 486	. 54968	. 55896	"	6.45	. 274		-
0.598	I. 54424	1. 55334	"	7.0	I. 167		-

Except Rubeos' values, - means from various authorities.

TABLE 194. - Indices of Refraotion for various alums.*

* According to the experiments of Soret (Arch. d. Sc. Phys. Nat. Genève, r884, 1888, and Comptes Rendus, 1885)
$\dagger R$ stands for the different bases given in the first columa.
For other alums see refereocs on Landolt-Börostein-Roth Tabellen.

Smithsonian Tableb.

INDEX OF REFRACTION.

Various Monorefringent or Optically Isotropio Sollds.

Table 196.
INDEX OF REFRACTION.
Uniaxial Orystals.

Substance.	Line ofspectrum.	Index of refraction.		Authority.
		Ordinary ray.	Extraordin- ary ray.	
Alunite (alum stone)	D	1. 573	I. 592	Levy \& Lacroix.
Ammonium arseniate	red	I. 577	1. 524	De Senarmont.
Anatase	D	2.5354	2.4959	Schrauf.
Apatite	${ }_{\text {D }}^{\text {D }}$	1.6390 1.6588	I. 6345 I. 6784	"، DesCloiseaux.
Benzil		I. I ¢888	I. 58 t to	
Beryl . .	D $\{$	I. 589 to 1.570	$\begin{aligned} & \text { I. } 582 \text { to } \\ & 1.566 \end{aligned}$	\} Various.
Brucite	D	I. 560	I.585	Kohlrausch.
Calomel .	D	1. 9732	2.6559	Dufet.
Cinnabar -	red	2.854	3.199	DesCloiseaux
Corundum (ruby, sapphire, etc.)	red \{	1.767 to 1.769	1.759 1.762	"
Dioptase	green	I. 667	I. 723	"
Dolomite	D $\{$	${ }_{1.696} \mathrm{~F}$ to	$\text { I. } 506 \text { to }$ 1.512	$\}$ Various.
Emerald (pure)	green	I. 584	I. 578	DesCloiseaux.
Gehlenite.		I. 666	1.661	Wright, 1908.
Greenockite	D	2.506	2.529	Merwin, 1912.
Ice at $-8^{\circ} \mathrm{C}$.	D	I. 309		Meyer.
Idocrase	D	${ }_{\text {1.722 }}^{1.719}$ to	li. 1.717 to	$\}$ DesCloiseaux.
Ivory . .	D	1.759 I. 539 I 717		Kohlrausch. Mallard.
Magnesite .	${ }_{\text {D }}^{\text {D }}$	I. 717 I. 541	I. 515 I. 537	Mallard. ${ }^{\text {Bowen, } 1912 .}$
Nophessium arseniate .	red	r. 541 I. 564	I. 515	DesCloiseaux.
"	red	I. 493	1.501	De Senarmont.
Rutil - ${ }^{\text {Sityed }}$	D	2.6158	2.9029	Bärwald.
Silver (red ore)	red	3.084	${ }^{2.881}$	${ }^{\text {Fizeau. }}$ Baker.
Sodium arseniate c/ nitrate	D	1.459 I. 587	1.436 1. 336	Schrauf.
" phosphate	D	1.446	2.452	Dufet.
Strychnine sulphate .	D	I. 614	I. 519	Martin.
Tin stone ${ }^{\text {Tourmaline }}$ (colorless)	D	I. 997	2.093 1.619	Grubenman. Heusser.
Tourmaline (colorless)		${ }_{1}^{1.637}$ 1.633 to	${ }_{1}^{1.619} 6$	
" (different colors)	D	1.650	1.625	\} Jerofejew.
Wurtzite .	D	$\underset{\text { 2.356 }}{\text { L. } 92}$	2.378	Merwin, 1912. De Senarmont.
Zircon (hyacinth)	red	I. 92 1. 924	${ }_{\text {I. }}^{1.968}$	

Smithsonian Tables.

BIAXIAL CRYSTALS.

Substance.	Line of spectrum.	Index of Refraction.			Authority.
		Minimum.	Intermediate.	Maximum.	
Amphibole	D	1. 633	1. 642	1. 657	Lévy-Lacroix.
Andalusite .	red	1.632	1. 638	1.643	Lévy-Lacroix.
Anemousite . .	D	I. 5549	1.5587	1.5634	Wright 1910.
Anglesite .	D	1.8771	1.8823	1. 8936	Arzruni.
Anhydrite	D	1.5693	1. 575^{2}	1.6130	Mülheims.
Anorthite	D	1.576	1.583	1.589	Bowen 1912
Antipyrin	D	I. 5697	1. 6935	1.7324	Liweh.
Aragonite -	D	I. 5301	1.6816	1.6859	Rudberg.
Axinite	red	1. 6720	1.6779	1.6810	DesCloiseaux.
Barite .	D	1. 636	1.637	1.648	Various.
Borax .	D	I. 4467	I. 4694	1.4724	Dufet.
Carnegeite	D	I. 509		1.514	Bowen 1912.
Copper sulphate	D	1.5140	1. 5363	1.5433	Kohlrausch.
Gypsum .	D	1.5208	I. 5228	1.5298	Miilheims.
Hillebrandite	D	I. 605		¢. 612	Wright 1908.
Magnesium Carbonate	D	1.495	1.501	1.526	Genth, Penfield.
Magnesium Sulphate	D	1.432	1. 455	1.460	Means.
Mica (muscovite) .	D	1.5601	1. 5936	I. 5977	Pulfrich.
Olivine. -	D	1.661	1.678	1.697	DesCloiseaux.
Orthoclase .	D	I. 5190	1.5237	I. 5260	
Potassium bichromate .	D	1.7202	1.7380	I. 8197	
" nitrate	D	1.3346	1.5056	I. 5064	Schrauf.
" ${ }^{\text {Spurrite }}$ sulphate	D	1.4932 1.640	1. 4946	1.4980	Topsöe \& Christiansen.
Sugar (Cane)	D	I. 5397	I. 5667	1.5716	Calderon
Sulphur (rhombic)	D	1.9505	2.0383	2.2405	Schrauf.
Topaz (Brazilian)	D	1.6294	1.6308	1.6375	Mülheims.
Topaz (different kinds)	D	1.638 to 1.613	I. 63 l to I. 616	$1.637 \text { to }$	\} Various.
Wallastonite	D	1.620	1.632	1.634	Means.
Zinc sulphate	D	I. 4568	1.4801	1.4836	TopsÖe \& Christiansen.

Smithsonian Tables.

Table 198.
INDEX OF REFRACTION.
Indices of Rofraction relative to Alr for Solutions of Salts and Aolds.

Note. - Cyanin in chloroform also acts anomalously ; for example, Sieben gives for a 4.5 per cent. solution $\mu_{A}=1.4593, \mu_{B}=$ r.4695, μ_{F} (green) $=$ I.4514, μ_{G} (blue) $=$ I.4554. For a 9.9 per cent. solution he gives $\mu_{A}=1.4902, \mu_{F}$ (green) $=1.4497, \mu_{G}$ (blue) $=$ r. 4597 .
(c) Solutions of Potasstum Prrmanganate in Water.*

Wavelength in cms $\times \quad$ ro $\times 8$.	Spectrum live.	$\begin{gathered} \text { Index } \\ \text { for } \\ \text { \% sol. } \end{gathered}$	$\begin{gathered} \text { Index } \\ \text { for } \\ \text { \% sol. } \end{gathered}$	$\begin{gathered} \text { Index } \\ \text { for } \\ \mathbf{3} \% \text { sol. } \end{gathered}$	$\begin{gathered} \text { Index } \\ \text { for } \\ 4 \% \text { sol. } \end{gathered}$	Wavelengthincms $\times \quad \mathrm{co}^{1}$.	Spectrum line.	$\begin{gathered} \text { Index } \\ \text { for } \\ \text { I\% sol. } \end{gathered}$	$\begin{gathered} \text { Index } \\ \text { for } \\ \text { \% sol. } \end{gathered}$	$\begin{gathered} \text { Index } \\ \text { for } \\ 3 \% \text { sol. } \end{gathered}$	$\begin{gathered} \text { Index } \\ \text { for } \\ 4 \% \text { sol. } \end{gathered}$
68.7	B	1. 3328	I. 3342	-	1.3382	51.6	-	1. 3368	I. 3385	-	-
65.6	C	. 3335	. 3348	1.3365	. 3391	50.0	$\overline{-}$	- 3374	. 3383	1.3386	1.3404
61.7	-	. 3343	. 3365	. 338 I	-3410	48.6	F	- 3377			. 3408
59.4	-	. 3354	- 3373	. 3393	- 3426	48.0		-3381	. 3395	. 3398	-3413
58.9	D	- 3353	. 3372		- 3426	46.4	-	. 3397	- 3402	. 3414	- 3423
56.8	-	. 3362	. 3387	.3412	- 3445	44.7	-	- 3407	-3421	- 3426	. 3439
55.3	$\bar{\square}$. 3366	-3395	. 3417	- 3438	$43 \cdot 4$	-	$\cdot 3417$	-	-	. 3452
52.7	E	. 3363	. 3377	. 3388	-	42.3	-	-343I	$\cdot 3442$	-3457	$\cdot 3468$
52.2	-	-3362	-3377	. 3388	-	-	-	-			

[^31]
INDEX OF REFRACTION.

Indicee of Refraction of Liquids relative to Alr.

Substance.	Temp. C.	Index of refraction for spectrum lines.					Authority.
		0	D	\boldsymbol{F}	H_{γ}	H	
Acetone	10°	1.3626	1. 3646	1. 3694	1.3732	-	Korten.
Almond oil	\bigcirc	. 4755	. 4782	. 4847	-	-	Olds.
Analin * . . .	20	. 5993	. 5863	. 6041	. 6204	-	Weegmann.
$\underset{6}{\text { Aniseed oil }}$ *	21.4	. 5410	- 5475	. 5647	-	-	Willigen.
	15.1	- 5508	. 5572	-5743	-	1.6084	Baden Powell.
Benzene \dagger. . .	10 21.5	1.4983 .4934	1.5029 .4979	1.5148 .5095	-	1.5355 .5304	Gladstone.
Bitter almond oil	21.5 20	. 49391	- 4979	. 5095	. 5775	- 5304	Landolt.
Bromnaphtalin .	20	. 6495	. 6582	.6819	. 7041	.7289	Walter.
$\underset{\text { Carbon disulphide } \ddagger}{\text { ¢ }}$	0 20	1.6336 .6182	1.6433 .6276	r. 6688 .6523	1.6920 .6748	1.7175 .6994	Ketteler.
"، "	10	. 6250	. 6344	. 6523	. 6748	.6994 .7078	Gladstone. '
-	19	. 6189	. 6284	. 6352		.7010	Dufet.
Cassia oil	10	. 6007	. 6104	. 6389		.7039	Baden Powell.
" " . . .	22.5	- 5930	. 6026	. 6314		. 6985	
Chinolin .	20	1. 6094	1.6171	1.6361	1.6497	-	Gladstone.
Chloroform ${ }_{6}$.	10	. 4466	.4490 .4397	. 4555	-	.4661	Gladstone \& Dale. "
mon	20	- 4437	. 4462	. 4525		.4561	Lorenz.
Cinnamon oil	23.5	. 6077	. 6188	. 6508	-		Willigen.
Ether	15	1.3554	I. 3566	I. 3606	-	1. 3683	Gladstone \& Dale.
Ethyl alcohol	15	$\cdot 3573$. 3594	. 3641	-	. 3713	Kundt.
Ethyl alcohol	\bigcirc	- 3677	-3695	- 3739	. 3773	-	Korten.
"، "	10	- 3636	- 3654	- 3698	- 3732	-	
" ،	20	. 3596	. 3614	$\cdot 3657$. 3690	-	'"
*	15	-362I	. 3638	$\cdot 3683$	-	3751	Gladstone \& Dale.
Glycerine . .	20	1.4706		1.4784	1.4828	-	Landolt.
Methyl alcohol	15	. 3308	1. 3326	. 3362		. 3421	Baden Powell.
Olive oil Rock oil	\bigcirc	-4738	. 4763	. 4825	-	-	Olds.
Rock oil	\bigcirc	-4345	. 4573	. 4644	-	-	"
Turpentine oil	10.6 20.7	1.4715 .4692	1.4744 .4721	1.4817 .4793	-	I. 4939	Fraunhofer.
Toluene . ${ }^{\text {. }}$	20.7 20	.4692 .4911	. 4721	. 4793	- 5170	.4913	Willigen.
Water §	20	. 3312	. 3330	. 3372	. 3404	. 3435	Means.

[^32]Emithsonian Tableg.

INDEX OF REFRACTION.

Indices of Retraotion of Glases and Vapors.

A formula was given by Biot and Arago expressing the dependence of the index of refraction of a gas on pressure and temperature. More recent experiments confirm their conclusions. The formula is $n_{t}-x=\frac{n_{6}-1}{x+a t} \frac{p}{760}$, where n_{t} is the index of refraction for temperature t, π_{0} for temperature zero, a the coefficieot of expaosion of the gas with temperature, and ϕ the pressure of the gas in millimeters of mercury.

(a) Indices of refraction.								
Spectrum line.	$\begin{gathered} 10^{3}\left(\frac{n}{n-1}\right) \\ \text { Air. } \end{gathered}$	Spectrum line.	$\begin{aligned} & 10^{10}(\mathrm{n}-1) \\ & \text { Air. } \end{aligned}$	Wavelength.	($\mathrm{n}-\mathrm{I}$) ros .			
					Air.	0.	N.	H.
A	.2905	M	. 2993	${ }^{\mu}{ }^{4861}$				
B	. 2911	N O	. 3003	. 5461	. 2936	.2734 .2717	. 3012	.1406 .1397
C	. 2914	O	- 3015	. 5790	. 2930	. 2710	-	. 1393
E	. 2922	$\stackrel{\mathrm{P}}{\mathrm{O}}$	3023	. 6563	. 2919	. 2698	. 2982	. 1387
$\underset{F}{ }$. 2933	Q	$\cdot 3031$. 4360	. 2971	. 2743	CO_{2}	. 1418
G	. 2943	$\stackrel{\mathrm{S}}{\mathrm{S}}$	-3043	. 5462	. 2937	. 2704	. 4506	.1397
II	. 2978	T	. 3053	.6709 6.709	.2918 .2881	. 2683	-4471	. 1385
K	. 2988	U	. 3075	6.709 8.678	.2881 .2888	. 2643	. 4804	.1361 .1361
L	. 2987			First 4, Cuthbertsons ; the rest, Koch, 1 gog.				

(b) The following are compiled mostly from a table published by Brïhl (Zeits. für Phys. Chem. vol. 7, pp. 25-27). The uumbers are from the results of experiments by Biot and Arago, Dulong, Jamin, Ketteler, Lorenz, Mascart, Chappins, Rayleigh, and Rivière and Prytz. When the number given rests on the authority of one observer the name of that observer is given. The values are for 0° Centigrade and 760 mm . pressure.

Substance.	Kind of light.	Indices of refraction and authority.	Substance.	Kind of light.	Indices of refraction and authority.
Acetone	D	1.001079-1.001100	Hydrogen	white	I.000138-I.000143
Ammonia	white	1.000381-1.000385		D	r.000132 Burton.
	D	1.000373-1.000379	Hydrogen sul- $\{$	D	r. 000644 Dulong.
Argon.	D	1.00028I Rayleigh.	phide . . $\{$	D	1.000623 Mascart.
Benzol	D	1.001700-1.001823	Methane . . .	white	1.000443 Dulong.
Bromine	D	1.001132 Mascart.	" ${ }^{\text {• }}$	D	I. 000444 Mascart.
Carbon dioxide	white	1.000449-1.000450	Methyl alcohol.	D	1.000549-1.000623
" "	D	$1.000448-1.000454$	Methyl ether .	D	1.000891 Mascart.
$\begin{aligned} & \text { Carbon disul- } \\ & \text { phide . } \end{aligned}$	white D	i. 001500 Dulong. $1.001478-1.001485$	Nitric oxide .	white D	r.000303 Dulong. 1.000297 Mascart.
Carbon mon- oxide .	white white	I. 000340 Dulong. I. 000335 Mascart.	Nitrogen .	$\begin{gathered} \text { white } \\ \mathrm{D} \end{gathered}$	1.000295-1.000300 1.000296-1.000298
Chlorine	white	1.000772 Dulong.	Nitrous oxide	white	1.000503-1.000507
	D	1.000773 Mascart.	" ${ }^{\text {c }}$	D	1.000516 Mascart.
Chloroform .	D	1.001436-1.001464	Oxygen	white	1.000272-1.000280
Cyanogen	white	1.000834 Dulong.	" - •	D	1.00027 I-1.000272
	D	1.000784-1.000825	Pentane	D	I. 001711 Mascart.
Ethyl alcohol	D	$1.000871-1.000885$	Sulphur dioxide	white	1.000665 Dulong.
Ethyl ether .	D	$1.001521-\mathrm{I} .001544$	" "	D	I. 000686 Ketteler.
Helium	D	I.000036 Ramsay.	Water.	white	1.000261 Jamin.
$\begin{gathered} \text { Hydrochloric } \\ \text { acid. . } \end{gathered}$	white D	$\begin{aligned} & \text { 1.000449 Mascart. } \\ & 1.000447 \end{aligned}$	"	D	1.000249-1.0002 59

Smithsonian Tables.

MEDIA FOR DETERMINATIONS OF REFRACTIVE INDICES WITH

 THE MICROSCOPE.$$
\text { TABLE 201. - Llquads, } n_{D}(0.589 \mu)=1.74 \text { to } 1.87
$$

In 100 parts of methylene iodide at $20^{\circ} \mathrm{C}$. the number of parts of the various substances indicated in the following table can be dissolved, forming saturated solutions having the permanent refractive indices specified. When ready for use the liquids can be mixed by means of a dropper to give intermediate refractions. Commercial iodoform (CHI_{3}) powder is not suitable, but crystals from a solution of the powder in ether may be used, or the crystalized product may be bought. A fragment of tin in the liquids containing the SnI_{4} will prevent discoloration.

CHI_{3}.	SnI_{4}.	AsI_{3}.	SbI_{3}.	S.	$\pi_{\text {na }}$ at 20°.
			12		1. 764
	25				1.783
	25		12		r. 806
	30			6	ז. 820
	27	13	7		1. 826
40	27	16			r. 842
	3 I	14	8	so	ग. 853
35	3 I	16	8	10	т. 868

TABLE 202. - Resin-Hike Sabstances, $\boldsymbol{n}_{\mathrm{D}}(\mathbf{0 . 5 8 9 \mu})=\mathbf{1 . 6 8}$ to $\mathbf{2 . 1 0}$.

Piperine, one of the least expensive of the alkaloids, can be obtained very pure in straw-colored crystals. When melted it dissolves the tri-iodides of arsenic and antimony very freely. The solutions are fluid at slightly above 100° and when cold, resin-like. A solution containing 3 parts antimony iodide to one part of arsenic iodide with varying proportions of piperine is easier to manipulate than one containing either iodide alone. The following table gives the necessary data concerning the composition and refractive indices for sodium light. In preparing, the constituents, in powder of about 1 mm . grain, should be weighed out and then fused over, not in, a low flame. Three-inch test tubes are suitable.

Per cent Iodides.	м0.	ro.	20.	30.	40.	50.	60.	70.	80.
Index of refraction	1.683	1.700	1.725	1.756	1.794	1.840	1.897	1.968	2.050

TABLE 203. - Permanent Standard Resinous Media, $\mathrm{n}_{\mathrm{D}}(0.588 \mu)=1.548$ to 1.682.

Any proportions of piperine and rosin form a homogeneous fusion which cools to a transparent resinous mass. The following table shows the refractive indices of various mixtures. On account of the strong dispersion of piperine the refractive indices of minerals apparently matched with those of mixtures rich in this constituent are 0.005 to 0.01 too low. To correct this error a screen made of a thin film of 7 per cent antimony iodide and 93 per cent piperine should be used over the eye-piece. Any amber-colored rosin in lumps is suitable.

All taken from Merwin, Jour. Wash. Acad. of Sc. 3, p. 35, 1913.

Smithsonian Tables.

OPTICAL CONSTANTS OF METALS.

TABLE 204.

Two constants are required to characterize a metal opticaily, the refractive index, n, and the absorption index, k, the latter of which has the following significance: the amplitude of a wave after travelling one wave-length, λ^{1} measured in the metal, is reduced in the ratio ${ }^{1} \mathrm{I}: \mathrm{e}_{-2 \pi \mathrm{k}}$ or for any distance $d, \mathrm{I}: \mathrm{e}-\frac{2 \pi \mathrm{dk}}{\lambda^{1}}$; for the same wave-length measured in air this ratio becomes $\mathrm{I}: \mathrm{e}-\frac{2 \pi \mathrm{dnk}}{\lambda^{1}}$. $n k$ is sometimes called the extinction coefficient. Plane polarized light reflected from a polished metal surface is in general elliptically polarized because of the relative change in phase between the two rectangular components vibrating in and perpendicular to the plane of incidence. For a certain angle, ϕ (principal incidence) the change is 90° and if the plane polarized incident beam has a certain azimuth $\bar{\psi}$ (Principal azimuth) circularly polarized light results. Approximately, (Drude, Annalen der Physik, 36, p. 546, 5889),

$$
k=\tan 2 \bar{\psi}\left(I-\cot ^{2} \bar{\phi}\right) \text { and } n=\frac{\sin \bar{\phi} \tan \bar{\phi}}{\left.\left(1+k^{2}\right)\right\rfloor}\left(I+\frac{1}{2} \cot ^{2} \bar{\phi}\right) .
$$

For rougher approximations the factor in parentheses may be omitted. $\mathrm{R}=$ computed percentage reflection.

TABLE 205.
(The points have been so selected that a smooth curve drawn through them very closely indicates the characteristics of the metal.)

Drude, Annalen der Physik und Chemie, 39, p. 481, 1890; 42, p. 186, 189r; 64, p. 159, 1898. Minor, Annalen der Physik, 10, p. 58f, 1go3. Tool, Physical Review, 31, p. 1, 1910. Ingersoll, Astrophysical Journal, 32, p. 265, 1910; Försterling and Fréedericksz, Annalen der Physik, 40, p. 201, 1913.
table 206.

Metal．	λ ．	a．	k．	R．	Ref．	Metal．	λ.	ц．	k．	R．	Ref．
Al．＊	${ }^{\mu}$	1.44	5.32	83	I	Rh．＊	μ 0.579	1.54	4.67	78	3
Sb．＊	0.589 .589	3.04	4.94	70	1	Se．\ddagger	． 400	2.94	2.31	44	5
Bi．$\dagger \ddagger$	white	2.26	－	－	2		． 490	3.12	1.49	35	5
Cd．＊	． 58	1.13	5－OI	85	1		． 589	2.93	0.45	25	5
Cr．＊	． 579	2.97	4.85	70	3		． 760	2.60	0.06	20	5
Cb．＊	． 579	1.80	2.11	41	3	Si．＊	． 589	4.18	0.09	38	6
Au．\dagger	． 257	0.92	1.14	28	4		1.25	3.67	0.08	33	6
	． 441	1.18	1.85	42	4		2.25	3.53	0.08	31	6
	． 589	0.47	2.83	82	4	Na．（liq．）	． 589	． 004	2.61	99	1
I．crys．	． 589	3.34	0.57	30	4	Ta．＊	． 579	2.05	2.31	44	3
Ir．＊	． 579	2.13	4.87	75	3	Sn．＊	． 589	1.48	5.25	82	1
Fe．§	． 257	1.01	0.88	16	4	W．＊	． 579	2.76	2.71	49	3
	． 441	1.28	I． 37	28	4	V．＊	． 579	3.03	3.51	58	3
	． 589	1.51	1.63	33	4	Zn．＊	． 257	0.55	0．61	20	4
Pb．＊	． 589	2.01	3.48	62	1		． 441	0.93	3.19	73	4
Mg．＊	． 589	0.37	4.42	93	1		． 589	1.93	4.66	74	4
Mn．＊	． 579	2.49	3．89	64	3		． 668	2.62	5.08	73	4
Hg．（liq．）	.326	0.68	2.26	66	4						
	． 441	1.01	3.42	74	4						
	． 589	I． 62	441	75	4	$\lambda=\text { wave }$ $\mathrm{k}=\mathrm{abso}$	engt		$\begin{aligned} & \text { ract } \\ & =\text { ref } \end{aligned}$		
	． 668	1.72	4.70	77	4	（I）Drude	see T				
Pd．＊	． 579	1.62	3.41	65	3	（i）Drude	see T	und	hem		
Pt．\dagger	． 257	1.17			4	used，Ann．	er Phy	k und	hem		
	． 44 I	1.94	3.16	58	4	36，P．824， deutsch．P	889； sik．	s.	arter	rg,	
	． 589	2.63	3.54	59	4	deutsch．P Meier，Ann	sik． es de	Phys	p． 10		
	． 668	2.91	3.66	59	4	Meier，Ann		Phys	3， 10		
Ni．＊	． 275	1.09	I． 16	24	4	（5）Wood， Ingersoll，s		O5．		190	
	． 441	1.16	1.23	25	4	Ingersoll，see ＊solid					
	． 589	1.30	1.97	43	4	as film	uo．				

TABLE 207．－Reflecting Power of Metals．

Wave－ length	む	in	U	0	㝘号	$亡$	官	员	0	㐫	\％	๕ี่	$\stackrel{3}{4}$	号	3	5	츤
μ	Per cents．																
． 5		－		－	22	－	72	46		76	34	38	－	－	49	57	－
． 6		53		－	24	－	73	48	－	77	32	45	49°	－	51	58	－
． 8		54		－	25	－	74	52	－	81	29	64	48	－	56	60	
1.0	71	55	72	67	27	78	74	58	72	84	28	78	50	54	62	61	80
2.0	82	60	87	72	35	87	77	82	8 I	91	28	90	52	61	85	69	92
4.0	92	68	96	81	48	94	84	90	88	92	28	93	57	72	93	79	97
7.0	96	71	98	93	54	95	91	93	94	94	28	94	68	81	95	88	98
10.0	98	72	98	97	59	96	－	94	97	95	28	－	－	84	96	－	98
12.0	98	－	99	97		96	－	95	97		－	95	－	85	96	－	99

Coblentz，Bulletin Bureau of Standards，2，p．457，1906，7，p．197，1911．The surfaces of some of the samples were not perfect so that the corresponding values have less weight．The methods for polishing the various metals are described in the original articles．

Smithsonian Tables．

According to Fresnel the amount of light reflected by the surface of a transparent medium $=\frac{1}{2}(A+B)=\frac{1}{2}\left\{\frac{\sin ^{2}(i-r)}{\sin ^{2}(i+r)}+\frac{\tan ^{2}(i-r)}{\tan ^{2}(i+r)}\right\} ; A$ is the amount polarized in the plane of incidence; B is that polarized perpendicular to this; i and r are the angles of incidence and refraction.

TABLE 208. -Light reflected whon $i=0^{\circ}$ or Inoident Light Ie Normal to Surface.

π.	$\frac{1}{2}(A+B)$,	\boldsymbol{H}	$\frac{1}{2}(A+B)$	tr.	$\frac{1}{2}(A+B)$.	$\%$.	$\frac{1}{2}(A+B)$.
1.00	0.00	1.4	2.78	2.0	II.II		
1.02	0.01	1.5	4.00	2.25	14.06	5*	44.44 50.00
1.05	0.06	1.6	$5 \cdot 33$	2.5	18.37	10.	56.00
I.I	0.23	1.7	6.72	2.75	22.89	100.	96.08
1.2	0.83	1.8	8.16	3.	25.00	∞	96.08 100.00
1.3	1.70	1.9	9.63	4.	36.00		100.00

TABLE 209. - Ilght reflected when n is near Unity or equals $1+d n$.

i.	A.	B.	$1(A+B)$.	$\frac{A-B}{A+B}$.*
0°	1.000	1.000	1.000	0.0
5	1.015	.985	1.000	1.5
10	1.063	. 939	I.OOI	6.2
15	1.149	. 862	1.005	14.3
20	1.282	.752	1.017	26.0
25	I. 482	. 612	1.047	41.5
30	1.778	. 444	I. 1 II	60.0
35	2.221	.260	1.240	79.I
40	2.904	. 088	1.496	94.5
45	4.000	. 000	2.000	100.0
50	5.857	.176	3.016	94.5
55	9.239	1.081	5.160	79.1
60	16.000	4.000	10.000	60.0
65	31.346	12.952	22.149	41.5
70	73.079	42.884	57.98 I	26.0
75	222.85	167.16	195.00	14.3
80	1099.85	971.21	1035.53	6.2
85	17330.64	16808.08	17069.36	1.5
90	∞	∞	-	0.0

TABLE 210. - Light reflected when $n=1.55$.

i.	7.	A.	B.	dA.t	$d B . \dagger$	$\frac{1}{2}(A+B)$	$\frac{A-B}{A+B}{ }^{*}$
$\bigcirc 1$	0 O						
0	00.0	4.65	4.65	0.130	0.130	4.65	0.0
5	313.4	4.70	4.61	. 31	. 129	4.65	1.0
10	625.9	4.84	4.47	. 135	. 126	4.66	4.0
15	936.7	5.09	4.24	. 141	. 121	4.66	9.1
20	1244.8	5.45	3.92	.150	.114	4.68	16.4
25	1549.3	5.95	$3 \cdot 50$. 161	.105	4.73	25.9
30	18 49.1	6.64	3.00	.175	. 098	4.82	37.8
35	2143.1	7.55	2.40	.191	. 081	4.98	51.7
40	2430.0	8.77	1.75	. 210	. 066	5.26	66.7
45	278.5	10.38	1.08	. 233	. 049	5.73	81.2
50	2937.1	12.54	0.46	. 263	. 027	6.50	92.9
55	3154.2	15.43	0.05	. 303	. 007	7.74	
60	3358.1	19.35	0.12	-342	-.013	9.73	98.8
65	3547.0	24.69	1. 13	. 375	-.032	12.91	9 I .2
70	3719.1	3 x .99	4.00	-400	-.050	18.00	77.7
75	3832.9	42.00	10.38	. 410	-. 060	26.19	61.8
80	3926.8	55.74	23.34	. 370	-. 069	3954	41.0
8230	3945.9	64.41	34.04	-320	-.067	49.22	30.8
85 o	3959.6	74.52	49.03	. 250	-.06ı	$6 \times .77$	20.6
86 -	403.6	79.02	56.62	. 209	-.055	67.82	16.5
87 -	$\begin{array}{ll}40 & 6.7\end{array}$	83.80	65.32	. 163	-. 0.46	74.56	12.4
88 -	408.9	88.88	75.31	. 118	-.036	82.10	8.3
89 -	4010.2	94.28	86.79	. 063	-. 022	90.54	4.1
900	4010.7	100.00	100.00	.000	-.000	100.00	0.0

Angle of total polarization $=57^{\circ}$ 10'.3, $A=16.99$.

* This column gives the degree of polarization
determining A and B for other values of "t They represent the change in these
Taken from E. C. Pickering's "Applications of Fresoel's Formula for the Reflection of Light."
Smithsonian Tables.

The numbers give the per cents of the incident radiation reflected．

						$\begin{gathered} \text { Nickel, } \\ \text { Electrolytically Deposited. } \end{gathered}$	$\begin{gathered} \text { Copper. } \\ \text { Electrolyticalty Deposited. } \end{gathered}$		$\stackrel{\text { Copper. }}{\text { Commercially Pure. }}$		$\begin{aligned} & \text { Gold. } \\ & \text { Electrolytically Deposited. } \end{aligned}$		$\begin{gathered} \text { Silver. } \\ \text { Chemically Deposited } \end{gathered}$
	－	－	67.0	35.8	29.9	37.8	－	32.9	25.9	33.8	38.8	－	34－I
． 288	－	－	70.6	37.8	37.7	42.7	－	35．0	24.3	38.8	34.0		2 I .2
． 305	－	－	72.2	37.2	41.7	44.2	－	37.2	25.3	39.8	31.8		9.1
.316	－	－	－		－			－	－	－	8	－	4.2
． 326	－	－	75.5	39.3	－	45.2	－	40.3	24.9	41.4	28.6		14.6
． 338		－	－	－		46.5		－		－	－		55.5
$\cdot 357$	－	－	81.2	43.3	51.0	48.8	－	45.0	27.3 28.6	43.4	27.9 27.1		74.5 81.4
$\cdot 385$			83.9	$44 \cdot 3$	53．1	49.6	－	47.8					
－420	－	－	83.3	47.2	56.4	56.6	－	51.9	32.7	51.8	29.3	－	86.6
． 450	85.7	72.8	83.4	49.2	60.0	59.4	48.8	54.4	37.0	54.7	33.1	－	90.5
． 500	86.6	70.9	83.3	$49 \cdot 3$	63.2	60.8	53.3	54.8	43.7	58.4	47.0	－	91.3
． 550	88.2	71.2	82.7	48.3	64.0	62.6	59.5	54.9	47.7	6 I .1	74.0		92.7
． 600	88.1	69.9	83.0	47.5	64.3	64.9 66.6		$55 \cdot 4$ 56.4	71.8 80.0	64.2	84.4 88.9	－	92.6 94.7
． 650	89.1 89.6	71.5 72.8	82.7 83.3	51.5 54.9	65.4 66.8	66.6	89.0 90.7	56.4 57.6	80.0	66.5 69.0	88.9 92.3	－	94.7 95.4
． 800	－	－	84.3	63.1	－	69.6		58.0	88.6	70.3	94.9	－	96.8
1.0	－	－	84．I	69.8	70.5	72.0	－	63.1	90.1	72.9			97.0
1.5	－	－	85.1	79.1	75.0	78.6	－	70.8	93.8	77.7	97.3	－	98.2
2.0	－	－	86.7	82.3	80.4	83.5		76.7	95.5	80.6	96.8	91.0	97.8
3.0	－	－	87.4	85.4	86.2	88.7	－	83.0	97．I	88.8	－	93.7	98.1
4.0	－	－	88.7	87.1	88.5	91．I		87.8	97.3	91.5	96.9	95.7	98.5
5.0	－	－	89.0	87.3	89．1	94.4		89.0	97.9	93.5	97.0	95.9	98.1
7.0	－	－	90.0	88.6	90.1	94.3	－	92.9	98.3	95.5	98.3	97.0	98.5
9.0	－	－	90.6	90.3	92.2	95.6		92.9	98.4	95.4	98.0	97.8	98.7
11.0	－	－	90.7	90.2	92.9	95.9	－	94.0	98.4	95.6	98.3	96.6	98.8
14.0	－	－	92.2	90.3	93.6	97.2	－	96.0	97.9	96.4	97.9	－	98.3

Based upon the work of Hagen and Rubens，Ann．der Phys．（1）352，1900；（8）1， 1902 ；（11）873， 1903.
Taken partly from Landolt－Börnstein－Meyerhoffer＇s Physikalisch－chemische Tabellen．

TABLE 212．－Percentage Dfftuse Reflection from Miscellaneoue Substances．

Wave length ${ }^{\mu}$	Lamp－blacks．								$\begin{aligned} & \text { 采 } \\ & o \\ & \dot{Z} \end{aligned}$				$\begin{aligned} & \frac{\Delta}{\pi} \\ & \frac{\pi}{7} \\ & \frac{2}{d} \\ & \hline \end{aligned}$		圱	淢
	$\text { . } \stackrel{\stackrel{H}{n}}{n}$	$\begin{aligned} & \text { 寻 } \\ & \stackrel{0}{*} \end{aligned}$			$\begin{aligned} & \text { 高 } \\ & \text { 号 } \\ & \text { E } \end{aligned}$											
＊．60	3.2						25.	52.	84.	82.		89.	15.	1.8	14.	30.
＊． 95	3.4	1.3	1.1	0.6	1.3	I．I			88.	86.	75.	93.			21.	
4.4	3.2	1.3	． 9	． 8	1.2	1.4		51.	21.	8.	18.	29.		3.7		
8.8	3.8		1.3	1.2	1.6	2.1		26.	2.	3.	5.	1 I ．		2.7		12.
24.0	4.4	3.0	4.0	2.1	5.7	4.2		10.	6.	5.		7.				

＊Not monochromatic（max．）means from Coblentz，J．Franklin Inst．19ı2．Bulletin Bureau of Standards，9，p．283， 1912，contains many other materials．

Tables 213-215.
TRANSMISSIBILITY FOR RADIATION OF JENA GLASSES.
TABLE 213.
Coefficients, a, in the formula $I_{t}=I_{0} a^{t}$, where I_{0} is the Intensity before, and I_{t} after, transmission through the thickness t, expressed in centimeters. Deduced from observations by Müller, Vogel, and Rubens as quoted in Hovestadt's Jena Glass (English translation).

TABLE 214.

Note : With the following data, t must be expressed in millimeters; i. e. the figures as given give the transmissions for thickness of I mm .

No. and Type of Glass.	Wave-length in μ.												
	Visible Spectrum.							Ultra-violet Spectrum.					
	. 644μ	.578	.546 μ	. 509	. 480μ	.436 μ	. 405μ	. ${ }^{84} \mu$.367 μ	. 340μ	. 332μ	309μ	. 280μ
F 3815 Dark neutral	. 35	. 35	. 37	.35	. 34	. 30	15	. 06					
F4512 Red filter	. 94	. 05											
F 2745 Copper ruby	. 72	. 39	. 47	. 87	. 45	. 43	. 43						
F 4313 Dark yellow	. 98	. 97	. 93	. 93	. 44	.15							
${ }^{\text {F }} 43937$ Bright yellow	1.0	1.0	I. 0	. 99	. 74	. 40	.3I	. 28	. 22	. 18	. 14	. 06	
F 4930 Green filter	17	. 50	. 64	. 18	. 44					.10			
F 3873 Blue filter				. 18	. 50	.73	. 69	. 59	. 36	.10			
F 3654 Cobalt glass,													
transparent for outer red	-	-	-	. 15	. 44	. 85	I. 0	I. 0	1.0	I. 0	1.0	. 58	
F 3653 Blue, ultraviolet	-	-	-		. 11	. 65	I. 0	1.0	1.0	I. 0	1.0		. 18
$\underset{\text { Fands }}{\text { F } 3728 \text { Didymium,str'g }}$. 99	. 72	99	. 96	. 95	. 96	. 99	. 99	. 89	. 89	.77	$\cdot 54$	

This and the following table are taken from Jenaer Glas fiir die Optik, Liste 751, 1909
TABLE 215. - Transmissibility of Jens Ultra-violet Glssses.

No. and Type of Glass.	Thickness.	$0.397{ }^{\mu}$	0.383μ	0.361μ	0.346μ	0.325^{μ}	0.309μ	0.280μ
UV ${ }_{6}^{3199}$ Ultra-violet	$\begin{aligned} & 1 \mathrm{~mm} . \\ & 2 \mathrm{~mm} . \end{aligned}$	$\begin{aligned} & 1.00 \\ & 0.99 \end{aligned}$	1.00	1.00	1.00	1.00	0.950.57	0.56
			0.99	0.99	0.97	0.90		
"* "	I dm .	0.95	0.95	0.89	0.70 100	0.36 0.98		0.35
UV 3248	1 mm .	1.00	1.00	1.00	1.00 0.92	0.98 0.78	0.38	0.35
"	2 mm. 1 dm.	0.96	0.87	0.79	0.45	0.08		

Smithsonian Tables.

Table 216.

TRANSMISSIBILITY FOR RADIATION. Transmissiblilty of the Various Substances of Tsbiss 166 to 175.
Alum: Ordinary alum (crystal) absorbs the infra-red.
Metallic reflection at 9.05μ and 30 to 40μ.
Rock-salt : Rubens and Trowbridge (Wied. Ann. 65, 1898) give the following transparencies for a 1 cm . thick plate in $\%$:

λ	9	10	12	13	14	15	16	17	18	19	20.7	23.7μ
$\%$	99.5	99.5	99.3	97.6	93.1	84.6	66.1	51.6	27.5	9.6	0.6	0.

Pfluger (Phys. Zt. 5. 1904) gives the following for the ultra-viulet, same thickness: $280 \mu \mu, 95.5 \%$; $231,86 \%$; $210,77 \%$; 186, 70%.
Metallic reflection at $0.110 \mu, 0.156,51.2$, and 87μ.
Sylvine: Transparency of a 1 cm . thick plate (Trowbridge, Wied. Ann. 60, 1897).

λ	9	10	11	12	13	14	15	16	17	18	19	20.7	23.7μ
$\%$	100.	98.8	99.0	99.5	99.5	97.5	95.4	93.6	92	86.	76.	58.	15.

Metallic reflection at $0.114 \mu, 0.16 \mathrm{I}, 6 \mathrm{I} .1,100$.
Fluorite: Very transparent for the ultra-violet nearly to 0.1μ.
Rubens and Trowbridge give the following for a I cm. plate (Wied. Ann. 60, 1897):

λ	8μ	9	10	11	12μ
$\%$	84.4	54.3	16.4	1.0	0

Metallic reflection at $24 \mu, 3 \mathrm{I} .6,40 \mu$.
Iceland Spar: Merritt (Wied. Ann. 55, 1895) gives the following values of k in the formula $\mathrm{i}=\mathrm{i}_{\mathrm{o}} \mathrm{e}^{-\mathrm{kd}}$ (d in cm.) :

For the ordinary ray :

λ	I .02	I .45	$\mathrm{1.72}$	2.07	2.1 I	2.30	2.44	2.53	2.60	2.65	2.74μ
k	0.0	0.0	0.03	0.13	0.74	r .92	3.00	I .92	I .21	1.74	2.36

λ	2.83	2.90	2.95	3.04	3.30	3.47	3.62	3.80	3.98	4.35	4.5^{2}	4.83μ
k	I.32	0.70	I.80	4.7 I	22.7	19.4	9.6	18.6	∞	6.6	14.3	6.1

For the extraordinary ray:

λ	2.49	2.87	3.00	-3.28	3.38	3.59	3.76	3.90	4.02	4.4 I	4.67μ
k	0.14	0.08	0.43	1.32	0.89	1.79	2.04	$\mathrm{I.17}$	0.89	1.07	2.40

λ	4.9 I	5.04	5.34	5.50μ
k	I .25	2.13	4.4 I	12.8

Quartz: Very transparent to the ultra-violet; Pfüger gets the following transmission values for a plate I cm . thick : at $0.222 \mu, 94.2 \% ; 0.214,92 ; 0.203,83.6 ; 0.186,67.2 \%$.
Merritt (Wied. Ann. 55, r895) gives the following values for k (see formula under Iceland Spar):
For the ordinary ray:

λ	2.72	2.83	2.95	3.07	3.17	3.38	3.67	3.82	3.96	4.12	4.50μ
k	0.20	0.47	0.57	0.31	0.20	0.15	1.26		1.61	2.04	3.4 I

For the extraordinary ray :

λ	2.74	2.89	3.00	3.08	3.26	$3 \cdot 43$	3.52	3.59	3.64	3.74	3.91	4.19	4.36μ
k	0.0	0.11	0.33	0.26	0.11	0.51	0.76	1. 88	1.83	1. 62	2.22	3.35	8.0

For $\lambda>7 \mu$, becomes opaque, metallic reflection at $8.50 \mu, 9.02,20.75-24.4 \mu$, then transparent again.

The above are taken from Kayser's " Haodbuch der Spectroscopie," vol. iii.

Smithsonian Tableg.

TRANSMISSIBILITY OF RADIATION.

TABLE 217. - Color Screens.

The following light-filters are quoted from Landolt's "Das optische Drehungsvermögen, etc." 1898 . Although only the potassium salt does not keep well it is perhaps safer to use freshly prepared solutions.

Color.	Thickness. mm .	Water solutions of	Grammes of substance in $100 \mathrm{c} . \mathrm{cm}$.	Optical centre of band. μ	Transmission.
Red	20	Crystal-violet, 5 BO	0.005	0.6659	$\left\{\begin{array}{l} \text { begins about } 0.718 \mu \\ \text { ends sharp at } 0.639 \mu . \end{array}\right.$
Yellow	20 20	Potassium monochromate Nickel-sulphate, $\mathrm{NiSO}_{4.7} \mathrm{aq}$.			0.614-0.574 μ,
"	15	Potassium monochromate		0.5919	0.614-0.574
	I 5	Potassium permanganate	0.025		
Green	20	Copper chloride, $\mathrm{CuCl}_{2} .2 \mathrm{aq}$.	60.	0.5330	0.540-0.50 5μ
Bright $\{$	20	Potassium monochromate Double-green, SF	10.		$\{0.526-0.494$ and
blue	20	Copper-sulphate, CuSO_{4}-5aq.			0.494-0.458 μ
Dark blue	20 20	Crystal-violet, 5 BO	0.005	0.4482	0.478-0.410 μ

TABLE 218. - Color Screaze.

The following list is condensed from Wood's Physical Optics :
Methyl violet, 4R• (Berlin Anilin Fabrik) very dilute, and nitroso-dimethyl-aniline transmits 0.365μ. Methyl violet + chinin-sulphate (separate solutions), the violet solution made strong enough to blot out 0.4359μ, transmits 0.4047 and 0.4048 , also faintly 0.3984 .
Cobalt glass + aesculin solution transmits 0.4359μ.
Guinea green B extra (Berlin) + chinin sulphate transmits 0.4916μ.
Neptune green (Bayer, Elberfeld) + chrysoidine. Dilute the latter enough to just transmit 0.5790 and 0.546 I ; then add the Neptune green until the yellow lines disappear.
Chrysoidine + eosine transmits 0.5790μ. The former should be dilute and the eosine added until the green line disappears.
Silver chemically deposited on a quartz plate is practically opaque except to the ultra-violet region $0.3160-0.3260$ where 90% of the energy passes through. The film should be of such thickness that a window backed by a brilliantly lighted sky is barely visible.
In the following those marked with a * are transparent to a more or less degree to the ultra-violet:

* Cobalt chloride : solution in water, - absorbs $0.50-.53 \mu$; addition of CaCl_{2} widens the band to $0.47-50$. It is exceedingly transparent to the ultra-violet down to 0.20 . If dissolved in methyl alcohol + water, absorbs $0.50-.53$ and everything below 0.35 . In methyl alcohol alone 0.485^{-} 0.555 and below 0.40μ.

Copper chloride: in ethyl alcohol absorbs above $0.5^{8} 5$ and below 0.535 ; in alcohol $+50 \%$ water, above 0.595 and below o. 37μ.
Neodymium salts are useful combined with other media, sharpening the edges of the absorption bands. In solution with bichromate of potash, transmits $0.535-.565$ and above 0.60μ, the bands very sharp (a useful screen for photographing with a visually corrected objective).
Praesodymium salts : three strong bands at $0.482, .468, .444$. In sttong solutions they fuse into a sharp band at $0.435-.485 \mu$. Absorption below 0.34 .
Picric acid absorbs $0.36-.42 \mu$, depending on the concentration.
Potassium chromate absorbs $0.40-.35,0.30-.24$, transmits 0.23μ.

* Potassium permanganate : absorbs $0.555-.50$, transmits all the ultra-violet.

Chromium chloride : absorbs above 0.57 , between 0.50 and .39 , and below 0.33μ. These limits vary with the concentration.
Aesculin: absorbs below 0.363μ, very useful for removing the ultra-violet.

* Nitroso-dimethyl-aniline : very dilute aqueous solution absorbs $0.49-.37$ and transmits all the ultra-violet.
Very dense cobalt glass + dense ruby glass or a strong potassium bichromate solution cuts off everything below 0.70 and transmits freely the red.
Iodine: saturated solution in CS_{2} is opaque to the visible and transparent to the infra-red.

Smithsonian Tables.

TABLE 219. - Color Soreens. Jena Glaases.

	Kiod of Glass.	$\begin{gathered} \text { Maker's } \\ \text { No. } \end{gathered}$	Color.	Region Transmitted.	Thick ness. mm.
I	Copper-ruby	2728	Deep red	Only red to 0.6m.	1.7
1 a	Gold-ruby .	$459{ }^{\text {II }}$	Red .	$\left\{\begin{array}{l} \text { Red, yellow ; in thin layers also } \\ \text { blue and violet. } \end{array}\right.$	
2	Uranium	$454{ }^{\text {III }}$	Bright yellow .	$\left\{\begin{array}{c} \text { Red, yellow, green to } \mathbf{E}_{b} ; \text { in } \\ \text { thin layer also blue } \end{array}\right\}$	16.
2 a		$455^{\text {¹] }}$	$\left\{\begin{array}{l} \text { Bright yellow, fluo- } \\ \text { resces. } \end{array}\right.$		
3	Nickel .	$440^{\text {III }}$	Bright yellow-brown	$\left\{\begin{array}{l} \text { Red, yellow, green (weakened), } \\ \text { blue (very weakened) } \end{array}\right\}$	I1
4	Chromium	$414^{\text {III }}$ $433{ }^{\text {III }}$	Yellow-green . Greenish-yellow	Yellowish-green Red, green ; from $0.65-.50 \mu$	10.
$4{ }^{4} \mathrm{a}$	Green copper *	$433{ }^{\text {III }}$	Greenish-y	Green, yellow, some red and blue .	2-3
5	Chromium. .	$432^{\text {IIII }}$	Yellow-green .	Yellowish-green, some red . .	2.5
6	Copperchromium	$436{ }^{\text {III }}$	Grass-green .	Green	5.
7	Green-filter .	437 III $438^{\text {III }}$	Dark green . . .	Green (in thin sheets some blue) Green	5.
10	Copper .	2742	Blue, as CuSO_{4}.	Green, blue, violet	5-12
11	Blue-violet	$447{ }^{1 I}$	Blue, as cobalt glass		5.
"	" ${ }^{\text {a }}$	"	" ، " "	$\left\{\begin{array}{c}\text { Blue, violet, blue-green (weak- } \\ \text { ened), no red }\end{array}\right\}$	2-5
12	Cobalt .	$424{ }^{\text {III }}$	Blue	Blue, violet, extreme red	4-5
13	Nickel	450^{10}	Dark violet .	Violet (G-H), extreme red .	$6 .$
14	Violet Gray .	$\begin{aligned} & 452^{\text {III }} \\ & 444^{\text {III }} \end{aligned}$	$\text { Gray, no recog. \}}$	Violet ($\mathrm{G}-\mathrm{H}$), some weakened.	7.
16	"	${ }_{4}^{444}$	$\left.\} \begin{array}{c}\text { Gray, no } \\ \text { nizable color }\end{array}\right\}$	All parts of the spectrum weakened	- $\begin{aligned} & \text { 0.1-8 } \\ & 0.1-3\end{aligned}$

See "Über Farbgläser für wissenschaftliche und technische Zwecke," by Zsigmondy, Z. für Instrumentenkunde, 21 , 1901 (from which the above table is taken), and "Uber Jenenser Lichtfilter," by Grebe, same volume.
(The following notes are quoted from Everett's translation of the above in the English edition of Hovestadt's "Jena Glass.")
Division of the spectrum into complementary colors:
ist by 2728 (deep red) and 2742 (blue, like copper sulphate).
2nd by $454^{\text {di }}$ (bright yellow) and 447^{m} (blue, like cobalt glass).
$3^{\text {rd }}$ by $433^{\text {III }}$ (greenish-yellow) and $424^{\text {III }}$ (blue).
Thicknesses necessary in above : 2728, I.6-I.7 mm.; 2742, $5 ; 454^{\mathrm{III}}, 16 ; 447^{\mathrm{m}}, 1.5-2.0 ; 433^{\mathrm{II}}$, $2.5-3.5 ; 424^{\mathrm{H}}, 3 \mathrm{~mm}$.
Three-fold division into red, green and blue (with violet) :
2728, 1.7 mm . ; $414^{\text {III }}$, 10 mm .; $447^{\text {III }} 1.5 \mathrm{~mm}$., or by
2728, г. 7 mm . ; $436^{\text {III }}, 2.6 \mathrm{~mm}$.; $447^{\mathrm{III}}, 1.8 \mathrm{~mm}$.
Grebe found the three following glasses specially suited for the additive methods of three-color projection:

2745 , red ; $43^{8 \mathrm{III}}$, green; $447^{\text {III }}$, blue violet ;
corresponding closely to Young's three elementary color sensations.
Most of the Jena glasses can be supplied to order, but the absorption bands vary somewhat in different meltings.
See also "Atlas of Absorption Spectra," Uhler and Wood, Carnegie Institution Publications, 1907.
TABLE 219a. - Water Vapor.
Values of a in $I=I_{0} e^{\text {ad }}, d$ in $c . m . I_{0} ; I$, intensity before and after transmission.

Wave-length μ,	. 186	.193	. 200	. 210	. 220	.230	. 240	. 260	. 300	.415
a	. 0688	. 0165	. 009	.0061	. 0057	. 0034	. 0032	. 0025	. 0015	. 00035
Wave-length μ,	. 430	. 450	. 487	. 500	- 550	. 600	. 650	. 779	. 865	. 945
a	.00023	. 0002	.0001	. 0002	. 0003	. 0016	. 0025	. 272	. 296	. 538

First 9; Kreusler, Drud. Arn. 6, 1901, ; aext Ewan, Proc. R. Soc. 57, 1894, Aschkinass, Wied Ana. 55, 1895; last 3, Nichols, Phys. Rev. I, i.
See Rubens, Ladeaburg. Verh. D. Phys. Ges. 1911, for extinction coefs., reflective power and index of refraction, i μ to 18μ.

TABLE 220. - Tartaric Acid ; Camphor ; Santonin ; Santonio Acid; Cane Sugar.
A few examples are here given showing the effect of wave-length on the rotation of the plane of polarization. The rotations are for a thickness of one decimeter of the solution. The examples are quoted from Landolt \& Börnstein's "Phys. Chem. Tab." The following symbols are used:-

$$
\begin{aligned}
& p=\text { aumber grams of the active substance in roo grams of the solution. } \\
& q \text { " solvent } \\
& q \text { " " " }
\end{aligned}
$$

Right-handed rotation is marked + , lelt-handed -.

Line of spectrum.	Wave-length according to Angström io $\mathrm{cms} . \times{ }^{10}{ }^{\text {b }}$.	$\begin{aligned} & \text { Tartaric acid,* } \mathrm{C}_{\mathrm{u}} \mathrm{H}_{8} \mathrm{O}_{\mathfrak{B}} \\ & \text { dissolved in water. } \\ & q=50 \text { to } 95, \\ & \text { temp. }=24^{\circ} \mathrm{C} . \end{aligned}$	$\begin{gathered} \text { Camphor, } \\ \text { disselved } \\ \text { q }=50 \\ \text { temp. } \end{gathered}$	$\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{O}$, alcohol. $22.9^{\circ} \mathrm{C}$.	Santonin, $\mathrm{f}_{\mathrm{C}}^{15} \mathrm{H}_{18} \mathrm{O}_{3}$, dissolved in chloroform.$\begin{aligned} & q=75 \text { to } 96.5 ; \\ & \text { temp. }=20^{\circ} \text { C. } \end{aligned}$	
B C D E b_{1} $\mathrm{~b}_{2}$ F e	68.67 65.62 58.92 52.69 51.83 51.72 48.61 43.83	$\begin{array}{r} +2^{0} .748+0.09446 q \\ +1.950+0.13030 q \\ +0.153+0.17514 q \\ -0.832+0.19147 q \\ -0.82 .58+0.23977 q \\ -9.657+0.31437 q \end{array}$	$\begin{array}{r} 38^{\circ} .549-0.0852 q \\ 51.945-0.0964 q \\ 74.331-0.1343 q \\ -.38-0 . \\ 79.348-0.1451 q \\ 99.601-0.1912 q \\ 149.696-0.2346 q \end{array}$		$\begin{aligned} & -140^{\circ} .1+0.2085 q \\ & -149.3+0.1555 q \\ & -202.7+0.308 q q \\ & -285.6+0.5820 q \\ & -302.38+0.6557 q \\ & - \\ & -365.55+0.8284 q \\ & -534.98+1.5240 q \end{aligned}$	
		Santonin, $\dagger \mathrm{C}_{15} \mathrm{H}_{18} \mathrm{O}_{3}$, * dissolved in alcohol.$\begin{gathered} c=1.782 . \\ \text { temp. }=20^{\circ} \mathrm{C} . \end{gathered}$	Santonin, $\mathrm{C}_{15} \mathrm{C}_{18} \mathrm{H}_{3} \mathrm{O}_{3}$,		Santonic acid, \dagger $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}_{4}$, dissolved in chloroform. $c=27.192$. temp. $=20^{\circ} \mathrm{C}$.	Cane sugar, \ddagger $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{17}$, dissolved in water.$\beta=10 \text { to } 30 .$
			dissolved in alcohol. $\begin{gathered} c=4.046 \\ \text { temp. } \\ 20^{\circ} \mathrm{C} . \end{gathered}$	dissolved in chloroform $c=3.1-30.5$.		
B	68.67	-110.4°	442°	484°	- 49°	$47^{\circ} \cdot 56$
C	65.62	- 118.8	504	549	- 57	52.70
D	58.92	-161.0	693	754	-74	60.41
E	52.69	- 222.6	991	1088	- 105	84.56
b_{1}	51.83	-237.1	1053	1148	- II2	-88
b_{2}	51.72	-	-	-	-	87.88
F	48.6 L	- 261.7	1323	1444	-137	101.18
e	43.83	-380.0	2011	2201	- 197	
G	43.07 42.26	-	${ }_{2381}$	$2 \overline{260}$	$\begin{array}{r} - \\ -230 \end{array}$	131.96
* Arndtsen, "Ann. Chim. Phys." (3) 54, 1858. \dagger Narini, "R. Acc. dei Lincei," (3) 53,1882 . \ddagger Stefan, "Sitzb. d. Wien. Akad." 52, 1865 .						

TABLE 221. - Scdium Chlorate ; Quartz.

* The paper is quoted from a paper by Ketteler in "Wied. Ann." vol. 21, p. 444. The wave-lengths are for the Fraunhofer lines, Angström's values for the ultra violet sun, and Cornu's values for the cadmium lines.

Smithsonian Tables.

Newton＇s Table of Colors．

The following table gives the thickness in millionths of an inch，according to Newton，of a plate of air，water，and glass corresponding to the different colors in successive rings communly called colors of the first，second，third， elc．，orders．

苑	Color for re－ flected light．	Color far transmitted light．	Thickness in millionths of an inch for－				Color for re－ flected light．	Color far trans－ light．	Thickness in millionths of an inch for－		
			安	$\begin{aligned} & \frac{4}{40} \\ & \frac{N}{0} \end{aligned}$	$\begin{aligned} & \text { 解 } \\ & \frac{0}{0} \end{aligned}$				安	$\begin{aligned} & \dot{y y y} \\ & \text { By } \end{aligned}$	器
I．	Very black	White	0.5	0.4	0.2		Yellow ．．	Bluish green			
	Black Beginning	White ．	1.0	0.75	0.9		Red ．．	green	27.1	20.3 21.7	17.5 18.7
	Beginning of black．	－	2.0	1.5	1.3		Rluish red	－	29.0 32.0	24.0	18.7 20.7
	Blue ．．	Yellowish red	2.4	I． 8	1． 5	IV．	Bluish				
	White ．	Black ．．	5.2	3.9	3.4		green	－	24.0	25.5	22.0
	Yellow ．	Violet	7．1	$5 \cdot 3$	4.6		Green	Red	$35 \cdot 3$	26.5	22.7
	Orange	Blue．	8.0	6.0	4.2 5.8		Yellowish green				
	Red．．	Blue ．	9.0	6.7	5.8		green－ Red．	Bluish	36.0	27.0	23.2
II．	Violet ．	White	11.2	$3 \cdot 4$	7.2			green	40.3	30.2	26.0
	Indigo．	Yellow	12.8	9.6 10.5	8.4 9.0	V．	Greenish				
	Green ．	Red	14.0	10.5 11.3	$\begin{aligned} & 9.0 \\ & 9.7 \end{aligned}$		blue ．	Red ．	46.0	34.5	39.7
	Yellow．	Violet	16.3	12.2	10.4		Red ．	－	52．5	39.4	34．0
	Orange ．	－	17.2	13.0	11.3						
	Bright red	Blue ．	18.2	13.7	1 I .8	VI．	Greenish				
	Scarlet．．		19.7	14.7	12.7		blue ． Red．	－	58.7 65.0	46 48.7	38.0 42.0
III．	Purple ．	Green	21.0	15.7	13.5						
	Indigo ．	－	21.1	17.6	14.2	VII．					
	Blue	Yellow	23.2	17.5	15.1		blue ． R	－	72.0	53.2	45.8
	Green ．	Red．	25.2	18.6	16.2		Reddish white	－	71.0	57.7	49.4

The above table has been several times revised both as to the colors and the numerical values．Professors Reinold and Rucker，in their investigations on the measurement of the thickness of soap films，found it necessary to make new determinations．They give a shorter series of colors，as they found difficulty in distinguishing slight differences of shade，but divide each color into ten parts and tabulate the variation of thickness in terms of the tenth of a color band．The position in the band at which the thickness is given and the order of color are indicated by numerical subscripts．For example： R_{15} indicates the red of the first order and the fifth tenth from the edge furthest from the red edge of the spectrum．The thicknesses are in millionths of a centimeter．

离	Color．	Posi－ tion．	Thick－
I．	Red＊	$\mathrm{R}_{1} 5$	28.4
II．	Violet	V_{25}	30.5
	Blue．	$\mathrm{B}_{2} 5$	35.3
	Green Yellow	$\mathrm{G}_{2} 5$	40.9 45.4
	Orange＊	$\mathrm{P}_{2} 5$ $\mathrm{O}_{2} 5$	45.4 49.1
	Red．．	$\mathrm{R}_{2} 6$	52.2
III．	Purple	P_{85}	55.9
	Blue．	$\mathrm{B}_{8} 0$	57.7
	Blue＊	$\mathrm{B}_{3} 5$	60.3
	Green	$\mathrm{G}_{3} 5$	65.6
	Yellow＊	$Y_{3} 5$	71.0

免	Color．	Posi－
IV．	Red＊ Bluish red＊．	R_{85} BR_{85}
	Green	$\mathrm{G}_{4} 0$
	Yellow green＊ Red＊	$\begin{aligned} & \mathrm{YG}_{45}^{5} \\ & \mathrm{R}_{4} \end{aligned}$
V．	Green ${ }^{\text {Gre }}$	
	Green＊	－ $\mathrm{G}_{5} \mathrm{R}_{5}$
	Red＊	$\mathrm{R}_{5} 5$

Thick－ ness．
76.5
81.5
84.1
89.3
96.4
105.2
111.9
I18．8
126.0
133.5

安	Color．	Posi－	Thick－
VI．	Green ．	G_{50}	141.0
	Green＊	G_{65}	147.9
	Red．	$\mathrm{R}_{6} 0$	154.8 162.7
	Red＊	R_{65}	162.7
VII．	Green ．	G70	170.5
	Green＊＊	$\mathrm{G}_{7} 5$	178.7
	Red．	$\mathrm{R}_{7} 0$	$\begin{aligned} & 186.9 \end{aligned}$
	－Red＊	$\mathrm{R}_{7} 5$	
VIII．	Green Red ．	$\begin{aligned} & \mathrm{G}_{3} \\ & \mathrm{R}_{8} \end{aligned}$	$\begin{aligned} & 200.4 \\ & 211.5 \end{aligned}$

[^33]TABLE 223.
CONDUCTIVITY FOR HEAT.
The coefficient k is the quantity of heat in small calories which is transmitted per second through a plate one centimeter thick per square centimeter of its surface when the difference of temperature between the two faces of the plate is one degree Centigrade. The coefficient k is found to vary with the absolute temperature of the plate, and is expressed approximately by the equation $k_{t}=k_{0}\left[1+a\left(t-t_{0}\right)\right] . \quad k_{0}$ is the resistance at t_{0}, the lower temperature of the bracketed pairs in the table, k_{t} that at temperature t and a is a coustant.

[^34]\dagger Herschel, Lebour, and Dunn (British Association Committee).

THERMAL CONDUCTIVITIES AT HIGH TEMPERATURES.

Material.	Authority.	Temperature Centigrade Degrees.	Thermal Conductivity Calories per sec. per deg. C. per cm. cube.
Nickel	Angell ${ }^{1}$	300	. 126
		400	.117
		700	. 069
		800	. 068
		1000	. 064
		1200	. 058
Aluminum	Angell ${ }^{1}$	100	. 49
		200	. 55
		300	. 64
		400	. 76
		600	1.01
Iron	Hering	100-727	. 202
		100-912	.184
		100-1245	.191
Copper	Hering	100-197	- 1.043
		100-268	. 969
		100-370	.93I
		100-541	. 902
		100-837	. 858
Graphite (Artificial)	Hering	100-390	. 338
		100-546	. 324
		100-720	. 306
		100-914	.291
	Hansen*	30-2830	. 162
		2800-3200	. 002
			maximum. ${ }^{\text {minimum. }}$
		90-110	. 55 . 45
		180-220	. 44 . 34
		350-450	.35 . 26
		500-700	.31 . 22
Amorphous Carbon	Hansen ${ }^{2}$	37-163	. 028 . 003
		170-330	. 027 .004
		240-523	.020 .003
		283-597	. 011 I .004
	Hering	100-360	.089
		100-751	. 124
		100-842	. 129
Graphite brick Carborundum brick Magnesia brick Gas retort brick	Wologdine	300-700	. 024
		150-1200	. 0032 to . 027
	"	50-1130	. 0027 to .0072
		100-1125	.0038
Building and terra cotta	"	15-1100	.0018 to .0038
Silica brick	"	100-1000	.002 to . 0033
Stoneware mixtures	"	70-1000	.0029 to .0053
Porcelain (Sèvres)	"	165-1055	.0039 to .0047
Fire clay brick Limestone		125-1220	.0032 to .0054
	Poole ${ }^{\text {8 }}$	40 100	.0046 to .0057
		100	. 0039 to .0049
Granite	Poole ${ }^{8}$	350	. 0032 to .0035
		100	. 0045 to .0050
		200	.0043 to .0097
		500	.0040

Angell, Phys. Rev. 33, p. 421, 191 I; Clement, Egy, Eng. Exp. Univers. of Ill., Bul. 36, 1909; Dewey, Progressive Age, 27, p. 772, 1909 ; Hering, Trans. Am. Inst. Elect. Eng. IgIo; Poole, Phil. Mag. 24, p. 45, 1912 ; Wologdine, Bull. Soc. Encouragement, II I, p. 879, 1909 ; Electroch. and Met. Ind. 7, pp. 383, 433, 1909; Woolson, Eng. News, 58, p. 166, 1907 ; heat transmission by concretes. Actual values not given; Hansen, Trans. Amer. Electrochem. Soc. 16, p. 329, 1909; Richards, Met. and Chem. Eng. II, p. 575 , 1913.

1 'Taken from Angell's curves.
2 Values calculated from results expressed in other units. The max. and min. do ont relate to variability in material, but to possible errors in the method.
${ }^{3}$ Taken from Poole's curves.
Smithsonian Tables.

Tables 225-228.
CONDUCTIVITY FOR HEAT.

TABLE 225. - Various Subetances.

TABLE 226. - Water and Salt Solutions.

Substance.	Density.	t 0	k_{1}	Au- thor- ity.
	-	-	. 002	I
	-	\bigcirc	. 00120	2
	-	9-15	.00136	2
	-	4	. 00129	3
	-	30	. 00157	4
		18	. 00124	5
Solutions in water.				
	1.160	4.4	. 00118	2
	1.026	13	. 00116	4
	333\%	10-18	. 00267	6
	1.054	20.5	. 00126	
	1.100	20.5	. 00128	5
	1.180	21	. 015130	5
	1.134	$4 \cdot 5$.00118	2
	1.136	4.5	.00115	2
I Bottomley. 2 H. F. Weber. 3 Wachsmuth.		$\begin{aligned} & 4 \text { Graetz. } \\ & 5 \text { Chree. } \\ & 6 \text { Winkelmann. } \end{aligned}$		

TABLE 227. - Organic Liquide.

TABLE 228. - Gases.

| Substance. | | t | | k_{t} |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

[^35]Smithsonian Tables.

DIFFUSIVITIES.

The diffusivity of a substance $=h^{2}=k / c \rho$, where k is the conductivity for heat, c the specific heat and ρ the density. (Kelvin.) The values are mostly for room temperatures, about $18^{\circ} \mathrm{C}$.

Material.	Diffusivity.	Material.	Diffusivity.
Aluminum	0.826	Coal .	0.002
Antimony	. 139	Concrete (cinder) 0032
Bismuth . . -	. 0678	" (stone)0058
Brass (yellow) 339	" (light slag) 006
Cadmium - .	. 467	Cork (ground) . .	. 0017
Copper	1.133	Ebonite . - .	. 0010
Gold . - . ${ }^{\circ}$ - ${ }^{\circ}{ }^{\circ} \cdot$	1.182	Glass (ordinary) .	. 0057
Iron (wrought, also mild steel)	0.173	GraniteOI 55
Iron (cast, also I\% carbon steel)	. 121	Ice 0112
Lead . . . -	.237	Limestone :	. 0092
Magnesium . -	. 883	Marble (white) 0090
Mercury - -	. 0327	Paraffin . : 00008
Nickel .	. 152	Rock material (earth aver.) .	.0118
Palladium	. 240	" " (crustal rocks)	. 0064
Platinum	. 243	Sandstone OI 33
Silver .	1.737	Snow (fresh) 0033
Tin \cdot	0.407	Soil (clay or sand, slightly damp)	. 005
Zinc .	. 402	Soil (very dry)0031
Air - 179	Water : 0014
Asbestos (loose) 0035		. 00068
Brick (average fire) ${ }_{\text {b }}$ building) . . .	$.0074$	" ("with ") .	.0023

Taken from "An Introduction to the Mathematical Theory of Heat Conduction," Ingersoll and Zobel, $19 r 3$.
Smithsonian Tables.
heat of combustion.

Heat of combustion of some common organic compounds.
Products of combustion, CO_{2} or SO_{2} and water, which is assumed to be in a state of vapor.

Substance.	Small calories per gram of substade.	Authority.
	11923 8958 7183 5307 9977 $7400-8500$ 7800 6900 7000 3244 1290 $5800-11000$ $5200-5500$ 13063 $9618-9793$ $720-750$ $9200-9400$ $9328-9442$ 11094 11045 10800 4168 4207 3990 4422	Thomsen. Favre and Silbermann. Stohmann, Kleber, and Langbein. Various. Average of various. " " ، " " " Berthelot. Roux and Sarran. Mahler. Various. Favre and Silhermann. Various. " Stohmann. Mahler. 6 64 Gottlieb. 6 6

Smithsonian Tableb.

HEAT VALUES AND ANALYSES OF VARIOUS TYPES OF FUEL．
（a）Ccals．

Coal．				－	$\begin{aligned} & \text { 旨 } \\ & \frac{\text { a }}{5} \end{aligned}$				哭		
Lignite $\{$ Low grade	38．81	25.48	27.29	8.42	． 97	7.09	37.45	． 50	45.57	3526	6347
Lignite High grade	33.38	27.44	29.62	9.56	． 94	6.77	4 I .3 I	． 67	40.75	3994	7189
Sub－bitu－\｛ Low grade	22.71	34.78	36.60	5.91	． 29	6.14	52.54	1.03	34.09	5115	9207
minous \％High grade ．	I 5.54	33.03	46.06	5.37	． 58	5.89	60.08	1.05	27.03	5865	10557
Bituminous $\{$ Low grade ．	I I 144	33.93	43.92	10.71	4.94	5.39	60.06	1.02	17.88	6088	10958
Bituminous $\{$ High grade	$3 \cdot 42$	34.36	58.83	3.39	． 58	5.25	77.98	1.29	11.51	7852	14134
Semi－bitu－ Low grade ．	2.7	14.5	75.5	$7 \cdot 3$	． 99	4.58	80.65	1.82	4.66	7845	14121
minous \｛ High grade．	3.26	14.57	78.20	3.97	． 54	4.76	84.62	1.02	5.09	8166	14699
Semi－anthracite．．${ }^{\text {c }}$ ．	2.07 2	9.81	78.82	9．30	1.74	3.62	80.28	1.47	3.59	7612	13702
Anthracite $\left\{\begin{array}{l}\text { Low grade } \\ \text { He }\end{array}\right.$	2.76	2.48	82.07	12.69	． 54	2.23	79.22	． 68	4.64	6987	12577
Anthracite High grade	3.33	3.27	84.28	9.12	． 60	3.08	8 r .35	． 79	5.06	7417	1335 ${ }^{1}$

（b）Peats（air dried）．

（c）ILquid Fuels．

Fuel．	$\begin{aligned} & \text { Specific Gravity } \\ & \text { at } 15^{\circ} \mathrm{C} \end{aligned}$	Calories per gram．	British Thermal Units per pound．
Petroleum ether	．684－694	12210－12220	21978－21996
Gasoline ．．．．．．．	． $710-.730$	11100－11400	19980－20520
Kerosene Fuel oils，heavy petroleum or	．790－．800	11000－11200	19800－20160
refinery residue． Alcohol，fuel or denatured	．960－．970	10200－10500	18360－18900
denaturing material	． $8196-.8202$	6440－6470	11592－11646

Table compiled by U．S．Geological Survey．

Smithsonian Tables．

CHEMICAL AND PHYSICAL PROPERTIES OF FIVE DIFFERENT CLASSES OF EXPLOSIVES．

Explosive．						Duration of flame from soo grams of explosive．				
			㟔宫	厚				$\begin{aligned} & \dot{\oplus} \\ & \dot{\ddot{y}} \\ & \text { in } \end{aligned}$	皆	皆
（A）Forty－per－cent nitro－ glycerin dynamite	I． 22	1221.4	8235	227＊	4688	$\cdot 358$	24.63	12	88.4 79.7 14.5	25
（B）FFF black blasting powder	1.25	789.4	4817	$\begin{aligned} & 374^{\dagger} \\ & 458^{*} \end{aligned}$	$469.4 \ddagger$	925.	54.32	－	154.4 126.9 4.111	25
（C）Permissible explo－ sive；nitroglycerin class	1.10	760.5	5912	301＊	3008	．471	27.79	4	$\begin{array}{r} 103.9 \\ 65.1 \\ 15.4 \end{array}$	1000
（D）Permissible explo－ sive；ammonium nitrate class	0.97	992.8	7300	279＊	3438§	． 483	25.68	1	$\begin{aligned} & 89.8 \\ & 27.5 \\ & 75.5 \end{aligned}$	800
（E）Permissible explo－ sive；hydrated class	I． 54	610．6	6597	434＊	2479	$.33^{8}$	17.49	3	86． 56．0 33.0	$\begin{array}{\|l} \text { Over } \\ 1000 \\ \hline \end{array}$
	Chemical Analyses．									
				（D）MoistureAmmonium nitrateSulphur.						

[^36]Heat of combioation of elements and compounds expressed io uoits，such that when unit mass of the substance is units，which will be raised in temperature

Substance．	Combined with oxygen forms	Heat units．	Combined with chloriae forms－	Heat units．	Combined with sulphar forms－	Heat units．	妾实
Calcium	CaO	3284	CaCl_{2}	4255	CaS	2300	1
Carbon－Diamond ．	CO_{2}	7859	－	5	－		2
＂${ }^{\text {a }}$	CO	2141	－	－	－	－	3
＂－Graphite	CO_{2}	7796	－	－	－	－	3
Chlorine ．．	$\mathrm{Cl}_{2} \mathrm{O}$	－ 254	C^{-}	－	－	－	1
Copper	$\mathrm{Cu}_{2} \mathrm{O}$	321	CuCl	520	－	－	I
＂	CuO	585	CuCl_{9}	819	CuS	158	1
	＂	593		－	H_{2}		4
Hydrogen＊	$\mathrm{H}_{2} \mathrm{O}$	34154 34800 3481	HCl	22000	$\mathrm{H}_{2} \mathrm{~S}$	225°	3
＂．．	＂	34417	－	－	－	－	6
Iron ．	FeO	1353	FeCl_{2}	1464	FeSH ${ }_{2} \mathrm{O}$	428	3
＂			FeCl_{8}	1714	－	－	3
Iodine	$\mathrm{I}_{2} \mathrm{O}_{5}$	177	－	－	－	－	1
Lead	PbO	243	PbCl_{2}	400	PbS	98	1
Magnesium	MgO	6077	MgCl_{2}	6291	MgS	3191	1
Manganese	$\mathrm{MnOH}_{2} \mathrm{O}$	1721	MnCl_{2}	2042	$\mathrm{MnSH}_{2} \mathrm{O}_{2}$	841	1
Mercury ．	$\mathrm{Hg}_{2} \mathrm{O}$	105	$\mathrm{HgCl}^{\text {a }}$	206	－	－	I
＂	HgO	153	HgCl_{2}	310	HgS	84	I
Nitrogen＊	$\mathrm{N}_{2} \mathrm{O}$	－654	．	－		－	I
＂	NO	－1541	－	－	－	－	1
＂	NO_{2}	－I43	－	－	－	－	I
Phosphorus（red）	$\mathrm{P}_{2} \mathrm{O}_{5}$	5272	－	－	－	－	1
＂（yellow）		5747	－	－	－	－	7
＊＂	＂	5964	－	－			1
Potassium	$\mathrm{K}_{2} \mathrm{O}$	1745	KCl	2705	$\mathrm{K}_{2} \mathrm{~S}$	1312	8
Silver	$\mathrm{Ag}_{2} \mathrm{O}$	27	AgCl	271	$\mathrm{Ag}_{2} \mathrm{~S}$	24	1
Sodium	$\mathrm{Na}_{2} \mathrm{O}$	3293	NaCl	4243	$\mathrm{Na}_{2} \mathrm{~S}$	1900	8
Sulphur	SO_{2}	2241	－	－	－	－	1
＂		2165	－	－	－	－	2
Tin ${ }_{6}$	SnO	573	SnCl_{2}	690	－	－	4
＂inc．	－		SnCl_{4}	1089	－	－	7
Zinc．	ZnO	$\begin{aligned} & 1185 \\ & 1314 \end{aligned}$	ZnCl_{2}	1495	－	－	4 I
Substance．	Combined with $\mathrm{S}+\mathrm{O}_{4}$ to form－	Heat units．	Combined with $\mathrm{N}+\mathrm{O}_{3}$ to form－	Heat units．	Combined with $\mathrm{C}+\mathrm{O}_{3}$ to form－	Heat uaits．	首
Calcium	CaSO_{4}		$\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}$	5080	CaCO_{8}	6730	1
Copper ．	CuSO_{4}	2887	$\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}$	1304	－		1
Hydrogen	$\mathrm{H}_{2} \mathrm{SO}_{4}$	96450	HNO_{8}	41500	－	－	1
Iron．	FeSO_{4}	4208	$\mathrm{Fe}\left(\mathrm{NO}_{3}\right)_{2}$	2134	－	－	1
Lead ．	PbSO_{4}	1047	$\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$	512	PbCO_{8}	814	1
Magnesium	MgSO_{4}	12596	－	$\underline{-}$	－	－	1
Mercury ．	－	－	－	－	－	\checkmark	1
Potassium	$\mathrm{K}_{2} \mathrm{SO}_{4}$	4416	KNO_{3}	3061	$\mathrm{K}_{2} \mathrm{CO}_{3}$	3583	1
Silver	$\mathrm{Ag}_{2} \mathrm{SO}_{4}$	776	AgNO_{3}	266	$\mathrm{Ag}_{2} \mathrm{CO}_{3}$	561	I
Sodium	$\mathrm{Na}_{\mathrm{ZnSO}_{4}}$	7119 3538	NaNO_{-}	4834	$\mathrm{Na}_{2} \mathrm{CO}_{3}$	584	1
Zinc ．	ZnSO_{4}	3538	，	－	－	－	1

Authorities．

[^37][^38]Smithsonian Tableg．

COMBINATION.
caused to combine with oxygen or the negative radical, the numbers indicate the amount of water, in the same from 0° to $1^{\circ} \mathrm{C}$. by the addition of that beat.

LATENT HEAT OF VAPORIZATION.

The temperature of vaporization in degrees Centigrade is indicated by T : the latent heat in large calories per kilogram or io small calories or therms per gram by H; the total heat from $\circ^{\circ} \mathrm{C}$, in the same units by H^{\prime}. The pressure is that due to the vapor at the temperature T.

LATENT HEAT OF VAPORIZATION.*

Substance, formula, and temperature.	$l=$ total heat from fluid at 0° to vapor at t°. $r=$ latent heat at t^{2}.	Authority.
$\begin{gathered} \text { Acetone, } \\ \mathrm{C}_{8} \mathrm{H}_{8} \mathrm{O}, \\ -3^{\circ} \text { to } 147^{\circ} . \end{gathered}$	$\begin{aligned} & l=140.5+0.36644 t-0.0005 \mathrm{~s} 6 t^{2} \\ & l=\mathrm{r} 39.9+0.23356 t+0.00055358 t^{2} \\ & r=\mathrm{I} 39.9-0.27287 t+0.000157 \mathrm{I} t^{2} \end{aligned}$	Regnault. Winkelmann. "
$\begin{gathered} \text { Benzol, } \\ \mathrm{C}_{8} \mathrm{H}_{8,} \\ 7^{\circ} \text { to } 2 \mathrm{I}^{\circ} . \end{gathered}$	$l=109.0+0.24429 t-0.0001315 t^{2}$	Regnault.
$\begin{gathered} \text { Carbon dioxide, } \\ \mathrm{CO}_{2}, \\ -25^{\circ} \text { to } 31^{\circ} . \end{gathered}$	$r^{2}=118.485(31-t)-0.4707\left(3 \mathrm{I}-t^{2}\right)$	Cailletet and Mathias.
Carbon disulphide, CS_{2}, -6° to 143°.	$\begin{aligned} & l=90.0+0.14601 t-0.000412 t^{2} \\ & l=89.5+0.16993 t-0.001016 \mathrm{I} t^{2}+0.000003424 t^{8} \\ & r=89.5-0.06530 t-0.0010976 t^{2}+0.000003424 t^{3} \end{aligned}$	Regnault. Winkelmann.
Carbon tetrachloride, CCl_{4}, 8° to 163°.	$\begin{aligned} & l=52.0+0.14625 t-0.000172 t^{2} \\ & l=51.9+0.17867 t-0.0009599 t^{2}+0.000003733 t^{8} \\ & r=51.9-0.0193 \mathrm{I} t-0.0010505 t^{2}+0.000003733 t^{3} \end{aligned}$	Regnault. Winkelmann.
Chloroform, CHCl_{8}, -5° to 159°.	$\begin{aligned} & l=67.0+0.1375 t \\ & l=67.0+0.14716 t-0.0000937 t^{2} \\ & r=67.0-0.08519 t-0.0001444 t^{2} \end{aligned}$	Regnault. Winkelmann.
Nitrogen, N .	$r=68.85-0.2736 \mathrm{~T}$	Alt.
Nitrous oxide, $\begin{gathered} \mathrm{N}_{2} \mathrm{O} \\ -20^{\circ} \text { to } 36^{\circ} . \end{gathered}$	$r^{2}=131.75(36.4-t)-0.928(36.4-t)^{2}$	Cailletet and Mathias.
Oxygen, 0.	$r=60.67-0.2080 \mathrm{~T}$	Alt.
Sulphur dioxide, SO_{2} 0° to 60°.	$r=91.87-0.3842 t-0.000340 t^{2}$	Mathias.
Water, $\mathrm{H}_{2} \mathrm{O}$.	$\begin{aligned} & r=94.210(365-t)^{0.81249}, 30^{\circ}-100^{\circ} \\ & r=538.46-0.642(t-100)-0.000833(t-100)^{2}, \\ & r=539.66-0.718(t-100), 120^{\circ}-180^{\circ} \end{aligned}$	$\underset{\text { " }}{\text { Henning. }}$

* Quoted from Lavdolt \& Börnstein's "Phys, Chem. Tab."

Smithsonian Tables.

LATENT HEAT OF FUSION.

This table contains the latent heat of fusion of a number of solid substances in large calories per kilogram or small calories or therms per gram. It has been compiled principally from Landolt and Börnstein's tables. C indicates the composition, T the temperature Centigrade, and H the latent heat.

Substance.	C	T	H	Authority.
Alloys: $30.5 \mathrm{~Pb}+69.5 \mathrm{Sn}$	PbSn_{4}	183	17.	Spring.
$36.9 \mathrm{~Pb}+63.15 \mathrm{Sn}$	PbSn_{8}	179	15.5	
$63.7 \mathrm{~Pb}+36.3 \mathrm{Sn}$	PbSn	177.5	11.6	"
${ }^{\text {a }}$. $77.8 \mathrm{~Pb}+22.2 \mathrm{Sa}$,	$\mathrm{P}^{2} \mathrm{Sn}$	176.5	9.54	Ledebur
Britannia metal, $9 \mathrm{Sn}+\mathrm{IPb}$.		236	28.0**	Ledebur.
Rose's alloy, $24 \mathrm{~Pb}+27.3 \mathrm{Sn}+48.7 \mathrm{Bi}$	-	98.8	6.85	Mazzotto.
Wood's alloy $\{25.8 \mathrm{~Pb}+14.7 \mathrm{Sn}$,	-	75.5	8.40	"
	Al	658.		
Ammonia .	NH_{3}	-75.	${ }_{108 .}$	Massol.
Benzole	$\mathrm{C}_{6} \mathrm{H}_{6}$	5.4	30.6	Mean.
Bromine -	${ }^{\mathrm{Br}}$	-7.3	16.2	Regnault.
Bismuth -	${ }^{\text {Bi }}$	268	12.64	Person.
Cadmium ${ }^{\text {a }}$	$\mathrm{CaCl}^{\mathrm{Cd}}$	320.7	13.66	
	$\mathrm{CaCl}_{2}+6 \mathrm{Cu}_{2} \mathrm{O}$	28.5 I083	40.7	an.
Iron, Gray cast *		$\stackrel{1083}{-}$	42.	Mean. Gruner.
" White "	-	-	33.	"
" Slag .	\bar{I}			"
Iodine . .	I	-	11.71	Favre and Silbermann.
Ice .	$\mathrm{H}_{2} \mathrm{O}$	\bigcirc	79.63	\{ Dickinson, Harper, Osborne. \dagger
"		\bigcirc	79.59	Smith. \ddagger
" (from sea-water).	$\left\{\begin{array}{c} \mathrm{H}_{2} \mathrm{O}+3.535 \\ \text { of solids } \end{array}\right\}$	-8.7	54.0	Petterson.
Lead .	$\underset{\mathrm{Pb}}{ }{ }_{\text {P }}$	327	5.36	Mean.
Mercury -	Hg	-39	2.82	Person.
Naphthalene • - .	$\mathrm{C}_{10} \mathrm{H}_{8}$	79.87	35.62	Pickering.
Nickel • • -	$\mathrm{Ni}^{\mathrm{Ni}}$	1435	4.64	Pionchon.
${ }_{\text {Phalladium }}$ Phosphorus	Pd	1545	36.3	Violle.
Phosphorus	${ }_{\mathrm{P} \text { P }}$	44.2	4.97	Petterson.
Platinum • - - -	${ }_{\text {Pt }}$	1755	27.2	Violle.
Potassium nitrate \quad P :	KNO_{3}	${ }^{62}$	15.7 48.9	Joannis.
Phenol . .	$\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{O}$	333.5	24.93	Petterson.
Paraffin		52.40	35.10	Batelli.
Silver	$\mathrm{Ag}^{\text {a }}$	961	21.07	Person.
${ }_{\text {" }}^{\text {Sodum }}$ nitrate	$\stackrel{\mathrm{Na}}{\mathrm{NaNO}_{3}}$	${ }^{5} 97$	31.7 64.87	Joannis.
phosphate	$\left\{\mathrm{Na}_{2} \mathrm{HPO}\right.$	36.8 36.1	66.8	"
Spermaceti		43.9		
Sulphur	S	115	${ }_{9} 9.37$	Person.
${ }^{\text {Tin }}$, ${ }^{\text {c }}$	Sn	232	14.0	Mean.
Wax (bees) Zinc.	$\overline{\mathrm{Zn}}$	61.8	42.3	"

* Total heat from $0^{\circ} \mathrm{C}$.
\dagger U. S. Bureau of Standards, 19 I 3 , in terms of 15° calorie.
\ddagger 1903, based on electrical measurements, assumiog mechanical equivalent $=4.187$, and in terms of the value of the international volt in use after rgri.

Smithsonian tables.

Table 236.
MELTING-POINTS OF THE CHEMICAL ELEMENTS.
The metals in heavier type are often used as standards.
The melting-points are reduced as far as possible to a common temperature scale which is the one used by the United States Bureau of Standards in certifying pyrometers. This scale is defined in terms of Wien's law with C_{2} taken as 14500 , and on which the melting-point of platinum is $1755^{\circ} \mathrm{C}$ (Nernst and Wartenburg, 1751; Waidner and Burgess, 1753; Holborn and Valentiner, 1770; see C. R. 148, p. 1177, 1909). Above $1100^{\circ} \mathrm{C}$, the temperatures are expressed to the nearest $5^{\circ} \mathrm{C}$. Temperatures above the platinum point may be uncertain by over $50^{\circ} \mathrm{C}$.

Element.	Meltingpoint.	Remarks.	Element.	Meitingpoint.	Remarks.
Aluminum	658 ± 1	Most samples give 657 or less	Manganese Mercury	1260	Burgess-Waltenberg
		(Burgess).	Molybdenum		Mendenhall-Forsythe
Antimony	630 ± 1	"Kahlbaum"purity.	Neodymium	840	(Muthmann-Weiss.)
			Neon	-252	
Argon Arsenic Barium Beryllium Bismuth	- 188	Ramsay-Travers.	Nickel	1452	Day, Sosman, Burgess, W altenberg.
	500 850	(Guntz.)			
	< Ag		Nitrogen	- 211	(Fischer-Alt.)
	270	Adjusted	Osmium	About 2700	(Waidner - Burgess,
Boron	$\left\{\begin{array}{l}>2000 \\ <2500\end{array}\right\}$	Weintraub.	Oxygen Palladium		unpublished.)
Brom	$\left\{\begin{array}{c}<2500 \\ -7.3\end{array}\right.$			$\left\|\begin{array}{c} -230 ? \\ 1545 \pm 15 \end{array}\right\|$	(Waidner-Burgess, Nernst-Wartenburg.)
Cadmium	321	$\begin{array}{ll} \text { Range: } & 320.7 \\ 320.9 . \end{array}$			
Cæsium	26	$\text { Range : } 26.37-$		44.2	
Calcium	805	Adjusted.	Platinum	${ }^{1} 755 \pm 20$	See Note.
Chlorine	- 102	(Olszewski.)	Potassium	62.3	
Carbon	(>3500)	Sublimes.	Præsodymium	940	
Cerium	645		Rhodium	1910	(Mendenhall-Ingersoll.)
Chromium	>152	berg	Rubidium	38.5	
Cobalt	1478	Burgess-Waltenberg	Ruthenium Samarium	$\begin{gathered} 1900 ? \\ 1300-1400 \end{gathered}$	(Muthmann-Weiss.)
Copper	1083 ± 3	Mean, HolbornDay, DayClement.	Selenium	$\begin{array}{r} 217 \\ 1420 \\ 961 \frac{1}{1} 1 \\ 97 \end{array}$	Saunders. Adjusted. Adjusted.
			Silve		
Erbium Fluorine	- 223		Sodium		
		$\begin{aligned} & \text { (Moissan }- \text { De- } \\ & \text { war.) } \end{aligned}$	Strontium Sulphur	$113.5-119.5$	Between Ca and Ba ? V arious forms. See
Gallium Germanium	$\stackrel{30.1}{<} \mathrm{Ag}$		Tantalum	2800	Adjusted from Waid-ner-Burgess $=29$ Io.
Gold	$1063=3$	Adjusted	Tellurium		Adjusted.
Hydrogen Indium	- 259 155	(Thiel.)	Thallium	3502	Adjusted.
Iodiue	114	Range:112-115.	Thorium	$>1700<\mathrm{Pt}$	v. Wartenburg.
Iridium	2290	gersoll.	Tin		Burgess-Waltenberg.
	1530		TitaniumTungsten	$\begin{array}{r} 1795 \\ 2950 \end{array}$	
Iron		Burgess-Waltenberg.			gess and Warten-
Krypton	-169	(Ramsay).	Uranium Vanadium Xenon	$\begin{gathered} \text { Near Mo } \\ 1720 \\ -140 \end{gathered}$	Moissan. Burgess-Waltenberg. Ramsay.
Lanthanum	810	(MuthmannWeiss.)			
Lead	-	(Kahlbaum.) (Grube) in clay crucibles, 635 .			
Lithium	18		Zinc Zirconium	$\stackrel{419}{> \pm_{\mathrm{Si}}} 0.5$	Troost.
Magnesium	651				

Smithsonian Tables.

BOILING-POINTS OF THE CHEMICAL ELEMENTS.

Element.	Range.	Boilingpoint.	Observer; Remarks.
	$\stackrel{-}{-}$	$\stackrel{\circ}{\circ} \mathrm{O}$	
Aluminum Antimony		I800. $1440 .$	Greenwood, Ch. News, $100,1909$.
Argon	-	-186.1	Ramsay-Travers, Z. Phys. Ch. 38, 1901.
Arsenic	449-450		Gray, sublimes, Conechy. ${ }^{\text {a }}$, 188
"	280-310	>360	Black, sublimes, Engel, C. R. 96, 1883. Yellow, sublimes.
Barium		-	Boils in vacuo, Guntz, 1903.
Bismuth	1420-1435	1430.	Barus, 1894 ; Greenwood, 1. c.
Boron			Volatilizes witbout melting in electric arc.
Bromine	59-63	6 I .1	Thorpe, 1880 ; van der Plats, 1886.
Cadmium		778.	Berthelot, 1902.
Cæsium	-	670.	Ruff-Johannsen.
Carbon	-	3600.	Computed, Violle, C. R. 120, 18955
			Volatilizes withourmelting in electric oven, Moisson.
Chlorine	-	-320.6.	Regnault, 1863. Greenwood, Ch. News, $100,1909$.
Copper	2100-2310	23 IO .	"" 1. c.
Fluorine		-187.	Moisson-Dewar, C. R. 136, 1903.
Helium	-	-267.	Computed, Tracers Cb. News, 86, 1902.
Hydrogen	$-252.5-252.8$	-252.6	Mean.
Iodine		>200. 2450.	Greenwood, l, c.
Krypton	-	-151.7	Ramsay, Ch. News, 87, 1903.
Lead	-	1525.	Greenwood, 1. c.
Lithium	-	1400.	Kuff-Johannsen, Ch. Ber. 38, 1905.
Magnesium	-	1120.	Greenwood, l. c.
Manganese	-	1900.	
Mercury	-	- 357.	Crafts; Regnault. Dewar, igot.
Nitrogen	-195.7-194.4	-195.	Mean.
Oxygen	-182.5-182.9	-182.7	"
Phosphorus	287-290	$\begin{array}{r}-119 . \\ \hline 288 . \\ \hline\end{array}$	Troost, C. R. 126, 1898.
Potassium	667-757	712.	Perman; Ruff-Johannsen.
Rubidium		696.	Ruff-Johannsen.
Selenium	664-694	690.	
Silver	-	1955.	Greenwood, 1. c.
Sodium	742-757	750.	Perman; Ruff-Johannsen.
Sulphur	444.7-445	444.7	Mean.
Tellurium	-	1390.	Deville-Troost, C. R. 9r, 1880.
Thallium	-	1280.	v. Wartenberg, 25 Anorg. Ch. 56, 1908.
Tin	-	2270.	Greenwond, 1. c.
Xenon	916-942	-109.1	Ramsay, Z. Phys. Ch. 44, 1903.

[^39]Table 238.
DENSITIES AND MELTING AND BOILING POINTS．INORGANIC COMPOUNDS．

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Substance． \& Chemical Formula． \& Density about 20° C． \& Melting－ point C． \& $$
\begin{aligned}
& \dot{8} \\
& \text { 总 } \\
& \text { 品 }
\end{aligned}
$$ \& Boiling－ point C． \& Pres－ sure mm ． \& 离

\hline Aluminum chloride nitrate． \& $$
\begin{gathered}
\mathrm{AlCl}_{3} \\
\mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}+9 \mathrm{H}_{2} \mathrm{O}
\end{gathered}
$$ \& － \& 190.8
72.8 \& 1 \& 183° \& 752 \& I

\hline Aluminum oxide ． \& $$
\mathrm{Al}_{2} \mathrm{O}_{3}
$$ \& 4.00 \& 2020 \& 11 \& － \& \& －

\hline Ammonia ．： \& NH_{8} \& － \& －75． \& 3 \& －33．5 \& 760 \& 7

\hline Ammonium nitrate． \& $\mathrm{NH}_{4} \mathrm{NO}_{8}$ \& 1.72 \& 165. \& \& －33 \& \&

\hline ＂sulphate． \& $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$ \& 1.77 \& 140. \& 4 \& － \& \&

\hline ＂phosphite \& $\mathrm{NH}_{4} \mathrm{H}_{2} \mathrm{PO}_{3}$ \& \& 123. \& 5 \& － \& \&

\hline Antimony trichloride ．． \& SbCl_{8} \& 3.06 \& 73. \& 5 \& 223. \& 760 \& －

\hline ＂pentachloride． \& SbCl_{5} \& 2.35 \& －3． \& 11
8 \& 102. \& 68 \& 14

\hline Arsenic trichloride．．． \& AsCl_{3} \& 2.20 \& －18． \& 8 \& 130.2 \& 760 \& 23

\hline Arsenietted hydrogen． \& ${ }_{\text {AsH3 }}$ \& － \& － 113.5 \& 6 \& －54．8 \& ＂ \& 6

\hline Barium chloride ．． \& $\mathrm{BaCl}_{2} .2 \mathrm{H}_{2} \mathrm{O}$ \& 3.10 \& 113. \& 9 \& － \& \& －

\hline ＂nitrate \& $\mathrm{Ba}\left(\mathrm{NO}_{8}\right)_{2}$ \& 3.24 \& 575. \& 24 \& － \& \& －

\hline ＂perchlorate \& $\mathrm{Ba}\left(\mathrm{ClO}_{4}\right)_{2}$ \& － \& 505. \& 10 \& － \& \&

\hline Bismuth trichloride \& BiCl_{3} \& 4.56 \& 232.5 \& － \& 440. \& 760 \&

\hline Boric acid ．${ }^{\text {c }}$ \& $\mathrm{H}_{3} \mathrm{BO}_{8}$ \& 1.46

1 \& 185. \& \& － \& \&

\hline ＂anhydride．．${ }^{\text {Borax（sodium borate）}}$ \& $\mathrm{B}_{2} \mathrm{O}_{8}$
$\mathrm{Na}_{2} \mathrm{~B}_{4} \mathrm{O}_{7}$ \& 1.79
1.69 \& 577.
$561+$ \& 9 \& － \& \&

\hline Borax（sodium borate）
Cadmium chloride． \& $\mathrm{Ca}_{2} \mathrm{CdCl}_{4} \mathrm{O}_{7}$ \& 1.69
4.05 \& 561＋ \& 29 \& \& － \& 9

\hline $\underset{6}{\text { Cadmium chloride }}$ nitrate ． \& $\stackrel{\mathrm{Cd}\left(\mathrm{NO}_{3}\right)_{2}+4 \mathrm{Cd}_{2} \mathrm{O}}{ }$ \& 4.05
2.45 \& 560． \& 25
2 \& $900 . 士$
132. \& 760 \& 9
4

\hline Calcium chloride \& CaCl_{2} \& 2.26 \& 774. \& \& \& \％ \&

\hline ＂${ }^{\text {a }}$ \& $\mathrm{CaCl}_{2}+6 \mathrm{H}_{2} \mathrm{O}$ \& 1.68 \& 29.6 \& － \& － \& \&

\hline ＂nitrate． \& $\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}$ \& 2.36 \& 499. \& 24 \& － \& \&

\hline ＂＂ \& $\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}+4 \mathrm{H}_{2} \mathrm{O}$ \& 1.82 \& 42.3 \& 26 \& \& \&

\hline Carbon tetrachloride \& CCl_{4} \& 1.59 \& -24. \& 22 \& 76.7 \& 760 \& 23

\hline ＂، trichloride． \& $\mathrm{C}_{2} \mathrm{CO}_{\mathrm{B}}$ \& 1．63 \& 184． \& 6 \& \& \& 6

\hline ＂monoxide ． \& $\mathrm{CO}_{\mathrm{CO}}$ \& － \& －207． \& 6

3 \& $$
\begin{array}{r}
-190 . \\
-80 .
\end{array}
$$ \& 760

subl． \& 6

\hline ＂disulphide． \& CS_{2} \& 1.26 \& －110． \& 13 \& 46.2 \& 760 \&

\hline Chloric acid ．．． \& $\mathrm{HClO}_{4}+\mathrm{H}_{2} \mathrm{O}$ \& 1.81 \& 50. \& 15 \& － \& － \& －

\hline Chlorine dioxide \& ClO_{2} \& － \& －76． \& 3 \& 9.9 \& 731 \& 21

\hline Chrome alum \& $\mathrm{KCr}\left(\mathrm{SO}_{4}\right)_{2}+12 \mathrm{H}_{2} \mathrm{O}$ \& 1.83 \& 89. \& 16 \& \& \& －

\hline ＂nitrate \& $\mathrm{Cr}_{2}\left(\mathrm{NO}_{3}\right)_{8}+18 \mathrm{H}_{2} \mathrm{O}$ \& \& 37. \& 2 \& 170. \& 760 \& 2

\hline Cobalt sulphate． \& CoSO_{4} \& 3.53 \& 97. \& 16 \& － \& \&

\hline Cupric chloride． \& CuCl_{2} \& 3.05 \& 498. \& 9 \& ＋ \& 760 \&

\hline Cuprous＂．． \& $\mathrm{Cu}_{2} \mathrm{Cl}_{2}$ \& 3.7 \& 42 I ． \& \& 1000．\pm \& 760 \& 9

\hline Cupric nitrate \& $\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}+3 \mathrm{H}_{2} \mathrm{O}$ \& 2.05 \& 114.5 \& 2 \& 170. \& 760 \& 2

\hline Hydrobromic acid． \& ${ }^{\mathrm{HBr}}$ \& ， \& －86．7 \& 3 \& －68．7 \& \& －

\hline Hydrochloric＂． \& HCl \& － \& －III． 3 \& 17 \& －83．1 \& 755 \& 17

\hline Hydrofluoric＂ \& HFl \& ． 99 \& －92．3 \& 6 \& -36.7 \& \& 17

\hline Hydriodic＂ \& HI \& － \& －51．3 \& 17 \& -35.7 \& 760 \& －

\hline \& $\mathrm{H}_{2} \mathrm{O}_{2}$ \& 1.5 \& \& \& 80.2 \& 47 \& 20

\hline ＂${ }^{\text {u }}$ phosphide． \& PH_{3} \& \& －132．5 \& 6 \& －62． \& \&

\hline ＂sulphide \& $\mathrm{H}_{2} \mathrm{~S}$ \& 2.80 \& －86． \& 3 \& －62． \& \&

\hline Iron chloride．．． \& $\underset{\mathrm{Fe}\left(\mathrm{NO}_{3}\right)_{8}+\mathrm{FeCl}_{8} \mathrm{gH}_{2} \mathrm{O}}{ }$ \& 2.80
1.68 \& 301.
47.2 \& 2 \& － \& \&

\hline ＂sulphate ．．． \& $\mathrm{FeSO}_{4}+7 \mathrm{H}_{2} \mathrm{O}$ \& 1.90 \& 64. \& 16 \& － \& \&

\hline \& $$
\mathrm{PbCl}_{2}
$$ \& 5.8 \& 500. \& 9 \& 900．\pm \& 760 \&

\hline ＂metaphosphate Magnesium chloride \& $$
\underset{\mathrm{MgCl}_{2}}{\mathrm{~Pb}}\left(\mathrm{PO}_{3}\right)_{2}
$$ \& $\stackrel{-}{2.18}$ \& 800.

708. \& 9 \& － \& － \&

\hline Magnesium chloride ． \& $\frac{\mathrm{MgCl}}{2}$（ $\mathrm{Mg}_{8} \mathrm{NO}_{2}+6 \mathrm{H}_{2} \mathrm{O}$ \& 2.18
1.46 \& 708.
709. \& 9
2 \& 143. \& 760 \& 2

\hline ＂sulphate \& $\mathrm{MgSO}_{4}+5 \mathrm{H}_{2} \mathrm{O}$ \& 1.68 \& 150. \& 16 \& － \& － \& －

\hline Manganese chloride \& $$
\mathrm{MnCl}_{2}+4 \mathrm{H}_{2} \mathrm{O}
$$ \& 2.01 \& 87.5 \& 19 \& \& 760 \& 19

\hline ＂nitrate． \& $\mathrm{Mn}\left(\mathrm{NO}_{8}\right)_{2}+6 \mathrm{H}_{2} \mathrm{O}$ \& 1.82 \& 26. \& ${ }^{2}$ \& 129. \& ＂ \& 2

\hline ＂sulphate \& $\mathrm{MnSO}_{4}+{ }_{5} \mathrm{H}_{2} \mathrm{O}$ \& 2.09 \& 54. \& 16 \& － \& \& －

\hline Mercurous chloride \& $\mathrm{Hg}_{2} \mathrm{Cl}_{2}$ \& 7.10
5.42 \& $450 \pm$
282. \& \& 305. \& \&

\hline Mercuric chloride ． \& HgCl_{2} \& $5 \cdot 42$ \& \& \& 305. \& \& －

\hline
\end{tabular}

[^40]Smithsonian Tables．

TABLE 238 （continued）．
DENSITIES AND MELTING－AND BOILING－POINTS． INORGANIC COMPOUNDS．

Substance．	Chemical Formula．	Density about $20^{\circ} \mathrm{C}$ ．	Melting－ point C．		Boiling－ point C．	Pres－ sure mm．	离
Nickel carbonyl ．	$\mathrm{NiC}_{4} \mathrm{O}_{4}$	1.32	－25．	I	43°	760	－
${ }^{6}$ nitrate	$\mathrm{Ni}\left(\mathrm{NO}_{8}\right)_{2}+6 \mathrm{H}_{2} \mathrm{O}$	2.05	56.7	2	I 36.7	6	2
＂oxide ．．．．．	$\mathrm{NiO}^{(1)}$	6.69	5				
＂sulphate ．．．	$\mathrm{NiSO}_{4}+7 \mathrm{H}_{2} \mathrm{O}$	I． 98	99.	3	－	－	
Nitric acid ．．．．．	HNO_{3}	1． 52	－42．	4	86.	760	16
＂anhydride ．．．	$\mathrm{N}_{2} \mathrm{O}_{5}$	I． 64	30.	5	48.		9
＂oxide＊．．．．	NO	－	－155．	$\frac{8}{8}$	-153.	＂	6
＂peroxide．．	$\mathrm{N}_{2} \mathrm{O}_{4}$	－	－10．1	8	24.	760	－
Nitrous anhydride ．	$\mathrm{N}_{2} \mathrm{O}_{8}$	－	-82	7		＂	8
＂Phosphoric acid（ortho）．	$\begin{gathered} \mathrm{N}_{2} \mathrm{O} \\ \mathrm{H}_{8} \mathrm{PO}_{4} \end{gathered}$	1.88	$\begin{array}{r} -102.4 \\ 40 .+ \end{array}$	8	$\underline{-89.8}$	＂	8
Phosphoric acid（ortho）	$\mathrm{H}_{8} \mathrm{PO}_{4}$	1.88 I． 65	42. 72.	－	－	－	－
Phosphorus trichloride	PCl_{3}	I．61	－III． 8	10	76.	760	19
＂＊oxychloride	POCl_{8}	I． 68	＋1．3	－	108.	＂	$\underline{-}$
＂disulphide．	$\mathrm{P}_{8} \mathrm{~S}_{8}$	－	297.	12	－	＂	
＂pentasulphide	$\mathrm{P}_{2} \mathrm{~S}_{5}$	－	275.	13	522.	＂	
＂sesquisulphide	$\mathrm{P}_{4} \mathrm{~S}_{3}$	2.10	168.	－	400.	＂	
＂trisulphide ．	$\mathrm{P}_{2} \mathrm{~S}_{3}$	－	${ }_{8}^{290}$ ． 7	14	490.	＂	25
Potassium carbonate ．	$\mathrm{K}_{2} \mathrm{CO}_{3}$	2.29	840．士	－	－	－	
＂chlorate	KClO_{3}	2.34	372.	15	－	－	
＂chromate	$\mathrm{K}_{2} \mathrm{CrO}_{4}$	2.72	975.	17		－	
＂${ }^{\text {c }}$ perchlorate	$\mathrm{KCN}^{\mathrm{KCN}}$	1．52	－	5	－	－	
＂perchlorate	KClO_{4}	2.52	610.	15	－	－	－
＂chloride	$\mathrm{KCl}^{\mathrm{KNO}}$	1.99	801.		－		
＂${ }^{\prime}$ nitrate	KNO_{3}	2.10	341.			－	－
＂＊acid phosphate	KHSO_{4}	2.34 2.35	96. 205.	3	－	－	－
Silver chloride ，．．．	AgCl	5.56	451.	15	－		－
＂nitrate．．	AgNO_{8}	4.35	208.7			－	
＂perchlorate	AgClO_{4}		486.	18	－	－	－
＂phosphate ．．	$\mathrm{Ag}_{8} \mathrm{PO}_{4}$	6.37	849.	15	－	－	－
＂metaphosphate．	AgPO_{3}		482.	15	－		
＂sulphate	$\mathrm{Ag}_{2} \mathrm{SO}_{4}$	5.45	655．士		－		
Sodium chloride	NaCl	2.17	800.	11	－	－	－
＂hydroxide	NaOH	2.1	318.	27	－	－	－
＂nitrate ．	NaNO_{3}	2.26	315.	－	－		－
＂chlorate	NaClO_{3}	2.48	248.	28		－	－
＂perchlorate	NaClO_{4}	－	482.	18	－		－
＂carbonate	$\mathrm{Na}_{2} \mathrm{CO}_{3}$	2.48	852.		－		－
＂＂	$\mathrm{Na}_{2} \mathrm{CO}_{8}+10 \mathrm{H}_{2} \mathrm{O}$	1.46	34.	3	－		－
＂phosphate．．	$\mathrm{Na}_{2} \mathrm{HPO}_{4}+12 \mathrm{H}_{2} \mathrm{O}$	1.54	38.	3	－		－
＂metaphosphate	NaPO_{8}	2.48	617.	15	－	－	－
＂pyrophosphate	$\xrightarrow\left[\left(\mathrm{Na}_{4} \mathrm{P}_{2} \mathrm{O}_{7}\right]{ }\right.$	2.45	970.	30			
＂Phosphite ．．	$\left(\mathrm{H}_{2} \mathrm{NaPO}\right)_{2}+5 \mathrm{H}_{2} \mathrm{O}$	267	42.	20	－		
＂sulphate	$\xrightarrow{\mathrm{Na}_{2} \mathrm{SO}_{4}}$	2.67	884.	11	－	－	－
＂${ }^{6}$	$\mathrm{Na}_{2} \mathrm{SO}_{4}+10 \mathrm{H}_{2} \mathrm{O}$	1.46	32.38	17	－		
＂${ }^{\text {chyposulphite }}$	$\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}+5 \mathrm{H}_{2} \mathrm{O}$	1.73	48.16		－		
Sulphur dioxide．	SO_{2}		－76．		-10.	760	－
Sulphuric acid a ．	$\underset{\sim}{\mathrm{H}_{2} \mathrm{SO}_{4}}$	1． 83	10.4	21	338.	＂	22
＂${ }^{\text {＂}}$	${ }^{12} \mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{H}_{2} \mathrm{O}$	－	－0．5	22	－		－
＂＂،	$\mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{H}_{2} \mathrm{O}$	－	8.5	－	－		
＂＂（pyro）．	$\mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{7}$	－	35.	22	－		－
Sulphur trioxide．．．	SO_{8}	1.91	15.	－	46.2	760	－
Tin，stannic chloride ．	SnCl_{4}	2.28	-33.	23	114.	＊	19
＂stannous＂	SnCl_{2}	－	250.	24	605.	＂	
Zinc chloride	$\xrightarrow{\mathrm{ZnCl}_{2}}$	2.91	365.	29	710.	،	－
＂${ }^{\text {＂}}$ ．	$\mathrm{ZnCl}_{2}+3 \mathrm{H}_{2} \mathrm{O}$	－	6.5	26	－	－	－
＂${ }^{\text {c }}$ nitrate sulphate	$\underset{\mathrm{Zn}\left(\mathrm{NO}_{3}\right)_{2}+6 \mathrm{H}_{2} \mathrm{O}}{\mathrm{ZnSO}}$	2.06	36.4	3	131.	760	2
＂sulphate ．．．．	$\mathrm{ZnSO}_{4}+7 \mathrm{H}_{2} \mathrm{O}$	2.02	50.	3		－	－

1，Mond，Langer，Quincke；2，Ordway ；3．Tilden ；4，Erdmann；5，R．Weber；6，Olszewski；7，Birhaus；8，Ram－ say； 9 ，Deville；10，Wroblewski；11，Day，Sosman，White ； 32 ，Ramme；13，Meyer ；14，Lemoine； 15 ，Carnelly ；16， Mitscherlich；17，LeChatelier ；18，Carnelly，O＇Shea；19，Thorpe；20，Amat；21，Mendelejeff；22，Marignac ；23， Besson；24，Clarke，＂Const．of Nature＂；25，Isambert；26，Mylius；27，Hevesy；28，Retgers；29，Grünauer；30， Richards and others． ＊Under pressure 138 mm ．mercury．

Smithsonian Tables．

Tables 239-240.
TABLE 239. - Eftect of Pressure on Molting-Point.

Substance.	Melting-point at $1 \mathrm{~kg} / \mathrm{sq} . \mathrm{cm}$.	Highest experimental pressure: $\mathrm{kg} / \mathrm{sq} . \mathrm{cm}$.	$\underset{\text { at } \mathrm{It} / \mathrm{kg} / \mathrm{sq} . \mathrm{cm} .}{ }$	Δ t. (observed) for $1000 \mathrm{~kg} / \mathrm{sq} . \mathrm{cm}$.	Reference.
Hg	-38.85	12000	0.00511	5.1* ${ }^{\text {* }}$	1
K	59.7	2800	. 0136	13.8	2
Na	97.4	2800	. 0082	8.2	2
Sn	231.9	2000	. 00317	3.17	3
Bi	270.9	2000	-0.00344	- 3.44	3
Cd	320.9	2000	0.00609	6.09	3
Pb	327.4	2000	. 00777	7.77	3

* Δt (observed) for $10000 \mathrm{~kg} / \mathrm{sq} . \mathrm{cm}$. is 50.8°.

References. - 1. P. W. Bridgman, "Proc. Am. Acad." 47, pp. 391-96, 416-19, 191 I.
2. G. Tammann, "Kristallisieren und Schmelzen," Leipzig, 1903, pp. 98-99.
3. J. Johnston and L. H. Adams, "Am. J. Sci." 3I, p. 5 I6, 1911.

A large number of organic substances, selected on account of their low melting-points, have also been investigated : by Tammann, loc. cit.; G. A. Hulett, "Z. Physik. Chem." 28, p. 629, 1899; F. Körber, ibid., 82, p. 45, 1913; E. A. Block, ibid., 82, p. 403, 1913. The results for water are given in the following table.

TAbly 240. - Effect of Pressure on the Froezing-Point of Water (Bridgman*).

Pressurét: $\mathrm{kg} / \mathrm{sq} . \mathrm{cm}$.	Freezing-point.	Phases in Equilibrium.
$\begin{array}{r} 1 \\ 1000 \\ 2000 \\ 2115 \\ 3000 \\ 3530 \\ 4000 \\ 6000 \\ 6380 \\ 8000 \\ 12000 \\ 16000 \\ 20000 \end{array}$	$\begin{array}{r} \\ - \\ - \\ - \\ -20.0 \\ - \\ \hline \end{array} 22.15$	Ice I - liquid. 6 Ice I-ice III - liquid (triple point). Ice III - liquid. Ice III - ice V - liquid (triple point). Ice V —liquid. Ice V-ice VI — liquid (triple point). Ice VI - liquid. " "

*P. W. Bridgman, "Proc. Am, Acad." P. 47, 44r-558, 1912.
$\dagger \mathrm{I}$ atm. $=\mathbf{x} .033 \mathrm{~kg} / \mathrm{sq} . \mathrm{cm}$.

Smithsonian Tables.

TABLE 241. - Mroiting-point of Mixtures.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Metals.} \& \multicolumn{11}{|c|}{Melting-ppints, C°.} \& \multirow[t]{3}{*}{}

\hline \& \multicolumn{11}{|c|}{Percentage of metal in second column.} \&

\hline \& 0% \& 10\% \& 20\% \& 30\% \& 40\% \& 50\% \& 60\% \& 70\% \& 80\% \& 90\% \& 100% \&

\hline Pb. So. \& 326 \& 295 \& 276 \& 262 \& 240 \& 220 \& 190 \& 185 \& 200 \& 216 \& 232 \& I

\hline Pb. So. \& 322 \& 290 \& 27 \& $\stackrel{\rightharpoonup}{\square}$ \& 179 \& 145 \& 126 \& 168 \& 205 \& \pm \& 268 \& 7

\hline Te. \& 322 \& 710 \& 790 \& 880 \& 917 \& 760 \& 600 \& 480 \& 410 \& 425 \& 446 \& 8

\hline Ag. \& 328 \& 460 \& 545 \& 590 \& 620 \& 650 \& 705 \& 775 \& 840 \& 905 \& 959 \& 9

\hline Na. \& - \& 360 \& 420 \& 400 \& 370 \& 330 \& 290 \& 250 \& 200 \& 130
1020 \& 96
1084 \& 13

\hline Cu. \& 326 \& 870 \& 920 \& 925 \& 945 \& 950 \& 955 \& 985 \& 1005 \& 1020
600 \& 1084
632 \& $$
\begin{array}{r}
2 \\
86
\end{array}
$$

\hline Sb. \& 326 \& 250 \& 275 \& 330 \& 395 \& 440 \& 490 \& 525
1000 \& 560
10.40 \& 600 \& 632 \& 16
17

\hline Al. Sb. \& 650 \& 750 \& 840
600 \& 925 \& 945 \& 950
580 \& 970
610 \& 1000 \& 1040
930 \& 1010 \& 632
1084 \& 17
18

\hline Cu. \& 650 \& 630 \& 600 \& 560 \& 540 \& 580 \& 610 \& 755 \& 930
1055 \& 1055
675 \& 1084 \& 18

\hline Au. \& 655 \& 675 \& 740 \& 800 \& 855 \& 915 \& 970 \& 1025 \& 1055 \& 675 \& 1062 \& 10

\hline Ag. \& 650 \& 625 \& 615 \& 600 \& 590 \& 580 \& 575 \& 570 \& 650 \& 750 \& 954 \& 17

\hline Zn. \& 654 \& 640 \& 620 \& 600 \& 580 \& 560 \& 530 \& 510 \& 475 \& 425 \& 419 \& 11

\hline Fe. \& 653 \& 860 \& 1015 \& 1110 \& 1145 \& 1145 \& 1220 \& 1315 \& 1425 \& 1500

540 \& 1515 \& 3

\hline Sn. \& 650 \& 645 \& 635 \& 625 \& 620 \& 605 \& 590 \& 570 \& 560 \& 540 \& 232 \& 17

\hline Sb. Bi. \& 632 \& 610 \& 590 \& 575 \& 555 \& 540 \& 520 \& 470 \& 405 \& 330 \& 268 \& 16

\hline Ag. \& 630 \& 595 \& 570 \& 545 \& 520 \& 500 \& 505 \& 545 \& 680 \& 850 \& 959 \& 9

\hline Sn. \& 622 \& 600 \& 570 \& 525 \& 480 \& 430 \& 395 \& 350 \& 310 \& 255 \& 232 \& 19

\hline Zn. \& 632 \& 555 \& 510 \& 540 \& 570 \& 565 \& 540 \& 525
1230 \& 510
1060 \& 470
800 \& 419 \& 17

\hline Ni. So. \& 1455 \& 1380 \& 1290 \& 1200 \& 1235 \& 1290 \& 1305
730 \& 1230
730 \& 1060
755 \& 800 \& 232
268 \& 17

\hline Na. Bi. \& 96 \& 425 \& 520 \& 590 \& 645 \& 690 \& 720 \& 730 \& 715 \& 570 \& 268 \& 13

\hline Cd. \& 96 \& 125 \& 185 \& 245 \& 285 \& 325 \& 330 \& 340 \& 360 \& 390 \& 322 \& 13

\hline Cd. AE, \& 322 \& 420 \& 520 \& 610 \& 700 \& 760 \& 805 \& 850 \& 895 \& 940 \& 954 \& 17

\hline Tl. \& 321 \& 300 \& 285 \& 270 \& 262 \& 258 \& 245 \& 230 \& 210 \& 235 \& 302 \& 14

\hline Zn. \& 322 \& 280 \& 270 \& 295 \& 313 \& 327 \& 340 \& 355 \& 370 \& 390 \& 419 \& 11

\hline Au. Cu. \& 1063 \& 910 \& 890 \& 895 \& 905 \& 925 \& 975 \& 1000 \& 1025 \& 1060 \& 1084 \& 4

\hline Ag. \& 1064 \& 1062 \& 1091 \& 1058 \& 1054 \& 1049 \& 1039 \& 1025 \& 1006 \& 982
.685 \& 963 \& 5

\hline K Pt . \& 1075 \& 1125 \& 1190 \& 1250 \& 1320 \& 1380 \& 1455
26 \& 1530 \& 1610 \& 1685 \& 1775 \& 20

\hline K. Na. \& 62 \& 17.5 \& -10 \& -3.5 \& 5 \& 11 \& 26 \& 42
135 \& 58
162 \& 77
265 \& 97.5 \& 15

\hline Hg. \& 62 \& \& $\overline{65}$ \& 188 \& 205 \& 90
215 \& 1110 \& 135 \& 162
280 \& 265 \& 301 \& 13

\hline Cu. Ni. \& 1080 \& 133
1180 \& 1240 \& 1290 \& 1320 \& 1335 \& 1380 \& 1410 \& 1430 \& 1440 \& 1455 \& 17

\hline Ag. \& 1082 \& 1035 \& 990 \& 945 \& 910 \& 870 \& . 830 \& 788 \& 814 \& 875 \& 960 \& 9

\hline Sn. \& 1084 \& 1005 \& 890 \& 755 \& 725 \& 680 \& - 630 \& 580 \& 53° \& 440 \& 232 \& 12

\hline Zn. \& 1084 \& 1040 \& 995 \& 930 \& 900 \& 880 \& 820 \& 780 \& 700 \& 580 \& 419 \& 6

\hline Ag. Zn. \& 959 \& 850 \& 755 \& 705 \& 690 \& 660 \& 630 \& 610 \& 570 \& 505 \& 419 \& 11

\hline Sn. \& 959 \& 870 \& 750 \& 63° \& 550 \& 495 \& 45° \& 420 \& 375 \& . 300 \& 232 \& 9

\hline Na.Hg. \& 96.5 \& 90 \& 80 \& 70 \& 60 \& 45 \& 22 \& 55 \& 95 \& 215 \& - \& 13

\hline
\end{tabular}

(Means, Landolt-Börnstein-Roth Tabellen.
2 Friedrich-Leroux, Metal. 4, 1907.
II Heycock and Neville, J. Chem. Soc. 71, 1897.
3 Gwyer, Zs. Anorg. Ch. 57, 1908.
12 " " ${ }^{12}$ Phil. Traos. 202A, 1, 1903
4 Means, L.-B.-R. Tabellen.
5 Roberts-Austen Chem. News, 87, 2, 1903.
6 Shepherd J. ph. ch. 8, sو04.
7 Kapp, Diss., Königsberg, ıgor.
8 Fay and Gilson, Trans. Am. Inst. Min. Eng. Nov. 1901.

9 Heycock and Neville, Phil. Trans. 189 A, 1897.

12 Kurnakow, Z. Anorg. Cbem. 23, 439, 1900.
14 " \quad " " 15 " 30,86 , 1902.
15 R" " 30 " $109,1902$.
16 Roland-Gosselin, Bul. Soc. d'Encour. (5) 1, 18 , ${ }^{\prime} 6$. 17 Gautier,

Bul. Soc ": (5) 1 , 18 Le Chatelier,
(4) 10,573,

19 Reinders, Z. Anorg. Chem. 25, 113, 1896.
20 Erhard and Schertel, Jahrb. Berg-u. Hüttenw. Sachsen. 1879, 17.

TABLE 242. - Alloy of Lead, Tin, and Bismuth.

	Per cent.									
Lead .	32.0	25.8	25.0	43.0	33.3	10.7	50.0	35.8	20.0	70.9
Tin .	15.5	19.8	15.0	14.0	33.3	23.1	33.0	52.1	60.0	9.1
Bismuth .	52.5	54.4	60.0	43.0	33.3	66.2	17.0	12.1	20.0	20.0
Solidification at	96^{0}	101°	125°	128°	$145{ }^{\circ}$	14°	161°	$18 \mathrm{I}^{\circ}$	182°	234°

Cbarpy, Soc. d'Encours, Paris, sgor.
TABLE 243. - Low Meiting-point Alloy.

Drewitz, Diss. Rostock, 1902.
All connpiled trom Landolt-Börnstein-Meyerhoffer's Physikalisch-chemische Tabellen.
Smithsonian Tables.

DENSITIES, MELTING-POINTS, AND BOILING-POINTS OF SOME ORGANIC COMPOUNDS.

N.B. - The data in this table refer only to normal compounds.

Substance.	Formula	$\xrightarrow{\text { Temp. }}$ ¢ ${ }_{\text {c }}$	$\begin{aligned} & \text { Den- } \\ & \text { sity- } \end{aligned}$	Meltingpoint	Boiling-point.	Authority.
(a) Paraffin Series: $\mathrm{C}_{n} \mathrm{H}_{2 n+2}$.						
Methane*	CH_{4}	-164.	0.415	-184	-165.	Olszewski, Young.
Ethanet.	$\mathrm{C}_{2} \mathrm{H}_{6}$	\bigcirc	. 446	-171.4	-93.	Ladenburg, "
Propane.	$\mathrm{C}_{3} \mathrm{C}_{4} \mathrm{H}_{8}$	-	. 536	-195	-45.	Young, Hainlen.
$\xrightarrow{\text { Butane }}$ Pentane.	${ }^{\mathrm{C}_{4} \mathrm{H}_{10}}$	0	. 60		1.	Butlerow, Young.
Hexane -	${ }^{\mathrm{C}_{6} \mathrm{C}_{6} \mathrm{H}_{14}}$	17.	. 647	-	36.3	Thorpe, Young.
Heptane.	${ }^{\mathrm{C}_{7} \mathrm{H}_{16}}$	\bigcirc	. 701	-	98.4	Thorpe, Young.
Octane	$\mathrm{C}_{8} \mathrm{H}_{18}$	\bigcirc	. 719		125.5	"" ${ }^{\text {c }}$
Nonane	$\mathrm{C}_{9} \mathrm{H}_{20}$	-	. 733	-51.	150.	Krafft.
Decane	$\mathrm{C}_{10} \mathrm{H}_{22}$	\bigcirc	. 745	-31.	173.	"
Undecane	${ }_{\text {C }} \mathrm{C}_{11} \mathrm{H}_{24}$	\bigcirc	. 756	-26.	195.	"
Tridecane	${ }_{\text {C }} \mathrm{C}_{12} \mathrm{H}_{26}$	\bigcirc	.777	-12.	214.	"
Tetradecane	$\mathrm{C}_{14} \mathrm{H}_{30}$	4.	. 775	5.	252.	"
Pentadecane	$\mathrm{C}_{15} \mathrm{H}_{82}$	10.	. 776	10.	270.	"
Hexadecane	$\mathrm{C}_{16} \mathrm{H}_{84}$	18.	. 775	18.	287.	"
Heptadecane	$\mathrm{C}_{17} \mathrm{H}^{86}$	22.	. 777	22.	303.	"
Octadecane	$\mathrm{C}_{13} \mathrm{H}_{88}$	28.	. 777	28.	317.	"
Nonadecane	${ }_{\mathrm{C}}^{\mathrm{C}_{19} \mathrm{H}_{40}}$	32.	. 777	32.	330.	
Eicosane. ${ }_{\text {Heneicosane }}$	${ }^{\mathrm{C}_{20} \mathrm{H}_{42}} \mathrm{C}_{21} \mathrm{H}_{44}$	37. 40.	.778 .778	37. 40.	121.8 120.8 126.	"
Docosane .	${ }_{\mathrm{C}_{22} \mathrm{H}_{46}}$	44.	. 778	44.	129.8 136.58	"
Tricosane	$\mathrm{C}_{23} \mathrm{H}_{48}$	48.	.779	48.	142.58	"
Tetracosane	$\mathrm{C}_{24} \mathrm{H}_{50}$	5 I.	. 779	5 I .	243.7	"
Heptacosane .	$\mathrm{C}_{27} \mathrm{H}_{66}$	60.	. 780	60.	172. §	"
Pentriacontane	$\mathrm{C}_{31} \mathrm{H}_{64}$	68.	.788	68.	199. §	"
$\xrightarrow{\text { Dicetyl }}$ Penta-tria-contane		70.	.781 .782	70. 75.	205.8	"
		75.		75.		
(b) Olefines, or the Ethylene Series: $\mathrm{C}_{n} \mathrm{H}_{2 n}$.						
Ethylene	$\mathrm{C}_{2} \mathrm{H}_{4}$		0.610	-169.	-103.	Wroblewski or Olszewski
Propylene	$\mathrm{C}_{3} \mathrm{H}_{6}$	-			-50.2	Ladenburg, Krügel.
Butylene.	$\mathrm{C}_{4} \mathrm{H}_{8}$	-13.5	. 635	-	1.	Sieben.
Amylone	$\mathrm{C}_{6} \mathrm{H}_{10}$	-			36.	Wagner or Saytzeff.
Hexylene -	${ }_{C}^{\mathrm{C}_{6} \mathrm{H}_{12}}$	\bigcirc	. 76		69.	Wreden or Znatowicz,
Heptylene -	${ }^{\text {C }}{ }_{7} \mathrm{H}_{14}$	19.5	. 703		96.-99.	Morgan or Schorlemmer.
Octylene. -	${ }^{\text {ctic }}$	17. 20.	.722 .767		$122 .-123$ $140 .-142$	Möslinger. Beilstein, "Org. Chem."
Decylene	$\mathrm{C}_{10} \mathrm{H}_{20}$		-	-	175.	" "، "
Undecylene	$\mathrm{C}_{11} \mathrm{H}_{22}$	20.	. 773	-	196.-197.	" " "
Dodecylene	$\mathrm{C}_{12} \mathrm{H}_{24}$	-31.	. 795	-31.	212.-214.	" "
Tridecylene -	${ }_{\text {C }}^{\mathrm{C}_{18} \mathrm{H}_{29}}$	- 15.	.774	-12	233.	Bernthsen.
Tetradecylene.	- ${ }^{\mathrm{C}_{14} \mathrm{H}_{28}}{ }_{\text {c }}$	-12.	. 7974	-12.	127.7 247.	${ }_{\text {Krafnt. }}$ Bernthsen.
Hexadecylene.	$\mathrm{C}_{16} \mathrm{H}_{32}$	4.	. 792	4.	$155 . \ddagger$	Krafft, Mendelejeff, etc.
Octadecylene .	$\mathrm{C}_{18} \mathrm{H}_{36}$	18.	. 791	18.	179. \ddagger	Kraft.
Eicosylene .	${ }_{\text {C }}^{\mathrm{C}_{20} \mathrm{C}_{47} \mathrm{H}_{44}}$	\bigcirc	.$^{.87}$	58.	390.-400.	Beilstein, "Org. Chem."
Cerotene Melene	$\begin{aligned} & \mathbf{C}_{27} \mathrm{C}_{54} \mathrm{C}_{80} \mathrm{H}_{60} \end{aligned}$	-		56.	-	Bernthsen.

[^41]Smithsonian Tasles.

DENSITIES, MELTING-POINTS, AND BOILING-POINTS OF SOME ORGANIC COMPOUNDS.

Substance.	Chemical formula.	Temp. ${ }^{\circ}$.	Specific gravity.	Meltingpoint.	Boilingpoint.	Authority.
(c) Acetylene Series: $\mathrm{C}_{n} \mathrm{H}_{2 n-2}$.						
Acetylene Allylene. Ethylacetylene Propylacetylene Butylacetylene Oenanthylidene Caprylidene Undecylidene. Dodecylidene Tetradecylidene Hexadecylidene Octadecylidene	$\mathrm{C}_{2} \mathrm{H}_{2}$	-		-8t.	-85.	Villard.
	$\mathrm{C}_{8} \mathrm{H}_{4}$	-				
	$\mathrm{C}_{4} \mathrm{H}_{6}$	-	-	-	+ 18.	Bruylants, Kutscheroff, and others.
	$\mathrm{C}_{6} \mathrm{H}_{8}$	-	-	-	48.-50.	Bruylants, Taworski.
	$\mathrm{C}_{6} \mathrm{H}_{10}$		-	-	68.-70.	Taworski.
	$\mathrm{C}_{7} \mathrm{H}_{12}$	-	-	-	100.-J01.	Beilstein, and others.
	$\mathrm{C}_{5} \mathrm{H}_{14}$	0.	0.771		133.-1 34.	Behal.
	$\mathrm{C}_{11} \mathrm{H}_{20}$	-	-	-	210.-215.	Bruylants.
	$\mathrm{C}_{12} \mathrm{H}_{22}$	-9.	. 810	-9.	105.**	Krafft.
	$\mathrm{C}_{14} \mathrm{H}_{28}$	+6.5	. 806	+6.5	134.*	"
	$\mathrm{C}_{16} \mathrm{H}_{60}$	20.	. 804	20.	160.*	*
	$\mathrm{C}_{18} \mathrm{H}_{34}$	30.	.802	30.	184.*	
(d) Monatomic alcohols: $\mathrm{C}_{n} \mathrm{H}_{2 n+\mathrm{s}} \mathrm{OH}$.						
Methyl alcohol Ethyl alcohol. Propyl alcohol Butyl alcohol Amyl alcohol. Hexyl alcohol Heptyl alcohol Octyl alcohol. Nonyl alcohol Decyl alcohol Dodecyl alcohol . Tetradecyl alcohol Hexadecyl alcohol Octadecyl alcohol	$\mathrm{CH}_{3} \mathrm{OH}$ $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ $\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{OH}$ $\mathrm{C}_{4} \mathrm{H}_{3} \mathrm{OH}$ $\mathrm{C}_{5} \mathrm{H}_{11} \mathrm{OH}$ $\mathrm{C}_{6} \mathrm{H}_{18} \mathrm{OH}$ $\mathrm{C}_{7} \mathrm{H}_{15} \mathrm{OH}$ $\mathrm{C}_{8} \mathrm{H}_{17} \mathrm{OH}$ $\mathrm{C}_{9} \mathrm{H}_{19} \mathrm{OH}$ $\mathrm{C}_{10} \mathrm{H}_{21} \mathrm{OH}$ $\mathrm{C}_{12} \mathrm{H}_{25} \mathrm{OH}$ $\mathrm{C}_{14} \mathrm{H}_{29} \mathrm{OH}$ $\mathrm{C}_{16} \mathrm{H}_{88} \mathrm{OH}$ $\mathrm{C}_{18} \mathrm{H}_{87} \mathrm{OH}$	0.	0.812	I	66.	
		0.	. 806	-130.t	78.	
		0.	.817	-	97.	From Zander, "Lieb.
		o.	. 823	-	117.	Ann." vol. 224, p. 85 ,
		0.	. 829		138.	and Kraft, "Ber.'
		o.	. 836	-	176.	" 19, 222 I ,
		0.	. 839	-	195.	" 23, 2360,
		o.	. 842	-5.	213.	and also Wroblew-
		+ 7	. 839	$+7$.	231.	ski and Olszewski,
		24.	.83I	24.	143.*	" Monatshefte,"
		38.	.824	38.	167.*	vol. 4, p. 338.
		50.	.818	50.	190.*	
		59.	.813	59.	211.*	
(e) Alcoholic ethers : $\mathrm{C}_{n} \mathrm{H}_{2 n+2} \mathrm{O}$.						
Dimethyl ether Diethyl ether . Dipropyl ether Di-iso-propyl ether. Di-n-butyl ether . Di-sec-butyl ether Di-iso-butyl Di-iso-amyl Di-sec-hexyl Di-norm-octyl "	$\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}$	-	-	-	-23.6	Erlenmeyer, Kreichbaumer.
	$\mathrm{C}_{4} \mathrm{H}_{10} \mathrm{O}$	4.	0.731	- 117	+ 34.6	Regnault, Olszewski.
	$\mathrm{C}_{6} \mathrm{H}_{14} \mathrm{O}$	0.	. 763	-	90.7	Zander and others.
	$\mathrm{C}_{6} \mathrm{H}_{14} \mathrm{O}$	0.	. 743	-	69.	
	$\mathrm{C}_{6} \mathrm{H}_{19} \mathrm{O}$	o.	. 784	-	141.	Lieben, Rossi, and others.
	$\mathrm{C}_{8} \mathrm{H}_{18} \mathrm{O}$	21.	. 756	-	121.	Kessel.
	$\mathrm{C}_{8} \mathrm{H}_{18} \mathrm{O}$	15.	.762	-	122.	Reboul.
	$\mathrm{C}_{10} \mathrm{H}_{22} \mathrm{O}$	o.	. 799	-		Wurtz.
	$\mathrm{C}_{12} \mathrm{H}_{26} \mathrm{O}$	-	-	-	203.-208.	Erlenmeyer and Wanklyn.
	$\mathrm{C}_{16} \mathrm{H}_{34} \mathrm{O}$	17.	. 805	-	280.-282.	Moslinger.
(f) Ethyl ethers: $\mathrm{C}_{n} \mathrm{H}_{2 \pi+2} \mathrm{O}$.						
Ethyl-methyl ether . " propyl	$\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{O}$ $\mathrm{C}_{5} \mathrm{H}_{12} \mathrm{O}$	O.	$\begin{aligned} & 0.725 \\ & 0.739 \end{aligned}$	-	$\stackrel{\text { II. }}{63 .-64 .}$	Wurtz, Williamson. Chancel, Brühl.
" iso-propyl ether	$\mathrm{C}_{5} \mathrm{H}_{12} \mathrm{O}$	O.	0.739 .745	-		Markownikow.
" norm-butyl ether	$\mathrm{C}_{6} \mathrm{H}_{14} \mathrm{O}$	0.	. 769	-		Lieben, Rossi.
" iso-butyl ether .	$\mathrm{C}_{6} \mathrm{H}_{14} \mathrm{O}$.751	-	78.-80.	Wurtz.
" iso-amyl ether	$\mathrm{C}_{7} \mathrm{H}_{18} \mathrm{O}$	18.	.764	-	112.	Williamson and others.
" norm-hexyl ether	$\mathrm{C}_{8} \mathrm{H}_{18} \mathrm{O}$	-	-	-	134.-137.	Lieben, Janeczek.
" norm-heptyl ether	$\mathrm{C}_{9} \mathrm{H}_{20} \mathrm{O}$	16.	. 790	-	165.	Cross.
" norm-octyl ether	$\mathrm{C}_{10} \mathrm{H}_{22} \mathrm{O}$	17.	. 794	-	182.-184.	Moslinger.

* Boiling-point under 15 mm . pressure.
\dagger Liquid at -ir. ${ }^{\circ} \mathrm{C}$. and 180 atmospheres' pressure (Cailletet).

Table 244 (concluded).
DENSITIES, MELTING-POINTS, AND BOILING-POINTS OF SOME ORGANIC COMPOUNDS.
(g) Miscollaneous.

Smithsonian Tables.

TRANSFORMATION AND MELTING TEMPERATURES OF LIME-ALUMINASILICA COMPOUNDS AND EUTECTIC MIXTURES.
The majority of these determinations are by G. A. Rankin. (Part unpublished.)

The accuracy of the melting-points is 5 to to units. Geophysical Laboratory. See also Day and Sosman, Am. J. of Sc. xxxi, p. 34 I , 1911 .

Smithsonian Tables.

LOWERING OF FREEZING-POINTS BY SALTS IN SOLUTION.
In the first column is given the number of gram-molecules (anhydrous) dissolved in rooo grams of water; the second contains the molecular lowering of the freezing-point; the freezing-point is therefore the product of these two columns. After the chemical formula is given the molecular
weight, then a reference number.

$\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$, 331.0: $\mathbf{1 , 2}$.	0.0500 3.47	$0.4978 \quad 2.02^{\circ}$	$\mathbf{M g C l}_{2}, \mathbf{9 5 . 2 6 : 6 , 1 4 .}$
$0.000362 .5 .5^{\circ}$. 1000 3.42	.8112 2.01	$0.0100 \quad 5.1^{\circ}$
$.001204 \quad 5.30$. 2000 3.32	1.52332 .28	. $0500 \quad 4.98$
$.002805 \quad 5.17$	$\begin{array}{rr}.500 & 3.26\end{array}$	$\mathrm{BaCl}_{2}, 208.3$: 3,6, 13.	.1500 4.96
.005570 4.97 .01737 4.69		0.00200 $515.5{ }^{\circ}$. 3000 5.186
$\begin{array}{ll}.01737 & 4.69 \\ .5015 & 2.99\end{array}$	LiNO $_{3}$ 6g.07: 9. 0.0398 3.4°	$\begin{array}{ll}.00498 & 5.2 \\ .0100 & 5.0\end{array}$. $6099,5.69$
$\mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}, 261.5: 8$.	$\begin{array}{ll}.1671 & 3.35\end{array}$.0100 0200	
0.000383 5.56°	$\begin{array}{ll}.4728 & 3.35\end{array}$	$\begin{array}{ll}.0200 & 4.95 \\ .04805 & 4.80\end{array}$	$\begin{array}{cc}0.02910 & 3.54 \\ .05845 & 3.46\end{array}$
.001259 5	$\begin{array}{ll}1.0164 & 3.49\end{array}$	$\begin{array}{ll}.04805 & 4.80 \\ .100 & 4.69\end{array}$	$\begin{array}{ll}.05845 & 3.46 \\ .112 & 3.43\end{array}$
.002681 $\quad 5.23$	$\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}, 342.4$: 10.	. 200 4.66	$\begin{array}{ll}.31 \\ .39 & 3.41\end{array}$
. 005422 22 5	0.013 I	$\begin{array}{ll}.500 & 4.82\end{array}$	$\begin{array}{ll}.376 & 3.4 \\ .476\end{array}$
.008352 5.04	. 02618	. 586	$1.000 \quad 3.286$
$\mathrm{Cd}\left(\mathrm{NO}_{3}\right)_{2}, 236.5: 3 .$.0543 4.5	.750 5.03	1.989 3.25
$0.00288 \quad 5.4^{\circ}$. 1086	$\mathrm{CdCl}_{2}, 183.3$: 3, 14.	$3.269 \quad 3.25$
$\begin{array}{ll}.00689 & 5.25 \\ .01997 & 5.18\end{array}$		$0.002995 .0^{\circ}$	NaCl, 58.50: 3, 20, 12, 16.
$\begin{array}{ll}.01997 & 5.18 \\ .04873 & 5.15\end{array}$	Caso	.006904 .8	$0.00399 \quad 3.7^{\circ}$
$\mathrm{AgNO}_{3}, 167.0: 4,5$.	$\begin{array}{ll}.002685 & 3.35\end{array}$. 0200 4.64	.oroon 367
${ }_{0.1506}{ }^{\text {a }}$, $3.32{ }^{\circ}$	$\begin{array}{ll}.002151 & 2.69\end{array}$.054I 4.II	. 022153.55
.5001 2.96	.03120 2.42	$\begin{array}{ll}.0818 & 3.93 \\ .214 & 3.39\end{array}$	$\begin{array}{r}3.51 \\ \hline 38\end{array}$
. $8645 \quad 2.87$	$.1473 \quad 2.13$.214 .420	. 2325 + 3.40
$1.749 \quad 2.27$. 41291.80	$\begin{array}{ll}.429 & 3.03 \\ .858 & 2.71\end{array}$	$\begin{array}{ll}.2325 & 3.42 \\ .4293 & 3.37\end{array}$
2.953 ll	$\begin{array}{rr}.7501 & 1.76 \\ 1.253\end{array}$	$\begin{array}{ll}.8 .072 & 2.75\end{array}$	$\begin{array}{ll}.700 & 3.43\end{array}$
3.856	1.253 I.86	$\mathrm{CuCl}_{2,18} \mathbf{1 3 4 . 5} 9$.	$\mathrm{NH}_{4} \mathrm{Cl}, 53 \cdot 52: 6,15 .$
$\begin{array}{rr}0.0560 & 3.82 \\ .1401 & 3.58\end{array}$		$\begin{gathered} \mathrm{CuCl}_{2,1}, 134.5: 9 . \\ 0.0350 \end{gathered}$	$\mathrm{NH}_{4} \mathrm{Cl}, 53 \cdot 52$: 6, 15. $\begin{array}{ll} 0.0100 & 3.6^{\circ} \end{array}$
$\begin{array}{ll}.1401 & 3.58 \\ .3490 & 3.28\end{array}$	$\begin{array}{rr}0.00200 & 5.4 \\ .00398 & 5.3\end{array}$.1337 4.81	200 3.56
NO_{3}, 101.9: $6,7$.	$\begin{array}{ll}.00865 & 4.3\end{array}$	$.3380 \quad 4.92$. 0350 3.50
0.0100 3.5	.0200 4.76	.7149 5.32	. 100033.43
$\begin{array}{ll}.0200 & 3.5\end{array}$. 0500 4.60	CoCl_{2}, $\mathbf{2 2 9 . 9}$: 9.	2000 3.396
. 0500 3.41	.1000 4.32	$0.02765 .0^{\circ}$.4000 3.393
. 100 3.31	. 200 4.07	. 10944.9	$3 \cdot 41$
. 200 3.19	. $454 \quad 3.87$.23695 .03	LiCl, 42.48: 9, 15.
.250 3.08	$\mathrm{CuSO}_{4}, 159.7$: 1,4, ri.	. $4399 \quad 5.30$	$0.00992 \quad 3.7^{\circ}$
. $500 \quad 2.94$	$0.000286 \quad 3.3{ }^{0}$. 538 5.5	.0455 3.5
.750 2.81	. 000843 3.15	$\mathrm{CaCl}_{2,1 \mathrm{IIX.0}} \mathbf{5}$ 5, 13-16.	. 099523
1.0002 .66	. 0022793.03	$0.0100 \quad 5.1^{\circ}$. 2474 3 3.50
$\mathrm{NaNO}_{3}, 85.09: 2,6,7.6$. $006670 \quad 2.79$. 05028 4.85	- 3012 3.61
$0.0100 \quad 3.6{ }^{\circ}$.01463 2.59	. 10064.79	. 79393.71
. 0250 3 3.46	.10512 .28	. $5077 \quad 5.33$	$\mathrm{BaBr}_{2} \mathbf{2 9 7 . 3}$: 4.
. 05003.44	. 20741.95	.946	0.100 $\quad 5.1^{\circ}$
. 20003 3.345	. 4043 1.84	2.432 8.2	.150
. 50033.24	.8898 $\quad 1.76$	$3.469 \quad 11.5$. 20005.00
. $5015 \quad 3.30$	$\mathbf{M g S O}{ }_{4}$, 120.4: $\mathbf{1 , 4 , 1 1 .}$	$3.829 \quad 14.4$. $500 \quad 5.18$
1.000 3.15	$0.000675 \quad 3.29$	0.0478 8 5.2	$\mathrm{AlBr}_{3,}$ 267.0: 9.
$1.0030 \quad 3.03$.002381 3.10	. 153 4.91	$0.0078 \quad 1.4{ }^{0}$
	$.01263 ~$. 3315	.0559 I. 2
$0.0100 \quad 3.6{ }^{\circ}$	$.0580 \quad 2.65$. 612 2 5 ¢ 47	. 1971 I 1.07
. 02503.50	. 21042.23	. 998 (6.34	. $4355 \quad 1.07$

[^42]LOWERING OF FREEZING-POINTS BY SALTS IN SOLUTION (continued).

1-20 See page 217
21 Sherrill, Z. Phys. Ch. 43, 1903.
22 Cluambers-Frazer, Am. Ch. J. 23, 1900.
23 Noyes-Whitney, Z. Phys. Ch. 15,1894
24 Loomis, Z. Phys. Ch. 32, 1900 .
25 Abegg. Z. Phys. Ch. 15, 1894.
26 Nernst-A begg, Z. Phys. Ch. 15,1894 .

27 Pictet-Altschul, Z. Phys. Ch. 16, 1895.
28 Barth, Z. Phys. Ch. 9, 1892.
29 Petersen, Z. Phys. Ch. 11, 1893.
30 Roth, Z. Plys. Ch. 43, 1903.
31 Wildermann, Z. Phys. Ch. 15, 1894,
32 Jones-Carroll, Am.Ch. J. 28, 1902.
33 Jones-Murray, Am. Ch. J. 30, 1903.

This table gives the number of grams of the salt which, when dissolved in roo grams of water, will raise the boil-ing-point by the amount stated in the headings of the different columns. The pressure is supposed to be 76
centimeters.

[^43]
Smithsonian Tables.

FREEZING MIXTURES.*

Column 1 gives the oame of the principal refrigerating substance, A the proportion of that substance, B the proportion of a second substance named in the column, C the proportion of a third substance, D the temperature of the substances before mixture, E the temperature of the mixture, F the lowering of temperature, G the temperatnre when all snow is melted, when soow is used, and H the amonot of heat absorbed in heat units (small calories when A is grams). Temperatures are in Centigrade degrees.

* Compiled from the results of Cailletet aod Colardeau, Hammerl, Hanamana, Moritz, Pfanndler, Rudorf, and Tollinger.
\dagger Lowest temperature obtained.

Smithsonian Tables.

CRITICAL TEMPERATURES, PRESSURES, VOLUMES, AND DENSITIES OF

 GASES.*$\theta=$ Critical temperature.
$P=$ Critical pressure in atmospheres.
$\phi=$ Critical volume referred to volume at 0° and 76 centimeters pressure.
$d=$ Critical density in grams per cubic centimeter.
a, b, Van der Waals constants in $\left(p+\frac{a^{2}}{v^{2}}\right)(v-b)=r+a t$.

Substance.	θ	P	ϕ	${ }^{\text {d }}$	$a \times 10^{5}$	b $\times 10^{8}$	Observer
Air	-140.0	39.0	-		257	1560	1
Alcohol ($\left.{ }_{\text {c }} \mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}\right)$.	243.6	62.76	0.00713	0.288	2407	3769	2
" ($\mathrm{CH}_{4} \mathrm{O}$) .	239.95	78.5		-	1898	2992	3
Ammonia	130.0	15.0	-		798	1606	4
Argon -	- 117.4	52.9	-	-	259	1348	5
${ }^{\text {Benzol }}$ Bromine	288.5 302.2	47.9		0.305 1.18	3726 1434	5370 2020	3
Bromine	302.2	-	0.00605	1.18	1434 717	2020 1008	6
Carbon dioxide ${ }_{\text {a }}$ monoxide .	31.2 -141.1	73. 35.9	0.0044	0.46	717 275	1908 1683	7
. ${ }^{\text {disulphide }}$	- 277.7	78.1	-	-	2197	3227	8
Chloroform .	260.0	54.9		-	2930	4450	9
Chlorine -	141.0	83.9			1157	2259	4
her	146.0	93.5			1063	2050 6016	10
Ether	197.0 194.4	35.77 35.61	0.01584 0.01344	0.208 0.262	3496 3464	6002	11
Ethane .	32.1	49.0			1074	2848	12
Ethylene	9.9	51.1		-	886	2533	-
Helinm .	<-268.0	-	-	-	5	700	13
Hydrogen -	-240.8	14.			42	880	14
" chloride	51.25	86.0			692 697	17726	15
sulphide ${ }^{\text {e }}$	52.3 100.0	86.0 88.7	-	0.61	697 888	1731 1926	4
Krypton sulp .	-62.5	54.3	-		462	1776	5
Methane	-81.8	54.9			376	1557.	1
"	-95.5	50.0	-		357	1625	
Neon : ${ }^{\text {d }}$ -	<-205.0	${ }_{71}^{29 .}$				1160	${ }_{1}{ }_{1} 13$
Nitric oxide (NO) :	- 93.5	71.2 35.0		0.44	257 259	1650	1
Nitrogen monoxide $\left(\mathrm{N}_{2} \mathrm{O}\right)$	-146.0 35.4	35.0 75.0	0.0048	0.44	720	1888	4,17
Oxygen. -	-118.0	50.0	-	0.6044	273	1420	
Sulphur dioxide	155.4	78.9	0.00587	0.49	${ }_{2}^{1316}$	2486	${ }_{6} 9$
Water :	358.1 374.	$2 \overline{7} .5$		$\stackrel{-}{0}$	1089	1362	16

(1) Olszewski, C. R. 98, 1884; 99, 1884; 100, 1885; Beibl. 14, 1890; Z. Phys. Ch. 16, 1893.
(2) Ramsay-Young, Tr. Roy. Soc. 177, 1886.
(3) Young, Phil. Mag. 1900.
(4) Dewar, Phil. Mag. 18, 1884 ; Ch. News, 84 , 1901.
(5) Ramsay, Travers, Phil. Trans. 16, 17, 1901.
(6) Nadejdine, Beibl. $9,1885$.
(7) Wroblewski, Wied. Ann. 20, 1883; Stz. Wien. Ak. $91,1885$.
(9) Sajotschewsky, Beibl. 3, 1879
(10) Knietsch, Lieb. Ann. 259, 1890.
(II) Batelli, Mem. Torino (2), 41, 1890.
(12) Cardozo, Arch. sc. phys. 30, 1910.
(13) Kamerlingh-onnes, Comno. Phys. tab. Leiden, 1908, 1909, Proc. Amst. II, 1908, C. R. I47, 1908.
(14) Olszewski, Ann. Phys. 17, 1905.
(15) Ansdell, Chem. News, 41, 1880.
(i6) Holborn, Baumann Ann. Phys. 31, 1910.
(17) Cailletet, C. R. 102, 1886; 104, 1887.
(8) Hannay, Pr. Roy. Soc. 32, 1882.
*Abridged for the most part from Landolt and Börnstein's "Phys. Chem. Tab."

LINEAR EXPANSION OF THE ELEMENTS.

In the heading of the columns t is the temperature or range of temperature; C is the coefficient of linear expansion; A_{1} is the authority for $C ; M$ is the mean coefficient of expansion between 0° and $100^{\circ} \mathrm{C}$.; a and β are the coefficients in the equation $l_{t}=l_{0}\left(1+a t+\beta t^{2}\right)$, where l_{0} is the length at $0^{\circ} \mathrm{C}$. and l_{t} the length at $t^{\circ} \mathrm{C}$.; A_{2} is the authority for a, β, and M.

The above table has been partly compiled from the results published by Fizeau, "Comptes Rendus," vol. 68, and Matthiessen, "Proc. Roy. Soc."" vol. ry.
The Holbern-Day and Day and Sosman data are for temperatures from 20° to $1000^{\circ} \mathrm{C}$. The Dittenberger, 0° to $600^{\circ} \mathrm{C}$.
Smithsonian Tables.

LINEAR EXPANSION OF MISCELLANEOUS SUBSTANCES.

The coefficient of cubical expansion may be taken as three times the linear coefficient. t is the temperature or range of temperature, C the coefficient of expansion, and A the authority.

Smithsonian Tasles.

CUBICAL EXPANSION OF SOLIDS.

If v_{2} and v_{1} are the volumes at t_{2} and t_{1} respectively, then $v_{2}=v_{1}(1+C \Delta t), C$ being the coefficient of cubical expansion and Δt the temperature interval. Where only a single temperature is stated C represents the true coefficient of cubical expansion at that temperature.*

Substance.	t or Δt	$C \times 1{ }^{4}$	Authority.
Antimony	0-100	0.3167	Matthiessen
Beryl	0-100	0.0105	Pfaff
Bismuth	0-100	0.3948	Matthiessen
Copper . .	0-100	0.4998	
Diamond .	40	0.0354	$\underset{\text { Fizeau }}{ }$
Emerald . .	40	0.0168	
Galena . .	0-100	0.558	Pfaff
Glass, common tube .	0-100	0.276	Regnault
" hard. . ${ }^{\text {a }}$.	0-100	0.214	
$59 \text { III. }$	20-100	0.156	Scheel
" pure silica.	0-80	0.0129	Chappuis
Gold	0-100	0.4411	Matthiessen
Ice	-20--1	1.1250	Brunner
Iron	0-100	0.3550	Dulong and Petit
Lead . .	0-100	0.8399	Matthiessen
Paraffin .	20	5.88	Russner
Platinum . :	0-100	0.265	Dulong and Petit
Porcelain, Berlin . .	20	0.0814	Chappuis and Harker
Potassium chloride	0-100	1.094	Playfair and Joule
" ${ }_{\text {" }}$ nitrate sulphate.	0-100	1.967	Tutton
Quartz	${ }_{0}^{20}$	1.0754 0.3840	Tutton
Rock salt	50-60	1.2120	Pulfrich
Rubber	20	4.87	Russner
Silver	$0-100$	0.5831	Matthiessen
Sodium	20	2.1364	E. Hazen
Stearic acid. .	33.8-45.5	8.1	Kopp
Sulphur, native . . .	1 3.2-50.3	2.23	"
Tin	$0-100$	0.6889	Matthiessen
Zinc . .	0-100	0.8928	

*For tables of cubical expansion complete to 1876, see Clark's Constants of Nature, Smithsonian Collections, 289. Smithsonian Tables.

Table 253.
CUBICAL EXPANSION OF LIQUIDS.
If V_{o} is the volume at o° then at t° the expansion formula is $V_{t}=V_{o}\left(1+a t+\beta t^{2}+\gamma t^{3}\right)$. The table gives values of α, β and γ and of C, the true coefficient of cubical expansion, at 20° for some liquids and solutions. Δt is the temperature range of the observation and A the authority.

| Liquid. | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

Smithbontan Tableg.

Ooetfiolents of Expansion of Gases.

Pressures are given in centimeters of mercury.

Coefficient at Constant Volume.				Coefficient at Constant Pressure.			
Substance.	Pressure cm.	Coefficient 100.	递	Substance.	Pressure cm.	Coefficient \times 100.	边
	. 6	. 37666	1	Air	76.	3671	3
	1.3	. 37172	"		257.	. 3693	
	10.0	. 36630	"	$" 0^{\circ}-100^{\circ}$	100.1	. 36728	2
	25.4	. 36580	"	Hydrogen $0^{\circ}-100^{\circ}$	100.0	. 36600	"
	75.2	. 36660	"		200 Atm.	. 332	9
	100.1	. 36744	2	"	400	. 295	،
	76.0	. 36650	3		600	. 261	"
	200.0	.36903	"		800	. 242	"
	2000.	. 38866	"	Carbon dioxide ${ }^{\circ}$	76.	. 3710	3
	10000.	. 4100	"	" " $0^{\circ}-20^{\circ}$	51.8	. 37128	2
	51.7	. 3668	4	" " $0^{\circ}-40^{\circ}$	51.8	. 37100	
	76.0	. 36856	3	" $0^{\circ}-100^{\circ}$	51.8	. 37073	"
	1.8	. 36753	I	" " $0^{\circ}-20^{\circ}$	99.8	-37602	"
	5.6	. 36641	"	$" \quad " 00^{\circ}-100^{\circ}$	99.8	. 37410	"
	74.9	. 37264	"	" "1 $0^{\circ}-20^{\circ}$	137.7	. 37972	"
	51.8	-36985	2	" "6 $0^{\circ}-100^{\circ}$	137.7	. 37703	${ }^{\prime \prime}$
	51.8	-36972	"	" " $0^{\circ}-7.5^{\circ}$	2621.	. 1097	6
	51.8	. 36981	"	" " $64^{\circ}-100^{\circ}$	2621.	. 6574	"
	99.8	- 37335	"	Carbon monoxide	76.	. 3669	3
	99.8	. 37262	"	Nitrous oxide	76.	. 3719	
	100.0	. 37248	5	Sulphur dioxide	76.	. 3903	"
	76.	. 36667	3		98.	. 3980	"
	56.7	. 3665	4	$\left(0^{\circ}-119^{\circ}\right.$	76.		
	. 0077	. 3328	6	Water- $\quad\left\{\begin{array}{l}0 \\ 0^{\circ}-141^{\circ} \\ 0^{\circ}-162^{\circ}\end{array}\right.$	76.	. 4189	"
	. 025	. 3623 . 3656	"	vapor $\left\{\begin{array}{l}0^{\circ}-162^{\circ} \\ 0^{\circ}-200^{\circ}\end{array}\right.$	76.		${ }^{\prime}$
	. 47	. 3656	I	ver \mid	76. 76.	. 3938	
	11.2	. 36548	"	- ${ }^{\text {a }}$		- 3799	
	76.4 100.0	.36504 .36626					
	100.0 .06	-3626	6	Thomson has giv the following for th	n, Encyc. calculat	$\begin{aligned} & \text { rit. " } \\ & \text { n of } t \end{aligned}$	
	. 53	. 3290		pansion, E , between	and $100^{\circ} \mathrm{C}$	Expa	
	100.2	. 36754	$\stackrel{2}{6}$	is to be taken as the	change of	lume	
	100.2	. 36744		constant pressure:			
	76.	- 3	7	Hydrogen, $E=$	62(1-.	49	
	. 25	. 398	"	Air, $\quad E=$	$662(1-.002$	$6 \mathrm{~V} / \mathrm{v}$	
	. 51	. 3831	"	Oxygen, $\quad L=$	662(1 - .00	$32 \mathrm{~V} / \mathrm{v}$	
	1.9	$\cdot 36683$	8	Nitrogen, $E=$	662(1 -.00	$1 \mathrm{~V} / \mathrm{v}$	
	18.5	$\begin{array}{\|l} \cdot 30003 \\ \cdot 36690 \end{array}$	"	$\mathrm{CO}_{2} \quad E=$	662 (I - . 0	$4 \mathrm{~V} / \mathrm{v}$	
	75.9	. 36681	${ }^{\prime}$	V / v is the ratio of	he actua	ensity	
	76.		3	gas at $0^{\circ} \mathrm{C}$ to what	would hav	at $0^{\circ} \mathrm{C}$	
	76.	$.3845$	${ }_{6}$	1 Atm. pressure.			
I Meleander, Wied. Beibl. 14, 1890; Wied. Ann. 47, 1892. 2 Chappuis, Trav. Mem. Bur. Intern. Wts. Meas. 13, 1903. 3 Regnault, Ann. chim. phys. (3) 5, 1842. 4 Keunen-Randall, Proc. R. Soc. $59,1896$.				5 Chappuis, Arch. sc. phys. (3), 18, 1892. 6 Baly-Ramsay, Phil. Mag. (5), 38, 1894. 7 Andrews, Proc. Roy. Soc. 24, 1876. 8 Meleander, Acta Soc. Fenn. 19, 1891. 9 Amagat, C. R. 11 i , i8go. 10 Hirn, Théorie méc. chaleur, 1862.			

Smithsomian Tables.

MECHANICAL EQUIVALENT OF HEAT.
TABLE 255. - Summary.
Taken from J. S. Ames, L'équivalent mécanique de la chaleur, Rapports présentés au congrès international du physique, Paris, 1900.

Name.	Method.	Scale.	Result.	Temp. ${ }^{\circ} \mathrm{C}$.
Joule	Mechanical Mechanical		4.173	16.5
			4.195	10.
			4.187	15.
			4.181	20.
Reynolds-Morby . Griffiths .	Mechanical	- • • •	4.176 4.1882	$\stackrel{25 .}{\text { Mean- }}$
			4.1832	Meancalory.
	$\begin{gathered} \text { Electrical . . } \\ \frac{E^{2} t}{R} \end{gathered}$	$\left\{\begin{array}{l}\text { Latimer-Clark }=1.4342 \mathrm{vat} 15^{\circ} \mathrm{C} . \\ \text { International } \mathrm{Ohm}\end{array}\right.$	4.198	15.
			4.192	20.
			4.187	25.
Schuster-Gannon	Electrical Eit.	$\left\{\begin{array}{c} \text { Latimer-Clark }=\text { I.434ov. at } 15^{\circ} \\ \text { C., Elec. Chem. Equiv. Silver } \end{array}\right\}$	4.1905	19.1
Callendar-Barnes	Electrical Eit.	Latimer-Clark $=1.4342 \mathrm{v}$, at $15^{\circ} \mathrm{C}$.	4.179	40.

TABLE 256.-Reduced to Gram-calory at 20°. (Nitrogen thermometer).

Joule . . . -	$4.169 \times 10^{7} \mathrm{ergs}$			*		
				4.169		
Rowland . . .	4.181			4.181		
Griffiths . - .	4.192		"	4.184	"	
Schuster-Gannon	4.189		"	4.181	"	"
Callendar-Barnes	4.186	"	"	4.178	"	

* Admitting an error of x part per 1000 in the electrical scale.

The mean of the last four then gives
1 omall ($20^{\circ} \mathrm{C}$) celory $=4.161 \times 10^{7} \mathrm{ergs}$.

* small ($15^{\circ} \mathrm{C}$) calory $=4.185 \times 10^{7}$ ergs assuming sp. ht. of water at $\mathbf{2 0}{ }^{\circ}=0.9990$.

TABLE 267.-Conversion Factors for Onits of Work.

	Joules Watts \times sec. Volt-amp. per sec.	Small 15° Calories.	Ergs.	$\begin{aligned} & \text { Kilo- } \\ & \text { gram- } \\ & \text { meters. } \end{aligned}$	Foot-poundals.	Foot-pounds.
I joule $=1$ watt x second I small 15° calory $=$ $1 \mathrm{erg}=$ I kilog.-meter $=$ Ifoot-poundal $=$ 1 foot-pound $=$	$\begin{gathered} \mathrm{I} \\ 4.185 \\ 10^{-7} \\ \mathrm{~g}^{*} \\ .04214 \\ .04214 g^{\dagger} \end{gathered}$	$\begin{gathered} 0.2389 \\ 1 \\ 0.2389 \times 10^{-7} \\ 0.23899^{*} \\ .01007 \\ .01007 \mathrm{~g}^{\dagger} \end{gathered}$	$\begin{gathered} 10^{7} \\ 4.185 \times 10^{7} \\ 1 \\ g^{*} \times 10^{7} \\ 421400 \\ 421400 \mathrm{~g} \dagger \end{gathered}$	$\begin{gathered} \frac{1}{g^{*}} \\ \frac{4.885}{g^{*}} \\ \frac{10-7}{\mathrm{~g}^{*}} \\ 1 \\ .04214 \\ \mathrm{~g}^{*} \\ .04214 \end{gathered}$	$\begin{gathered} 23.73 \\ 99.3 \mathrm{I} \\ 23.73 \times 10^{-7} \\ 23.73 \mathrm{~g}^{*} \\ \mathrm{I} \\ \mathrm{~g} \dagger \end{gathered}$	$\begin{gathered} \frac{23.73}{\mathrm{~g} \dagger} \\ \frac{99.3 \mathrm{I}}{\mathrm{~g} \dagger} \\ \frac{23.73}{\mathrm{~g} \dagger} \times 10^{-7} \\ 23.73 \\ \frac{1}{\mathrm{~g} \dagger} \\ \mathrm{I} \end{gathered}$

${ }^{*} g=9.80 \mathrm{~m}$. per sec. per sec. at latitude 45_{6}°, sea level.
$\dagger \mathrm{g}=32.2 \mathrm{ft}$. per sec. per sec
Smithsonian Tables.

SPECIFIC HEAT OF THE CHEMICAL ELEMENTS．

Element．	Range of Temperature， ${ }^{\circ} \mathrm{C}$ ．	Specific heat．	妾范	Element．	Range＊of Temperature， ${ }^{\circ} \mathrm{C}$ ．	Specific beat．	念安
Aluminum	－250	0.1428	1	Iodine	9－98	00541	25
＂．	，	． 2089	＂	lridium	－186－＋18	． 0282	26
＂	100	． 2226	＊		18－100	． 0323	＂
＂	25°	． 2382	＂	lron，cast	20－100	．1189	27
＂	500	． 2739	＂	＂wrought	15－100	．1152	28
＂	16－100	． 2122	43	＂＂	1000－1200	． 1989	
Antimony ．	15	． 0489	2		500	． 176	＂
	100	． 0503	＂	＂hard－drawn	－－18	． 0986	29
＂	200	． 0520	＂	＂＂＂	20－100	． 1146	
Arsenic，gray	0－100	．0822	3	Ianthanum	$-185-+20$	． 0958	4
	$0-100$ $-185-20$	．0861		Lanthanum	0－100	． 0448	15
Barium Bismuth	－185－＋20	． 068	4	Lead	15	． 0299	
Bismuth	186 0	．0284	5	＂＂，	100 300	．0311	＂
＂．．	75	． 0309	،	fluid	to 310	． 0356	30
＂	20－100	． 0302	7	＂＂．	${ }^{18} 360$	． 0410	،
＂fluid	280－380	． 0363	8	／	18－100	．03096	43
Boron ．	$0-100$	． 307	9	＂${ }^{\text {• }}$	16－256	．03191	8
Bromine，solid	－78－－20	． 0843	10	Lithium	－100	． 5997	31
＂fluid	13－45	． 107	II		\bigcirc	． 7951	
Cadmium	21	． 0551	2	＇	50	． 9063	＂
	100	． 0570	＂	＂－	100	1.0407	＂
＂	200	． 0594	＂	＂	190	1.3745	＂
，	300	． 0617	＂	Magnesium	$-185-20$	0.222	4
Cæsium	0－26	． 0482	12		60	． 2492	7
Calcium	$-185-+20$.157	4	＂	325	． 3235	\％
Carbon，graphite		． 170	13		625	． 4352	＂
＂${ }^{\text {car }}$ ．	＋50	.114 .160	${ }_{14}^{14}$	Manganese	$20-100$ 60	． 2492	＂
＂${ }^{\text {＂}}$	977	． 467	＂	Mangane	325	.1783	＂
＂diamond	－50	． 0635	＂	＂．	20－100	． 1211	＂
－	＋II	． 113	＂	＂${ }^{\circ}$	－100	． 0979	31
＂＂	985	． 459	＂	＂－	0	． 1072	
Cerium	$0-100$	． 0448	15	＂	100	． 1143	＂
Chlorine，liquid	0－24	． 2262	16	Mercury	$-185-+20$	． 032	4
Chromium	－200	． 0666	17	＂	0	． 03346	32
${ }^{6}$	0	． 1039	＇6	，	85	． 0328	
＂	100	． 1121	＂	$" \quad$.	100	． 03284	
＂	600	． 1872	＂	＂${ }^{\text {a }}$	250	． 03212	＂
Cobalt	－185－＋20	． 086		Molybdenum	$-185-+20$	． 062	4
Cobalt	500 1000	.1452	18		60	． 0647	7
，	$\stackrel{1000}{-182 \sim+}$	． 20822			475	． 0750	
＂	15－100	． 1030	＂	Nickel	$20-100$ $-185-20$	． 0647	
Copper	17	． 0924	2	،	100	． 1128	18
＂	100	． 0942	＂	＂．	300	． 1403	＂
＂．．	$15-238$	． 09510	43	＂．	500	． 1299	＂
＂－	900	． 1259	20	＂	1000	． 1608	＂
$" \quad$.	－181－＋13	． 0868	21	＂${ }^{\text {c }}$	18－100	． 109	26
${ }^{6}$ ．${ }^{\circ}$	23－100	． 0940	＂	Osmium	19－98	． 0311	10
Gallium，liquid．	to 113	． 080	22	Palladium．	－186－＋18	． 0528	26
	12－23	． 079	22	＂．	0－100	． 0592	24
Germanium Gold．	（185－100	． 0737	23	P	0－1265	． 0714	＂
Gold．	$\begin{gathered} -185-+20 \\ 0-100 \end{gathered}$	． 03316	4 24	Phosphorus，red ＂yellow	$0-51$ $13-36$	． 1829	33
Indium	$0-100$	． 0570	13	＂،	$\begin{gathered} 186-30 \\ -20 \end{gathered}$	． .178	4

See opposite page for References．See Table 260 for supplementary data．
＊Where one temperature alone is given，the＂true＂specific heat is given；otherwise，the＂mean＂specific heat．

SPECIFIC HEAT.
TABLE 258. - Specific Heat of the Ohemical Elements (continued).

Element.	Range * of Temperature, ${ }^{\circ} \mathrm{C}$	Specific Heat.	Reference.	Element.	$\begin{aligned} & \text { Range * of } \\ & \text { Temperature, }{ }^{\circ} \mathrm{C} . \end{aligned}$	Specific Heat.	Reference.
Platinum	$-x 86-+18$	0.0293		Sulphur	-188-+18		
\because.	$\begin{aligned} & 0-100 \\ & 100 \end{aligned}$. 0323	24	" rhombic.	$0-54$	$\underset{.}{0.1728}$	36 33
\because	100 500	. 0275	34 35	" monoclin.	(10-52	. 8809	3
	700	. 0368	35	Tantalum	$119-147$ $-185-+20$. 235	4
".	900 100	. 0380	. ${ }^{\text {a }}$	${ }^{\text {a }}$	- 1400	0.043	4
"	1500	. 030400	"	Tellurium crys.	$-188-18$. 047	36
"	500	. 0335	"'	Thallium .	- $185-100$. 0.488	37 4
"	1100 1500	. 03588	"'		20-100	. 0326	27
Potassium .	- $\begin{aligned} & 18500 \\ & -850\end{aligned}$. 170		Tinorium . : .	$0-100$. 0276	38
Rhodium.	${ }_{10-97}$. 0.580	25	Han • • • •	- $196-79$. 04888	${ }_{26}$
Ruthenium	O-100 $-188-18$. 0661	13	"' cast	2 L -109	.055I	
Selenium -	$-188-+18$. 068	36	". fluid	250	. 05799	18
Silicon.	$-185-+20$ -30.8	.123	4	" ${ }^{\text {a }}$	1100	. 0758	
.. ${ }^{\text {• }}$	- 39.8 +57.1	. 13630	${ }^{14} 4$	Titanium	$-185-+20$. 082	4
	232	. 2029	.	Tungsten.	- $\begin{array}{r}0-100 \\ -185-+20\end{array}$. 11236	39 4
Silver	- $186-79$. 0496	26	\%	$\xrightarrow{-185-100}$. 03336	$4{ }_{4}^{4}$
	-79-+18	. 0544			1000	0.044	$\underline{-}$
"	$0-100$. 0559	${ }_{3}$	Uranium	$0-98$. 028	45
*	23 100	. 055498	$\stackrel{2}{4}$	Vanadium	0-100	.1153	40
	100	.058I	34	Zinc. -	$192-+20$ $20-100$. 08336	${ }^{27}$
"،	17-507	. 05087	43	-	-	. 0933	13
". f fluid.	800 $907-1100$. 076	${ }_{8}^{18}$		100	. 0951	، ${ }^{2}$
Sodium .	- $\begin{array}{r}907-1100 \\ -185-20\end{array}$. 07438	4	Zlrconium	30000	.1040	

1 Boatschew.
2 Naccari, Atti Torino, 23, 1887-88.
3 Wigand, Ann. d. Phys. (4) 22, 1907.
4 Nordmeyer-Bernouli, Verh. d. phys. Ges. 9,1907 ; 10, 1908.

5 Giebe, Verh. d. phys. Ges. 5, 1903.
6 Lorenz, Wied. Ann. 13, 888 r .
7 Stücker, Wien. Ber. 114, 1905.
8 Person, C. R. 23, 1846; Ann. d. chim. (3) 21, 1847 ; 24, 1848.
9 Moisson-Gautier, Ann. chim. phys. (7) 17, 1896.
Regnault, A un. d. chim. (3) 26,1849 ; 63,186 1.
II Andrews, Pog. Ann. 75, 1848.
12 Eckardt-Graefe, Z. Anorg. Ch. 23, 1900.
${ }_{13}$ Bunsen, Pogg. Ann. 141, 1870 ; Wied. Ann. 31, 1887.
14 Weber, Phil. Mag. (4) 49, 1875 .
15 Hillebrand, Pog. Ann. 158, 1876.
16 Knietsch .
17 Adler, Beibl. 27, 1903.
18 Pionchon, C. R. roz-103, 8886.
19 Tilden, Phil. Trans. (A) 201, 1903.
20 Richards, Ch. News, 68, 1893.
${ }_{2 x}$ Trowbridge, Science, 8, 1898.
43 Magnus, Ann. d. Phys. 31, 19 ro.

* When one temperature alooe is given, the "true" specific heat is given; otherwise, the " mean" specific heat. Compiled in part from Landolt-Börnstein-Meyerhoffer's Physikalisch-chemische Tabellen.

TABLE 259. - Spectfic Heat of Water and of Mercury.

Specific Heat of Water.							Specific Heat of Mercury.			
Temperature, ${ }^{\circ} \mathrm{C}$.	Barnes.	Rowland.	BarnesRegnault.	Temperature, ${ }^{\circ} \mathrm{C}$.	Barnes.	BarnesRegnault.	Temperature, ${ }^{\circ} \mathrm{C}$.	Specific Heat.	Temperature, ${ }^{\circ} \mathrm{C}$.	Specific Heat.
-5	I. 0155	-	-	60	0.9988	0.9994	0	0.03346	90	0.03277
0	1.0091	1.0070	1.0094	65	. 9994	1.0004	5	. 03340	100	.03269
+5	1.0050	1. 0039	1.0053	70	1.0001	1.0015	IO	. 03335	110	. 03262
10	1.0020	1.0016	1.0023	80	1.0014	r. 0042	15	. 03330	120	. 03255
15	1.0000	1.0000	1.0003	90	r.0028	1.0070	20	. 03325	130	. 03248
20	0.9987	. 9991	0.9990	100	1.0043	1.0101	25	. 03320	140	.0324I
25	. 9978	. 9.989	. 9981	120	-	1.0162	30	. 03316	150	. 0324
30	. 9973	. 9990	. 9976	140		1.0223	35	. 03312	170	. 0322
35	. 9971	. 9997	. 9974	I60		1.0285	40	. 03308	190	. 0320
40	. 9971	$\underline{1} .0006$. 9974	180	-	1.0348	50	. 03300	210	. 0319
45	. 9973	1.0018	. 9976	200		1.0410	60	. 03294	-	
50	. 9977	$\underline{1.0031}$. 9980	220		1.0476	70	. 03289		
55	. 9982	1,0045	. 9985	-		-	80	. 03284	-	

Barnes's results: Phil. Trans. (A) 199, 1902 ; Phys. Rev. 15; 1902; 16, r903. (H thermometer.)
Bousfield, Phil. Trans. A 21I, p. 199, ign r. Barues-Regnault's as revised by Peabody ; Steam Tables.
The mercury data from $\mathrm{o}^{\circ} \mathrm{C}$ to 80 , Barnes-Cooke (H thermometer); from 0° to 140 , mean of Winklemann, Naccari and Milthaler (air thermometer); above 140°, mean of Naccari and Milthaler.

TABLE 260. - Additional Specific Heats of the Ohemioal Elements.

TABLE 261. - Mean Spactic Heats of Quartz, Sllica Glass, and Platinum from zerc, C., to the temperature named.
The mean specific heats of quartz above 550° are here increased by the heat (2.3 calories) of the inversion at 575°. The accuracy is probably better than 2 per mille.

Interval.	Quartz.	Silica Glass.	Platinum.	Obs.-calculated for Pt.
$0-100^{\circ}$.1870	.1845	-	-
$0-300^{\circ}$.2169	.2124	.03283	.00000
$0-500^{\circ}$.2382	.2303	.03363	+.00012
$0-550^{\circ}$.2441	-	-	
$0-600^{\circ}$.2520	-	-	-.00005
$0-700^{\circ}$.2555	.2433	.03424	.03487
$0-900^{\circ}$.2608	.2523	.03551	-.00004
$0-1100^{\circ}$.2654	-	.03620	-.00003
$0-1300^{\circ}$	-	-		

The results for Platinum follow the formula :
Sp . Heat $=.03174+.0000034 \theta$ very closely. If the formula were strictly correct the true specific heat at any temp. would be : $.03174+.0000068 \theta$, which is probably true to $\mathbf{1} \%$ as it is.

Determinations by W. P. White. Geographical Laboratory.

Smithsonian Tables.

TABLE 262. - Speoffio Heat of Various Solldg.*

Solid.	Temperature	Specific Heat.	Authority. \dagger
Alloys :			
Bell metal	15-98	0.0858	R
Brass, red ${ }_{\text {¢ }}$ yellow ${ }^{\text {a }}$.08991	"
$80 \mathrm{Cu}+20 \mathrm{Sn}$.	14-98	. 0862	R
$88.7 \mathrm{Cu}+1 \mathrm{ir} 3 \mathrm{Al}$.	20-100	. 10432	Ln
German silver Lipowitz alloy: $24.97 \mathrm{~Pb}+\dot{\text { ro }} .13{ }^{\circ} \mathrm{Cd} \dot{+}{ }_{50} 0.66 \mathrm{Bi}$	0-100	. 09464	T
" $\quad+14.24 \mathrm{Sn}$. .	5-50	. 0345	M
	$100-150$ $-77-20$.0426	S
Rose's alloy : $27.5 \mathrm{~Pb}+48.9 \mathrm{Bi}+23.6 \mathrm{Sn}$	$-77-20$ $20-89$.0356	"
	$\begin{gathered} 5-50 \\ 100-150 \end{gathered}$	$\begin{aligned} & .0352 \\ & .0426 \end{aligned}$	M
Miscellaneous alloys:			
$\begin{aligned} & 17.5 \mathrm{Sb}+29.9 \mathrm{Bi}+18.7 \mathrm{Zn}+33.9 \mathrm{Sn} \\ & 37 . \mathrm{Sb}+62.9 \mathrm{~Pb} . \end{aligned}$	$20-99$ $10-98$.05657	R
$39.9 \mathrm{~Pb}+60.1{ }^{1 / 8 i}$ Bi	16-99	. 03165	$\stackrel{\mathrm{P}}{ }$
${ }^{\text {" }}$ " " (fluid)	${ }^{144-358}$. 03500	
$63.7 \mathrm{~Pb}+36.3 \mathrm{Sn}$	$12-99$ $10-99$. 044573	R
46.7 $63.8 \mathrm{~Pb}+53.3 \mathrm{Sn}$ 6.2 Sn	$10-99$ $20-99$. 0404007	"
$46.9 \mathrm{Bi}+53 . \mathrm{I} \mathrm{Sn}$	20-99	. 04504	"
Gas coal . . .	20-1040	. 3145	w
Glass, normal thermometer $16{ }^{\text {mir }}$.	19-100		
" French hard thermometer	10-50	. 1861	$\stackrel{Z}{\mathrm{Z}}$
" flint	10-50	.117	
Ice ${ }_{\text {c }}$	-188--252 $-78--188$.146 .285	"
. . .	$-18-78$. 463	"
India rubber (Para)	?-100	. 48 \%	G-T
Paraffin .	-20-+3	. 3768	R W
"	${ }_{\text {- }}^{19-720}$. 5251	"
"	-5-40	. 622	B
" fluid.	60-63	. 712	"
Vulcanite . . .	20-100	.3312	A M

TABLE 283. - Specifio Heat of Various Liquids.*

Liquid.	${ }_{\text {Temper- }} \begin{aligned} & \text { ature }\end{aligned}$	Specific	$\begin{aligned} & \text { Author- } \\ & \text { ity. } \end{aligned}$	Liquid.	Temperature ${ }^{\circ} \mathrm{C}$.	Specific Heat.	$\begin{gathered} \text { Author-- } \\ \text { ity } \cdot \uparrow \end{gathered}$
Alcohol, ethyl	-20	0.5053	R	${ }^{\text {Nitrobenzole }}$,	${ }_{80-85}^{28}$	0.362	A
"" "	40	. 548	"	Napthalene, $\mathrm{C}_{10} \mathrm{H}_{8}$	$80-85$ $90-95$. 396	B
methyl	5-10	. 590	"	Oils : castor -		. 434	$\stackrel{W}{\mathrm{~W}}$
me	15-20	. 601	"	citron	5.4	-438	H ${ }^{\text {W }}$
Anilin	15 30	. 514	$\stackrel{\text { G }}{ }$	$\stackrel{\text { olive }}{\text { sesame }}$.	6.6	.471 .387	W
" ${ }^{\text {" }}$:	30 50	.520 .539	"	turpentine	\bigcirc	. 411	Pa
Benzole, $\dot{\mathrm{C}}_{6}$	10	. 340	H-D	Petroleum ${ }^{\text {c }}$	21-58	. 511	$\xrightarrow{\mathrm{Pa}}$
Benzole,	40	.423 .482	"	Toluol, $\mathrm{C}_{6} \mathrm{H}_{8}$	10 6	.364 .490	$\xrightarrow{\text { H-D }}$
Diphenylamine, $\mathrm{C}_{12} \dot{\mathrm{H}}_{11}$. 464	B		85	. 534	DMG
Diphenyla	65	. 482	R		-15	.784 .775	DM
Ethyl ether	-	. 529	R	,	+20	. 787	"
Glycerine	${ }_{14}^{15-50}$.576 .350	A	" " 1.20.	-20	. 695	"

*These specific heat tables are compiled partly from more extended tables in Landolt-Börnstein-Meyerhoffer's Tables.
For references see Table 263, page 242.
Gmithsonian Tables.

TABLE 263. - Specific Heat of Vartous Liquids.

Liquid.	Temperature ${ }^{\circ} \mathrm{C}$.	Specific Heat.	Authority.	Liquid.	Tempera. ture ${ }^{\circ} \mathrm{C}$.	Specific Heat.	Author ity.
CaCl_{2}, sp. gr. I .20 .	\bigcirc	0.712	DMG	$\mathrm{KOH}+30 \mathrm{H}_{2} \mathrm{O}$.	18	0.876	TH
"2, ${ }^{\text {c }}$	+20	. 725	"	+100	18	. 975	"
" "1.26.	-20	. 651	"	$\mathrm{NaOH}+50 \mathrm{H}_{2} \mathrm{O}$	18	. 942	"
" ${ }^{\prime} \times 6$ "	0	. 663	"	" +100 .	18	. 983	"
" " ${ }^{\text {" }}$	+20	. 676	"	$\mathrm{NaCl}+10 \mathrm{H}_{2} \mathrm{O}$	18	.791	"
$\mathrm{CuSo}_{4}+50 \mathrm{H}_{2} \mathrm{O}$	12-15	. 848	Pa	$"+200$ ".	18	. 978	"
" +200"	12-14	. 951	"	Sea water, sp.gr. I.0043	17.5	. 980	"
${ }^{\prime \prime} \mathrm{CSO}^{+400}{ }^{\text {c }}$	13-17	. 975		" " ${ }^{\text {" }}$	17.5	. 938	"
$\mathrm{ZnSO}_{4}+50 \mathrm{H}_{2} \mathrm{O}$	20-52	. 842	Ma	" " " 1.0463	17.5	. 903	"
" +200"	20-52	. 952	"				
A, Abbot.	DMG, Dickinson, Mueller, and George.				T, Tomlison.		
AM, A. M. Mayer.					S, Schü		
B, Batelli.	HM, H. Meyer.				Th, Thomsen.		
D, Dewar.	L, Lorenz.			P, Person.	W, Wachsmuth.		
E, Emo.	Ln, Luginen.			Pa , Pagliani.	Wn, W	inkelm	ann.
G, Griffiths.	M, Mazotto.			R, Regnault.			
G-T, Gee and Terry.	Ma, Marignac.			RW, K. W. Weber.	Z, Zouloff.		

TABLE 264. - Specific Heat of Minerals and Rocks.

Substance.	Temperature ${ }^{\circ} \mathrm{C}$.	Specific Heat.	Reference.	Substance.	Temperature ${ }^{\circ} \mathrm{C}$.	Specific	Reference.
Andalusite	0-100	0.1684	1	Rock-salt	13-45	0.219	6
Anhydrite, CaSO_{4}	0-100	. 1753	1	Serpentine	16-98	. 2586	2
Apatite .	$15-99$ -	. 1903	2	Siderite	9-98	. 1934	4
Asbestos	20-98	. 195	3	Spinel .	15-47	. 194	6
Augite	20-98	.193I	3	Talc	20-98	. 2092	3
Barite, BaSO_{4}	10-98	. 1128	4	Topaz .	0-100	. 2097	1
Beryl	$15-99$. 1979	2	Wollastonite .	19-51	.178	6
Borax, $\mathrm{Na}_{2} \mathrm{~B}_{4} \mathrm{O}_{7}$ fused	16-98	. 2382	4	Zinc blende, ZnS .	0-100	. 1146	1
Calcspar, CaCO_{3}.	--50	.1877	1	Zircon .	21-51	. 132	6
	-100	. 2005	1	Rocks:			
Casiderite SnO	$0-300$. 2204	1	Basalt, fine, black	12-100	. 1996	6
Casiderite, SnO_{3}	16-98	. 0933	4	" " ،	20-470	. 199	9
Corundum	9-98	. 1976	4	"، " "	470-750	. 243	9
Cryolite, $\mathrm{Al}_{2} \mathrm{Fl}_{6} .6 \mathrm{NaF}$	16-99	. 2522	2	" " "	750-880	. 626	9
Fluorite, CaF_{2}	$15-99$. 2154	4	Dolomite	880-1190	$\cdot 323$	9
Galena, PbS .	--100	. 0466	5	Dolomite	20-98	. 222	3
Garnet . ${ }^{\text {c }}$	16-100	. 1758	5	Gneiss	17-99	. 196	10
Hematite, $\mathrm{Fe}_{2} \mathrm{O}_{3}$	$15-99$. 645	2	"	17-213	. 214	10
Hornblende .	20-98	. 1952	3	Granite	12-100	. 192	7
Hypersthene.	20-98	. 1914	3	Kaolin .	20-98	. 224	3
Labradorite	20-98	. 1949	3	Lava, Aetna	23-100	. 201	11
Magnetite ${ }^{\circ}$	18-45	. 156	6	" ${ }^{\text {a }}$	31-776	. 259	11
Malachite, $\mathrm{Cu}_{2} \mathrm{CO}_{4} \cdot \mathrm{H}_{2} \mathrm{O}$	1 5-99	. 1763	2	" Kilauea	25-100	. 197	11
Mica (Mg)	20-98	. 2061	3	Limestone	$15-100$. 216	12
" (K)	20-98	. 2080	3	Marble	0-100	. 21	-
Oligoclase	20-98	. 2048	3	Quartz sand	20-98	. 191	3
Orthoclase -	$15-99$. 1877	2	Sandstone .	-	. 22	
Pyrites, copper	1 15-99	. 1291					
$\xrightarrow{\text { Pyrolusite, } \mathrm{MnO}_{2}}$	17-48	. 159	6	I Lindner. 6		Bar	
$\underset{\sim}{\text { Quartz, }} \mathrm{SiO}_{\text {a }}$	$12-100$ 0	$\begin{aligned} & .188 \\ & .1737 \end{aligned}$	7	2 Oeberg. 7	$\mathrm{y} .$	Moran	
" ${ }^{\text {" }}$	350	$.2786$	8		nchon.		
" " . .	400-1200	. 305	8	$\begin{aligned} & 4 \text { Regnault. } 9 \mathrm{R} \\ & 5 \text { Tilden. } \end{aligned}$	berts-Au Weber.	ten, Rüc	ker.

Smithsonian Tables.

Table 265.
SPECIFIC HEATS OF GASES AND VAPORS.

Substance.	Range of Temp.	$\mathrm{Sp} . \mathrm{Ht}$. Constant Pressure Pressure.	Authority.	Range of Temp.	Mean Specific $\mathrm{C}_{\mathrm{p}} / \mathrm{C}_{\mathrm{r}}$.	Authority.
	$\begin{aligned} & 26-110 \\ & 27-179 \end{aligned}$	$\begin{aligned} & 0.3468 \\ & 0.3740 \end{aligned}$	Wiedemann.			
Air	-	0.4125 0.2377		5-14	I. 40	nd
	0-100	0.2374				Pringsheim.
	0-20	0.2375				
"،	$20-440$ $20-630$	0.2366 0.3429	Holborn and			
" . .	20-800	${ }^{0.2430}$,			
Alcohol, $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{O}$	108-220	0.4534	Regnaul	53	r. 133	Jaeger.
				100	1.154	Stevens.
" $\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{OH}$	101-223	0.4580	Regnault.	100	1.256	
Ammonia	$23-100$ $27-200$	-. 0.5202	Wiedemann.	100	I. 3172 I. 2770	Wüllner.
	24-216	0.9350 0.5125	Regnault.			
Argon	20-90	0.1233	Dittenberger.	\bigcirc	ェ. 667	Niemeyer.
Benzole, ${ }_{6} \mathrm{C}_{6} \mathrm{H}_{6}$	34-115	0.2990	Wiedemann.	20	1.403	Pagliani.
" "	$35-180$ $116-218$	${ }_{0}^{0.3325}$	Regna		1.403 1.105	tevens
Bromine	83-228	0.0555 0.3	Regaut	20-388	1.293	Strecker.
	$19-388$	0.0553	Strecker.			
$\underset{\text { Carbon dioxide, }}{\text { c/ }} \mathrm{CO}_{\text {c }}$	-	0.1843 0.2025 0.205	Regnault.	4-11	1. 2995	Lummer and Pringsheim
" "	111214	0.2169	"			
" monoxide, CO	23-99	0.2425	Wiedeman	\bigcirc	1.403	Wüllner.
"	26-198	0.2426	"	100	1.395	Beyme.
$\because{ }_{\text {Orine }}{ }^{\text {disulphide, }} \mathrm{CS}_{2}$	86-190	0.1596	Regnault.	3-67 $20-340$	1.205 1.323	Beyme. Strecker.
${ }^{\text {arine }}$.	16-343	0.1125	Strecker.	0	1.336	Martini.
Chloroform, ${ }_{\text {¢ }} \mathrm{CHCl}_{3}$	27-118	0.1441	Wiedemann.	22-78	1.102	Beyme.
	28-189	0.1489		99.8	1.150	Stev
" ${ }_{\text {er }} \mathrm{C}_{4} \mathrm{H}_{40} \mathrm{O}$	69-224	0.4797	Wiedem	年 $\begin{array}{r}\text { 3-46 } \\ 42-45\end{array}$	1.025 I. 029	Beyme. Müller.
"	$25-111$	0.4280	"	12-20	1.024	Low.
Hydrochloric	13-100	0.1940	Strecker.	20	1.389	eck
	$22-214$	0.1867	Regnault.	100	1.400	
Hydrogen	28-+9 $12-198$	3.3996 3.4090		4-16	1.4080	Lummer and Pringsheim
	21-100	3.4100	Wiedeman			
" sulphide, $\mathrm{H}_{2} \mathrm{~S}$	20-206	0.2451	Regnault.	10-40	1.276	
${ }_{\text {Methane, }}^{\text {Nitrogen }} \mathrm{CH}_{4}$	$18-208$ $0-200$	0.5929	""	11-30	I. 1.41	Cazin.
Nitrogen	O-200 $20-440$	0.2438 0.2419	Holborn and			
" . .	20-630	0.2464	Austin.			
" - .	20-800	0.2497				
Nitric oxide, $\mathrm{NO} \cdot \mathrm{NO}_{2}$	$\begin{aligned} & 13-17^{2} \\ & 27-67 \end{aligned}$	$\begin{aligned} & 0.2317 \\ & 1.625 \end{aligned}$	Regnault. Berthelot and	-		Natanson.
Nitrogen tetroxide, ${ }_{6}{ }^{\mathrm{NO}}$	$\begin{aligned} & 27-67 \\ & 27-150 \end{aligned}$	I.65	Olger.	-		
" ${ }^{\text {a }}$ "	$27-280$ $16-207$	0.65 0.2262				
Nitrous oxide, ${ }_{\text {c }} \mathrm{N}_{2} \mathrm{O}$	-16-207	0.2262 0.2126	Regnault. Wiedemann.	100	$\begin{aligned} & \mathrm{I} .31 \mathrm{II} \\ & 1.272 \end{aligned}$	
" " "	27-206	0.2241	"			
Oxygen .	$13-207$ $20-440$	$\begin{aligned} & 0.2175 \\ & 0.2240 \end{aligned}$	Regnault. Holborn and	5-14	I. 3977	$\underset{\text { Pringsheim }}{\text { Lummer and }}$
" ${ }^{\text {a }}$	20-630	0.2300	Austin.			
Sulphur dioxide, SO_{2}	16-202	0.1544	Regnault.		I. 256	
Water vapor, ${ }_{\text {c }} \mathrm{H}_{2} \mathrm{O}$	-	0.4655	Thiesen.	78 94		Jaeger.
" " "	180	0.51	"			

Smithsonian Tables.

THERMOMETERS．

TABLE 266．－Gas and Mercury Thermometers．

If $t_{\mathrm{H}}, t_{\mathrm{N}}, t_{\mathrm{CO}}, t_{\mathrm{I}}, t_{58}, t_{\mathrm{T}}$ ，are temperatures measured with the hydrogen，nitrogen，carbonic acid， $16 \mathrm{II}, 59^{\mathrm{LI}}$ ，and＂verre dur＂（Tonnelot），respectively，then

$$
\begin{aligned}
& t_{\mathrm{B}}-t_{\mathrm{T}}=\frac{(100-t) t}{100^{2}}\left[-0.61859+0.0047351 . t-0.000011577 . t^{2}\right]^{*} \\
& t_{\mathrm{N}}-t_{\mathrm{T}}=\frac{(100-t) t}{100^{2}}\left[-0.55541+0.0048240 . t-0.000024807 . t^{2}\right]^{*} \\
& t_{\mathrm{Co2}}-t_{\mathrm{T}}=\frac{(100-t) t}{100^{2}}\left[-0.333^{86}+0.0039910 . t-0.000016678 . t^{2}\right]^{*} \\
& t_{\mathrm{B}}-t_{16}=\frac{(100-t) t}{100^{2}}\left[-0.67039+0.0047351 . t-0.000011577 . t^{2}\right] \dagger \\
& t_{\mathrm{B}}-t_{59}=\frac{(100-t) t}{100^{2}}\left[-0.31089+0.0047351 . t-0.000011577 . t^{2}\right]^{2}
\end{aligned}
$$

＊Chappuis；Trav．et Mér．du Bur．internat．des Poids et Mes．6， 1888.
＋Thiesen，Scheel，Sell；Wiss Abh．d．Phys．Techn．Reichanstalt，2， 1895 ；Scheel；Wied．Ann．58，1896；D．Mech． Z比． 1897.

TABLE 267．$t_{H}-t_{18}$（Hydrogen－16III）．

	0°	$2{ }^{\circ}$	$2{ }^{\circ}$	3°	4°	5°	60	$7{ }^{\circ}$	8°	9°
							－． 036°	－． 042°	－． 047°	
$0{ }^{\circ}$	－．000	一．007 ${ }^{\circ}$	$\begin{aligned} & -.013^{\circ} \\ & -.065 \end{aligned}$	$\begin{aligned} & -.019^{\circ} \\ & -. .069 \end{aligned}$	$\begin{aligned} & \text {-. } 0255^{\circ} \end{aligned}$	－． 0.077	－． 080	－． 084	－． 087	－．051
20	－． 093	－． 0.06	－． 098	－．101	－．103	－． 105	－． 107	－． 109	－． 110	－．112
30	－．II3	－．114	－．115	－．116	－． 117	－．118	－．119	－． 119	－．119	－． 120
40	－． 120	－． 120	． 120	－． 120	一．119	－． 119	－． 118	－． 118	－．117	一．116
50	－． 116	一． 115	－．114	－．113	－．111	－． 110	－． 109	－． 107	－． 106	－． 104
60	－．103	一．101	－． 099	－． 097	－．096	－． 094	－． 092	－．090	－． 087	－． 085
70	－．083	－． 081	－． 078	－． 076	－． 074	－． 071	－． 069	－． 066	－． 064	－． 061
80	－． 058	－．056	－． 053	－． 050	－． 048	－． 045	－． 042	－． 039	－． 036	－． 033
90	－．030	－． 027	－． 024	－． 021	－．018	－． 015	－． 012	－． 009	－． 006	－．003
100	． 000									

TABLE 266．$t_{H}-t_{5 \theta}$（Hydrogen－ $69^{I I I}$ ）．

	00	$\mathrm{r}^{\text {o }}$	$2{ }^{\circ}$	3°	4°	5°	6°	7°	8°	9°
0°	． $000{ }^{\circ}$	－003 ${ }^{\circ}$	－． 006°	－009 ${ }^{\circ}$	－．011 ${ }^{\circ}$	－．014 ${ }^{\circ}$	－． 016°	－．018 ${ }^{\circ}$	－．020 ${ }^{\circ}$	． 022°
10	－． 024	$-.025$	－． 027	－． 028	－． 0.30	－．031	－． 032	－．033	－． 034	－． 032
20	－． 035	－．．036	－．036	－． 037	－． 037	－． 037	－． 038	－．038	－． 038	$-.038$
30	－． 038	－． 037	－． 037	－． 037	－． 037	－． 036	－． 036	－． 035	－． 035	－． 034
40	－． 034	－． 033	－． 032	－． 032	－．031	－． 030	－． 029	－． 028	－． 028	－． 027
50	－． 026	－． 025	－． 024	－． 023	－． 022	－． 021	－． 020	－． 019	－．018	－． 017
60	－． 016	－． 015	－． 015	－． 014	－．013	－． 012	－． 011	－． 010	－． 009	－． 008
70	－． 008	－． 007	－．006	－． 005	－． 005	$-.004$	－． 003	－． 003	－． 002	－． 001
80	－．001	－．001	． 000	． 000	＋．001	＋．001	＋．001	＋．002	＋．002	$+.002$
90	＋．002	＋．002	＋．002	＋．002	＋．002	＋．002	$+.001$	＋．001	＋．001	． 000
100	． 000									

TABLE 269．（Hydrogen－16iII），（Hydrogen－69iII）．

	-5°	-10°	-15°	-20°	-25°	-30°	-35°
$\mathrm{t}_{\mathrm{I}}-\mathrm{t}_{16}$ $\mathrm{t}_{\mathrm{B}}-\mathrm{t}_{59}$	$+0.04^{\circ}$ $+0.02^{\circ}$	$+0.08^{\circ}$ $+0.04^{\circ}$	$+0.13^{\circ}$ $+0.07^{\circ}$	$+0.19^{\circ}$ $+0.10^{\circ}$	$+0.25^{\circ}$ $+0.14^{\circ}$	$+0.32^{\circ}$ $+0.18^{\circ}$	$+0.40^{\circ}$ $+0.23^{\circ}$

All compiled from Landolt－Börnstein－Meyerhoffer＇s Physikalisch－chemische Tabellen．
Smithsonian Tables．

AIR AND MERCURY THERMOMETERS．

TABLE 270．$t_{\text {AIR }}-t_{10}$ ．（Air $-16{ }^{\text {mi．}}$ ）

${ }^{\circ} \mathrm{C}$.	\bigcirc	I°	20	3°	4°	5°	6°	$7{ }^{0}$	$8{ }^{\circ}$	9°
0	． 000	－． 006	－． 012	－． 017	－． 022	－． 027				
10	－．049	－． 053	－． 057	－．061	－．022	－．028	－．032	－．037	－．041	－． 045
20	－． 083	－． 086	－． 089	－．091	－． 093	－． 095	－． 097	－． 099	－．101	102
30	－． 103	－．104	－． 105	－． 106	－． 107	－． 108	－．109	－． 110	110	－． 110
40	－． 107	－．110	－．111	III	－． 110	110	－．rio	－． 109	－． 109	－． 108
60	－．107	－．107	－． 106	－． 105	－． 104	－． 10	2	－．101	－． 100	－．098
70	－． 078	$-.076$	－． 07	－．092	－．090	－． 088	． 086	． 084	82	080
80	－． 054	－． 052	－． 049	－． 047	－． 044	－． 04	． 039	－．036		－．057
90	－． 028	－．025	－． 023	－． 020	－． 017	－．014	－．011	－．009	－．034	$\begin{array}{r}-.031 \\ \hline .003\end{array}$
100	． 000	＋．003	＋．006	＋．008	＋．OII	＋．014	$+.017$	＋．019	＋． 022	＋．025
110	＋．028	＋．030	＋．033	＋．035	＋．038	＋．041	＋． 043	＋．046	＋．028	＋．050
120	＋．053	＋．055	＋．057	＋．060	＋．062	＋． 064	＋．066	＋．068	＋．070	$+.072$
130	＋．074	＋．076	＋．078	＋．080	＋．081	＋．083	＋．084	＋．086	＋．087	＋．089
140	＋．090	＋．09I	＋．092	＋．093	$+.094$	＋．095	$+.096$	＋．096	$+.097$	＋． 097
150	$+.098$	＋．098	$+.098$	＋．099	＋．099	＋．099	$+.098$	＋．098	$+.098$	$\underline{+.097}$
160	$+.097$	$+.096$	＋．095	＋．094	$+.093$	＋．092	＋．090	＋．089	＋．088	＋．086
170	＋．084	＋．082	＋．080	＋．078	＋．076	＋．073	＋．071	＋．068	＋．065	＋． 062
180	＋．059	＋．055	$+.052$	＋．048	＋．045	＋．041	＋．037	$+.033$	$+.028$	＋．023
190	＋．019	＋．014	＋．009	$+.004$	．00I	－．007	－．013	－． 019	－． 025	－．03I
200	－．038	－． 045	－．051	－． 058	－． 066	－． 073	－． 080	－． 088	－．096	－． 105
210	－．113	－． 122	－．130	－．139	一．148	－． 158	． 68	－． 177	－． 187	－． 198
220	－． 208	－．219	－． 230	－． 241	－． 252	－． 264	－． 275	－． 287	－． 300	－．312
230	-325	－．338	－．35 ${ }^{1}$	－． 365	－． 378	－． 392	－． 407	－．42I	－． 436	－．450
240	－．466	-.481 -650	-.497 -.668	－．513	$\begin{aligned} & -.529 \\ & -.706 \end{aligned}$	－．546	－． 562	-.579 -.765	－． 597	-.614 -.805
250 260	－． 632	－．650	－． 668	-.687 -.889	$\begin{aligned} & -.706 \\ & -.911 \end{aligned}$	-.725 -.933	－． 745	-.765 -.978	－1．001	－． C .025
270	－1．048	－1．072	－1．096	－I．121	－1．146	－r．171	－1．196	－1．222	－1．248	－1．274
280	－1．301	$-\mathrm{r} .328$	-1.356	-1.384	－1．412	－1．440	$\text { -r. } 469$	-1.498	$-\mathrm{I} .5^{28}$	$-\mathrm{I} .558$
290	－1．588	－1．618	－1．649	-1.680	－1．711	－1．743	－1．776	－1．808	$-1.84 \mathrm{I}$	-1.874
300	－1．908									

TABLE 271．tars－t_{60}（Atr－69im．）

${ }^{\circ} \mathrm{C}$.	\bigcirc	3^{0}	$2{ }^{\circ}$	3°	4°	5°	6°	$7{ }^{\circ}$	80	9°
100	． 000	． 000	． 000	． 000	． 000	． 000	． 000	． 000	． 000	． 000
110	． 000	． 000	． 000	－．001	－．001	－． 0001	－．001	－．001	一．002	一．002
120	－． 002	－． 002	－． 002	－．002	－． 002	－．003	－． 003	－． 003	－． 004	－． 004
130	－． 004	－． 004	－． 005	－． 005	－． 006	－． 006	－． 006	－． 007	－． 007	－． 008
140	－． 008	－． 008	－． 009	－． 009	－． 010	－． 010	－．ori	－．01 I	－，012	－． 012
150	－． 013	－．013	－． 014	－．015	－． 016	－．016	－．016	－．017	－． 018	－． 019
160	－． 019	－． 020	－．021	－．021	－． 022	－． 023	－． 024	－． 025	－． 026	－． 027
170	－． 028	－． 029	－．030	－．031	－． 032	－． 033	－． 034	－． 035	－． 037	－． 038
180	$-.039$	－． 040	－． 041	$-.043$	－． 044	－． 045	－． 046	－． 048	－． 049	－． 051
190	－． 052	－．053	－． 055	－． 056	－．057	－． 059	－． 060	－． 062	－． 064	－． 066

Smithsonian Tables．

GAS, MERCURY, ALCOHOL, TOLUOL, PETROLETHER, PENTANE, THERMOMETERS.

TABLE 272. - $\mathrm{t}^{\mathrm{H}} \mathrm{i}_{\mathrm{M}}$ (Hydrogen-Mifory).

Temperature, C .	Thuringer Glass.	Verre dur. Tonnelot. \uparrow	Resistance Glass.*	English Crystal Glass.*	$\begin{aligned} & \text { Choisy-le- } \\ & \text { Roi.* } \end{aligned}$	122 ${ }^{\text {¹4.** }}$	Nitrogen Thermometer. $\mathrm{T}_{\mathrm{H}}-\mathrm{T}_{\mathrm{N} \cdot}+$	CO_{2} Thermometer. $\mathrm{T}_{\mathrm{H}}-\mathrm{T}_{\mathrm{CO}_{3}}+$
-	-	-	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
\bigcirc	. 000	. 000	. 000	. 000	. 000	. 000	. 000	. 000
10	-. 075	-. 052	-. 066	-. 008	-. 007	-. 005	-. 006	-. 025
20	-. 125	-. 085	-. 108	-.001	-. 004	-.006	-. 010	-. 043
30	-. 156	-.102	-. 31	+.017	+.004	-. 002	-. 019	-. 054
40	-.r68	-. 107	-. 140	+.037	+.014	+.001	-. 011	-. 059
50	-. 166	-. 103	-. 35	+.057	+.025	+.004	-.009	-. 059
60	-. 150	-. 090	-. 119	+. 073	$+.033$	+.008	-.005	-. 053
70	-. 124	-. 072	-. 095	+. 079	$+.037$	+.009	-.001	-. 044
80	-. 088	-. 050	-. 068	+. 070	+.032	+.007	+.002	-.031
90	-. 047	-. 026	-. 034	+.046	+. 022	+.006	+.003	-.016
100	. 000	. 000	. 000	.000	. 000	. 000	. 000	. 000

* Schlösser, Zt. Instrkde. 21, Igor. \dagger Chappuis, Trav. et mém. du Bur. Intern. des Poids et Mes. 6, 1888.

TABLE 273. - Comparison of Alr and High Tomperature Mercury Thermometers.
Comparison of the air thermometer with the high temperature mercury thermometer, filled under pressure and made of $59^{\text {III }}$ glass.

Air.	$59^{\text {II }}$	Air.	$59^{\text {III }}$
0	0	0	0
0	0.	375	385.4
100	100.	400	412.3
200	200.4	425	440.7
300	$304 . \mathrm{I}$	450	46.1
325	330.9	475	498.0
350	358.5	500	527.8

Mahlke, Wied. Ann. 1894.

TABLE 274. - Comparison of Hydrogen and Other Thermometers.
Comparison of the hydrogen thermometer with the toluol, alcohol, petrolether, and pentane thermometers (verre dur).

Hydrogen.	Toluol.*	Alcohol I.*	Alcohol II.*	Petrolether. \dagger	Pentane. \ddagger
\bigcirc	\bigcirc	\bigcirc	\bigcirc	0	0
0	0.00	0.00	0.00	-	0.00
-ro	-8.54	-9.3r	-9.44	-	-9.03
-20	-r6.90	-18.45	-18.71	-	-17.87
-30	-25.10	-27.44	-27.84	-	-26.55
-40	-33.15	-36.30	-36.84	-	-35.04
-50	-41.08	-45.05	-45.74	-42.6	-43.36
-60	-48.90	-53.71	-54.55		- 51.50
-70 -100	-56.63	-62.31	-63.31	-80	- 59.46
-100	-	-	-	-80.2 -113.0	- 82.28 $-r 16.87$
-200	-	-	-	-140.7	-146.84

[^44] All compiled from Landolt-Börnstein-Meyerhoffer's Physikalisch-chemische Tahellen.

Smithsonian Tables.

Tables 275-277.

TABLE 275. - Platinum Resistanoe Thermometers.

Callendar has shown that if we define the platinum temperature, pt, by $\mathrm{pt}=100\left\{\left(\mathrm{R}-\mathrm{R}_{0}\right)\right.$ $\left./\left(\mathrm{R}_{100}-\mathrm{R}_{0}\right)\right\}$, where R is the observed resistance at $\mathrm{t}^{\circ} \mathrm{C}$., R_{0} that at $\mathrm{O}^{\circ}, \mathrm{R}_{100}$ at 100°, then the relation between the platinum temperature and the temperature t on the scale of the gas thermometer is represented by $\mathrm{t}-\mathrm{pt}=\delta\{\mathrm{t} / \mathrm{I} 00-\mathrm{I}\} \mathrm{t} / \mathrm{r} 00$ where δ is a constant for any given sample of platinum and about I . jo for pure platinum (impure platinum having higher values). This holds good between - 23° and 450° when δ has been determined by the boiling point of sulphur (445°.)

See Waidner and Burgess, Bul. Bureau Standards, 6, p. 149, 1909.

TABLE 276. - Thermodynamic Temperature of the Ioe Point, and Reduotion to Thermodynamic Scale.

$$
\text { Mean }=273.10^{\circ} \mathrm{C} \text {. (ice point) }
$$

For a discussion of the various values and for the corrections of the various gas thermometers to the thermodynamic scale see Buckingham, Bull. Bureau Standards, 3, p. 237, 1907.

Scale Correotiona for Gas Thermometere.

Temp. C.	Constant pressure $=76 \mathrm{~cm}$.	Constani volume $\oplus_{\circ}=273.10 \mathrm{C}$.
	$\mathrm{He} \quad \mathrm{H} \quad \mathrm{N}$	$\mathrm{He} \quad \mathrm{H} \quad \mathrm{N}$
$\begin{aligned} & -250^{\circ} \\ & -200 \\ & -100 \\ & -50 \\ & +25 \\ & +50 \\ & +75 \\ & +150 \\ & +200 \\ & +450 \\ & +1000 \\ & +1500 \end{aligned}$	- - - +0.10 +0.26 - +.03 +0.03 +0.33 +.009 +0.004 +. 09 -.002 -.002 -.013 -.002 -.003 -.017 +.002 -.002 -.012 +.005 +.003 +.04 +.01 +.01 +.10 +.07 +.04 +.50 +.24 +.01 +1.7 - +3.0	$\begin{array}{cc} +0.02 & - \\ +0.01 & -0.06 \\ .000+.014 & +0.07 \\ .000+.004 & +.02 \\ .000 & .000 \\ .000 & .000 \\ .000 & -.006 \\ .000+.001 & +.004 \\ .000+.002 & +.01 \\ 0.00+.01 & +.15 \\ - & +0.04 \\ - & +.70 \\ - & +1.3 \end{array}$

See Burgess, The Present Status of the Temperature Scale, Chemical News, 107, p. 169, 1913.

TABLE 277. - Standard Points for the Calibration of Thermometero.

* Thermoelectric extrapolation. † Optical extrapolation.
, Iournal de Physique, 1912. Mesure des témperatures élevées.) A few additional points are: H, boils- 252.7°; O, boils-182.9 ${ }^{\circ}$; Hg. freezes - 37.7°; Alumina melts 2000°; Tungsten melts 3000°.

Smithsonian Tables.

CORRECTION FOR TEMPERATURE OF MERCURY IN THERMOMETER STEM.

The Stem Correction is proportional to $n \beta(T-t)$: where n is the number of degrees in the exposed stem; $\boldsymbol{\beta}$ is the apparent coefficient of expansion of mercury in the glass; T^{\prime} is the measured temperature; and t is the mean temperature of the exposed stem determined by another thermometer, exposed some Io cin. from, and at about half the height of, the exposed stem of the first.
For temperatures up to $100^{\circ} \mathrm{C}$, the value of β is for:
Jena glass XVIII or Greiner and Friedrich resistance glass, $\frac{1}{6300}$ or 0.000159 ;
Jena glass $59^{\text {II }}, \frac{1}{6100}$ or 0.000164 .
At 100° the correction is in round numbers 0.01° for each degree of the exposed stem; at 200° 0.02°; and for higher temperatures proportionately greater. At 500° it may amount to 0.07° for each exposed degree.
Tables 278-280 are taken from Rimbach, Zeitschrift für Instrumentenkunde, 10, 153, 1890, and apply to thermometers of Jena or of resistance glass.

TABLE 278. - Stem Correction for Thermometer of Jena Glass ($0^{\circ}-360^{\circ} \mathrm{C}$.).
Degree length 0.9 to $\mathrm{I} .1 \mathrm{~mm} ; t=$ the observed temperature; $t^{\prime}=$ that of the surrounding air I dm. away; $n=$ the length of the exposed thread.

n	Cobrection to be added to the Reading t.									
	$t-t^{\prime}$									
	70°	80°	90°	100°	120°	140°	$160{ }^{\circ}$	180°	$200{ }^{\circ}$	$220{ }^{\circ}$
10	0.01	0.01	0.03	0.04	0.07	0.10	0.13	0.17	0.19	0.21
20	0.08	0.12	0.14	0.19	0.25	0.28	0.32	0.40	0.49	0.54
30	0.25	0.28	0.32	0.36	0.42	0.48	0.54	0.66	0.78	0.87
40	0.30	0.35	0.41	0.48	0.60	0.67	0.77	0.92	1.08	1.20
50	0.41	0.46	0.52	0.59	0.79	0.89	0.98	1.16	1. 38	I. 53
60	0.52	0.60	0.68	0.79	0.99	I. 11	1.23	1.46	I. 70	1. 87
70	0.63	0.74	0.85	0.98	1.20	1.32	1.45	1.70	1.99	2.21
80	0.75	0.87	I. 01	I.I 5	1. 38	1.53	1.70	1.98	2.29	2.54
90	0.87	0.99	1.13	1.28	1.62	1.82	1.94	1.25	2.60	2.89
100	0.98	1.12	1.29	I. 47	1.82	2.03	2.20	2.55	2.92	3.24
120	-	-	-	1. 88	2.28	2.49	2.68	3.13	3.59	3.96
140	-	-	-	-	2.75	2.97	3.22	3.75	4.24	4.69
I60	-	-	-	-	-	$3 \cdot 35$	3.80	4.35	4.92	
180	-	-	-	-	-	-	4.37	4.99	5.63	6.22
200	-	-		-	-	-	-	5.68	6.34	6.98
220	-	-		-	-	-	-	-	7.05	7.82

See "The correotion for Emergent Stem of Merourtal Thermometer." Bucieingham, Bul. Bur. of Standards, 8, p. 239, 1912.

Smithsonian Tableb.

CORRECTION FOR TEMPERATURE OF MERCURY IN THERMOMETER STEM (continued).

TABLE 279. - Stem Correotion for Themometar of Jema Class ($0^{\circ}-380^{\circ} 0$).
Degree length I to 1.6 mm ; $t=$ the observed temperature; $t^{\prime}=$ that of the surrounding air one dm. away; $u=$ the length of the exposed thread.

Corrbetion to me added to Thermometer Reading.*											
n	$t-t$										\boldsymbol{n}
	70°	80°	80°	$100{ }^{\circ}$	120°	140°	160°	180°	200°	220°	
10°	0.02	0.03	0.05	0.07	0.11	0.17	0.21	0.27	0.33	0.38	10°
20	0.13	0.15	0.18	0.22	0.29	0.38	0.46	0.53	0.61	0.67	20
30	0.24	0.28	0.33	0.39	0.48	0.59	0.70	0.78	0.88	0.97	30
40	0.35	0.41	0.48	0.56	0.68	0.82	0.94	1.04	1.16	1.28	40
50	0.47	0.53	0.62	0.72	0.88	1.03	1.17	I.3I	1.44	I. 59	50
60	0.57	0.66	0.77	0.89	1.09	1.25	1.42	1.58	1.74	1.90	60
70	0.69	0.79	0.92	1.06	1.30	1.47	1.67	1.86	2.04	2.23	
80	0.80	0.91	1.05	1.21	1.52	1.71	1.94	2.15	2.33	2.55	80
90	0.91	1.04	1.19	1.38	1.73	1.96	2.20	2.42	2.64	2.89	90
100	1.02	1.18	1.35	1.56	1.97	2.18	2.45	2.70	2.94	3.23	100
110	-	-	,	1.78	2.19	2.43	2.70	2.98	3.26	$3 \cdot 57$	110
120	-	-	-	1.98	2.43	2.69	2.95	3.26	$3 \cdot 58$	3.92	120
130	-	-	-	-	2.68	2.94	3.20	3.56	3.89	4.28	130
140	-	-	-	-	2.92	3.22	3.47	3.86	4.22	4.64	140
	-	-	-	-	-	-		4.15	4.56	5.01	150
160	-	-	-	-	-	-	4.00	$4 \cdot 46$	4.90	$5 \cdot 39$	160
170	-		-	-	-	-	4.27	4.76	5.24	5.77	170
180	-	-	-	-	-	-	$4 \cdot 54$	5.07	5.59	6.15	180
190	-	-	-	-	-	-	-	5.38	5.95	6.54	190
200	-	-		-	-	-	-	5.70	6.30	6.94	200
210	-	-	-	-	-	-	-	-	6.68	7.35	210
220	-	-	-	-	-	-	-	-	7.04	7.75	220

* See Hovestadt's "Jena Glass" (translated by J. D. and A. Everett) for data on changes of thermometer zeros.

TABLE 280. - Stem Correction for a $\boldsymbol{6 0}$-called Normal Thermometer of Jena Glass ($0^{\circ}-\mathbf{1 0 0}{ }^{\circ} \mathbf{0}$).
Divided into tenth degrees; degree length about 4 mm .

Correction to be added to the Reading t.												
\boldsymbol{n}	$t-t$											
	30°	35°	40°	45°	50°	65°	60°	65°	70°	76°	80°	85°
10	0.04	0.04	0.05	0.05	0.05	0.06	0.06	0.0%	0.08	0.09	0.10	0.10
20	0.12	0.12	0.13	0.14	0.15	0.16	0.17	0.18	0.19	0.20	0.22	0.23
30	0.21	0.22	0.23	0.24	0.25	0.25	0.27	0.29	0.31	0.33	0.35	0.37
40	0.28	0.29	0.35	0.33	0.35	0.37	0.39	0.41	0.43	0.45	0.48	0.51
50	0.36	0.38	0.40	0.42	0.44	0.46	0.48	0.50	0.53	0.57	0.61	0.65
60	0.45	0.48	0.51	0.53	0.55	0.57	0.60	0.63	0.66	0.69	0.73	0.78
	.	-	.	5		0.66	0.69	0.71	0.75	0.81	0.87	0.92
80	-		-	-	-	-	0.76	0.81	0.87	0.93	1.00	1.06
90			-	-				0.92	0.99	1.06	1.13	1.20
100	-	-	-	-	-						1.26	1.34

Smithsonian Tasles.

TABLE 281. - Standard Cailbration Oarve for PL - Pt. Rh. ($\mathbf{1 0 \%}$ Rh.) Thermo-Element.

Giving the temperature for every 100 microvolts. For use in conjunction with a deviation curve determined by calibration of the particular element at some of the following fixed points:

Water	boiling-pt.	100.0	643 mv .	Silver	melting-pt.		$\begin{array}{r} 960.2 \\ 1062.6 \end{array}$	$\begin{gathered} 9111 m v . \\ \text { 10296 } \end{gathered}$
Napthalene	" ${ }^{\text {a }}$	217.95	1585	Gold				
Tin	melting-pt.	231.9	1706	Copper	،	"	1082.8	10534
Benzopbenone	hoiling-pt.	305.9	2365	$\mathrm{Li}_{2} \mathrm{SiO}_{3}$	"	"	1201.	II94I
Cadmium	melting-pt.	320.9	2503	Dippside	*	*	1391.5	14230
Zinc	" ${ }^{\text {c }}$	419.4	3430	Nickel	*	"	1452.6	14973
Sulphur	boiling-pt.	444.55	3672					
Antimony	melting-pt.	630.0	5530	Palladium	"	،	1549.5	16144
Aluminum	* 6	658.7	5827	Platinum	"	\cdots	1755.	18608

TABLE 282. - Standard Cailbration Curve for Copper - Constantan Thermo-Element.
For use in conjuaction with a deviation curve determined by the calibration of the particular element at some nf the following fixed points:
Water, boiling-point, $100^{\circ}, 4276$ micruvalts; Napthalene, hniling-point, 217.95 , 10248 mv.; Tin, melting-point, 231.9, 11009 mv. ; Benzophenone, hniling-point, $305.9,15203 \mathrm{mv}$.; Cadmium, melting-point, 320.9 , 16083 mv .

Cf. Day aod Sosman, Am. Jour. Sci. 29، p. 93, 32, p. 51; ; ibid. R. B. Sosman, 30, D. 1.
Smithsonian Tables.

Tables 283-285.

RADIATION CONSTANTS.

TABLE 283. - Radiation Fermuly and Conatants for Perfect Radiator.

The radiation per sq. cm. from a " black body " (exclusive of convection losses) at the temperature T° (absolute, C) to one at t° is equal to

$$
J=\sigma\left(T^{4}-t^{4}\right) \quad \text { (Stefan-Boltzmann) ; }
$$

where $\sigma=1.374 \times 10^{-12}$ gram-calories per second per sq. centimeter.

$$
=8.26 \times 10^{-11} \text { " }
$$

The distribution of this energy in the spectrum is represented by Planck's formula:

$$
J_{\lambda}=C_{1} \lambda^{-\Sigma}\left[e^{\frac{C_{2}}{\lambda T}}-I\right]^{-1}
$$

where J_{λ} is the intensity of the energy at the wave-length λ (λ expressed in microns, μ) and e is the base of the Napierian logarithms.

$$
\begin{aligned}
& C_{1}=9.226 \times 10^{-28} \text { for } J \text { in } \frac{\text { gram. cal. }}{\text { sec. cmi. }}=3.86 \times 10^{-22} \text { for } J \text { in } \frac{\text { watts }}{\mathrm{cm} .^{2}} \\
& C_{2}=1.4450 \text { for } \lambda \text { in } \mathrm{cm} \text {. } \\
& J_{\max }=3.11 \times{ }^{+1} 0^{+4} T^{5} \text { for } J \text { in } \frac{\mathrm{gram} . \mathrm{cal} .}{\mathrm{sec} . \mathrm{cm} .^{2}}=1.30 \times \mathrm{o}^{+5} \mathrm{~T}^{5} \text { for } J \text { in } \frac{\text { watts }}{\mathrm{cm}^{2}} \\
& \lambda_{\max } T=0.29 \text { Io for } \lambda \text { in } \mathrm{cm} \text {. } \\
& \mathrm{h}=\text { Planck's unit }=\text { elementary "Wirkungs quantum" }=6.83 \times 10^{-27} \mathrm{ergs} . \mathrm{sec} . \\
& \mathrm{k}=\text { constant of entropy equation }=\mathrm{I} .42 \times \mathrm{ro}^{-16} \mathrm{ergs} . / \text { degrees. }
\end{aligned}
$$

Table 284. - Rediation in Gram-Calertea per 24 Hours per eq. om. from a Pertect Radiator at $t^{\circ} \mathbf{C}$ to an absolutely Cold Space (-273° O).
Computed from the Stefan-Boltzmann formula.

$\pm{ }^{\circ} \mathrm{C}$	J	$\pm \mathrm{C}$	J	$t^{\circ} \mathrm{C}$	J	$t^{\circ} \mathrm{C}$	I	$\infty^{\circ} \mathrm{C}$	J	${ }^{\circ} \mathrm{C}$	I
-273	\bigcirc	-120	65	-10	571	+12	787	+34	1059	+56	1400
-220	1	-110	84	-8	588	+14	808	+36	1087	+58	1430
-210	2	-100	107	-6	606	+16	831 855	+38	1115	+60	1470
二200 190	3 5	-80	134 165	-4	625 643	+18	855 879	+40	1145 1174	+70 +80 +80	1650 1850
-180	9	-70	201	\bigcirc	662	+22	903	+44	1204	+90	2070
-170	13	-60	245	+2	682	+24	928	+46	1234	+100	2310
-160	19	50	294	+4	701					+200	5960
-150	27	-40		+6		+28 +30	939 1005	+50	1298	+1000 +2000	
-140	38 50	- ${ }^{30}$	416 488	+8 +10	744 765	+30 +32	$1 \begin{aligned} & 1005 \\ & 1032\end{aligned}$	+52 +54	1330 1363	+2000 +5000	$\begin{aligned} & 318 \times 10^{4} \\ & 921 \times 10^{5} \end{aligned}$
-130	50										

TABLE 285. - Valnea of J_{λ} tor Varlona Temperatures Centigrade.
Ekholm, Met. Z. 1902, used $C_{1}=8346$ and $C_{2}=14349$, and for the unit of time the day.
For 10°, the values for J_{λ} have been multiplied by 10 , for the other temperatures by 100 .

λ	$T=100^{\circ} \mathrm{C}$	$30^{\circ} \mathrm{C}$	$15^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}$	$-30^{\circ} \mathrm{C}$	$-80^{\circ} \mathrm{C}$	λ	$100^{\circ} \mathrm{C}$	$30^{\circ} \mathrm{C}$	${ }_{15}{ }^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}$	$-30^{\circ} \mathrm{C}$	$-80^{\circ} \mathrm{C}$
M		0	o	-	\bigcirc	\bigcirc	${ }_{18}^{\mu}$	511	2961	2557	2175	1491	623
3	80	41	18	7	1	\bigcirc	19	443	2626	2281	1954	1363	594
4	469	508	272	138	27	1	20	386	2329	2034	1754	1242	561
5	1047	1777	1085	628	172	8	21	337	2068	1816	1574	1129	527
6	1526	3464	2296	1454	493	39	22	295	1840	1622	1413	1026	494
7	1768	4954	3481	2353	931	105	23	259	1639	1448	1270	931	460
8	1810	5928	4352	3088	1372	203	24	228	1462	1298	1141	846	428
9	1724	6382	4834	3646	$173{ }^{\circ}$		25	172	1307	1165	1028 926	768 698	398 369
10	1573 1388 18	$6{ }_{6} 638$	4979			426 520	28	179	1170 947	1047 850		598	369 317
1	1398 1225	6127 5712	4833	3798	${ }_{2114}^{2098}$	520 592	28	142	${ }_{77} 94$	850 696	757 623	579 482	317 272
12	1225 1063	${ }_{5222} 5$	4633	3676	2090	592 640	40	14 44	311	285	259	209	130
14	918	4713	3930	3215	2004	666	50	20	146	135	124	102	67
15	792	4220	3556	2944	1889	673	60	10	77	72	66	55	38 14
16	683	3759	3198	2674	1760 1626		80 100	4	${ }_{12}^{27}$	25 11	24 10	20	14
17	590	3340	2862	2417	1626	649	100	2	12	11	10	9	7

Smithsonian Tableb.

table 286. - at Ordinary Presguree.

According to McFarlane* the rate of loss of heat by a sphere placed in the centre of a spherical enclosure which has a blackened surface, and is kept at a constant temperature of about $14^{\circ} \mathrm{C}$, can be expressed by the equations

$$
e=.000238+3.06 \times 10-0 t-2.6 \times 10-8 t^{2}
$$

when the surface of the sphere is blackened, or

$$
e=.000168+1.98 \times 10^{-0} t-1.7 \times 50-9 t^{2}
$$

when the surface is that of polished copper. Io these equations, e is the amount of heat lost io c. g. s. units, that is, the quantity of heat, small calories, radiated per second per square centimeter of surface of the sphere, per degree difference of temperature t, and t is the difference of temperature between the spbere and the enclosure. The medium through which the heat passed was moist air. Tbe following table gives the results.

Differ- ence of tempera- ture t	Value of e		
	Polished surface.	Blackened surface.	
5	.000178	.000252	.707
10	.000186	.000266	.699
15	.000193	.000279	.692
20	.000201	.000289	.695
25	.000207	.000298	.694
30	.000212	.000306	.693
35	.000217	.000313	.693
40	.000220	.000319	.693
45	.000223	.000323	.690
50	.000225	.000326	.690
55	.000226	.000328	.690
60	.000226	.000328	.690

TABLE 287. - At Different Prassures.
Experiments made by J. P. Nicol in Tait's Laboratory show the effect of pressure of the enclosed air on the rate of loss of heat. In this case the air was dry and the enclosure kept at about $8^{\circ} \mathrm{C}$.

[^45]t "Proc. Roy. Soc. ${ }^{\text {Proy. Soc." Edinb. }} 8869$.
Smithsonian Tables.
See also Compan, Annal. de chi. et phys. 26 ; p. 526.

COOLING BY RADIATION AND CONVECTION.

TABLE 288. - Cooling of Platinum Wire in Coyper Envelope.

Bottomley gives for the radiation of a bright platinum wire to a copper envelope when the space between is at the highest vacuum attainable the following numbers:-

$$
\begin{aligned}
& t=408^{\circ} \mathrm{C} ., \text { et }=378.8 \times 10^{-4}, \text { temperature of enclosure } 16^{\circ} \mathrm{C} \text {. } \\
& t=505^{\circ} \mathrm{C} ., e t=7^{26.1} \times 10^{-4}, \quad " \quad 17^{\circ} \mathrm{C} .
\end{aligned}
$$

It was found at this degree of exhaustion that considerable relative change of the vacuum produced very small change of the radiating power. The curve of relation between degree of vacuum and radiation becomes asymptotic for high exhaustions. The following table illustrates the variation of radiation with pressure of air in enclosure.

Temp. of enclosure $16^{\circ} \mathrm{C} ., t=408^{\circ} \mathrm{C}$.		Temp. of enclosure $17^{\circ} \mathrm{C}, t=505^{\circ} \mathrm{C}$.	
Pressure in mm.	et	Pressure in mm.	et
740.	8137.0×10^{-4}	0.094	1688.0×10^{-4}
440.	7971.0	. 053	$1255.0{ }^{\prime \prime}$
140.	7875.0	. 034	1126.0 "
42.	7591.0	.OI 3	920.4 "
4.	6036.0 "	. 0046	831.4 "
0.444	2683.0 "	. 00052	767.4 "
. 070	1045.0 "	.00019	746.4 "
. 034	$\begin{aligned} 727.3 & \text { " } \\ 539.2 & \text { " } \end{aligned}$	Lowest reached $\}$ but not measured	726.1
. 0051	539.2 4		
. 00007	378.8 "		

TABLE 289. - Effect of Pressure on Loss of Heat at Different Temperatures.
The temperature of the enclosure was about $15^{\circ} \mathrm{C}$. The numbers give the total radiation in therms per square centimeter per second.

Note. - An interesting example (because of its practical importance in electric lighting) of the effect of difference of surface condition on the radiation of heat is given on the authority of Mr. Evans and himself in Bottomley's paper. The energy required to keep up a certain degree of incandescence in a lamp when the filament is dull black and when it is "flashed" with coating of hard bright carbon, was found to be as follows : -

> Dull black filament, 57.9 watts.
> Bright " " 39.8 watts.

Metric Measure.

The temperature Centigrade and the ahsolute temperature in degrees Centigrade, together with other data for steam or water vapor stated in the headings of the columns, are here given. The quantities of heat are in therms or calories according as the gram or the kilogram is taken as the unit of mass.

$\begin{aligned} & \text { ن } \\ & \text { 㽞 } \\ & \text { H } \end{aligned}$								宽 $\stackrel{-1}{4}$ 				
0	273	4.60	6.25	0.006	606.5	0.00	606.5	31.07	575.4	575.4	210.66	2.732
5	278	6.53	8.88	. 009	608.0	5.00	603.0	31.47	576.5	571.5	150.23	3.805
10	283	9.17	12.47	. 012	609.5	10.00	599.5	31.89	577.7	567.7	108.51	5.231
15	288	12.70	17.27	. 017	61.1	15.00	596.0	32.32	578.8	563.7	79.35	7.104
20	293	17.39	23.64	. 023	612.6	20.01	592.6	32.75	579.8	559.8	58.72	9.532
25	298	23.55	32.02	0.031	614.1	25.02	589.1	33.20	580.9	555.9	43.96	12.64
30	303	31.55	42.89	. 042	615.6	30.03	58.6	33.66	582.0	552.0	33.27	16.59
35	308	41.83	56.87	. 055	617.2	35.04	582.1	34-12	583.1	548.2	25.44	21.54
40	313	54.91	74.65	. 072	618.7	40.05	578.6	34.59	584.1	544.1	19.64	27.70
45	318	71.39	97.06	. 094	620.2	45.07	575.I	35.06	58.2	540.1	15.3 I	35.26
50	323	91.98	125.0	0.121	621.7	50.09	571.7	35.54	586.2	536.1	12.049	44.49
55	328	117.47	159.7	. 155	623.3	55.11	568.2	36.02	587.2	532.1	9.561	55.65
60	333	148.79	202.3	. 196	624.8	60.13	564.7	36.5I	588.3	528.1	7.653	69.02
65	338	186.94	254.2	. 246	626.3	65.17	561.1	37.00	589.3	524.2	6.171	84.94
70	343	233.08	316.9	. 306	627.8	70.20	557.6	37.48	590.4	520.2	5.014	103.75
75	348	288.50	392.3	0.380	629.4	75.24	554.1	37.96	591.4	516.2	4.102	125.8
80	353	354.62	482.1	. 466	630.9	80.28	550.6	38.42	592.5	512.2	3.379	151.6
85	358	433.00	588.7	- 570	632.4	85.33	547.1	38.88	593.5	508.2	2.800	181.5
90	363	525.39	714.4	. 691	633.9	90.38	543.6	39.33	594.6	504.2	2.334	216.0
95	368	633.69	861.7	. 834	635.5	$95 \cdot 44$	540.0	39.76	595.7	500.3	I. 957	255.7
100	373	760.00	1033.	1.000	637.0	100.5	536.5	40.20	596.8	496.3	1.6496	300.8
105	378	906.41	1232.	.193	638.5	105.6	533.0	40.63	597.9	492.3	1.3978	352.2
110	383	1075.4	1462.	415	640.0	110.6	529.4	41.05	599.0	488.4	1.1903	410.3
115	388	1269.4	1726.	. 670	641.6	115	525.8	41.46	600.1	484.4	1.0184	475.6
120	393	149 I .3	2027.	. 962	643.1	120.8	522.3	41.86	601.2	480.4	0.875^{2}	549.0
125	398	1743.9	2371.	2.295	644.6	125.9	518.7	42.25	602.4	476.5	0.7555	630.7
130	403	2030.3	2760.	2.671	646.1	131.0	515.1	42.63	603.5	472.5	0.6548	721.6
135	408	2353.7	3200.	3.097	647.7	136.1	511.6	43.01	604.7	468.6	0.5698	822.3
140	413	2717.6	3695.	$3 \cdot 576$	649.2	141.2	508.0	$43 \cdot 38$	605.8	464.6	0.4977	933.5
145	418	3125.6	4249.	4.113	650.7	146.3	$504 \cdot 4$	43.73	607.0	460.7	0.4363	1055.7
150	423	3581.2	4869.	4.712	652.2	151.5	500.8	44.09	608.2	456.7	0.3839	1190.
155	428	4088.6	5589.	$5 \cdot 380$	653.8	156.5	497.2	44.43	609.3	452.8	0.3388	1336.
160	433	4651.6	6324.	6.120	655.3	161.7	$493 \cdot 5$	44.76	610.5	448.8	0.3001	1496.
165	438	5274.5	7171.	6.940	656.8	166.9	489.9	45.09	611.7	444.8	0.2665	1669.
170	443	5961.7	8105.	7.844	658.3	172.0	486.3	45.40	612.9	440.9	0.2375	1856.
175	448	6717.4	9133.	8.839	659.9	177.2	482.7	45.71	6 I 4.2	436.9	0.2122	2059.
180	453	7546.4	10260.	9.929	661.4	182.4	479.0	46.01	6ı5.4	433.0	0.1901	2277.
185	458	8453.2	11490.	I1.123	662.9	187.6	475.3	46.30	6ı6.6	429.0	0.1708	2512.
190	463	9442.7	12838.	12.425	$664 \cdot 4$	192.8	471.7	46.59	617.9	425.0	0.1538	2763.
195	468	10520.	14303.	13.842	666.0	198.0	468.0	46.86	619.1	421.1	0.1389	3031.
200	473	11689.	15892.	15.380	667.5	203.2	464.3	47.13	620.4	417.1	0.1257	33 I 8.

* Where \mathbf{A} is the reciprocal of the mechanical equivalent of the thermal unit.
$\dagger=\frac{H-(h+A p v)}{v}=\frac{\text { internal-work pressure }}{\text { mechanical equivalent of heat }} . \quad$ Where v is taken in litres the pressure is given per square decimetre, and where v is taken in cubic metres the pressure is given per square metre, - the mechanical equivalent being that of the therm and the kilogram-degree or calorie respectively.

[^46]Table 291.

PROPERTIES OF STEAM．

Britigh Messure．

The quantities given in the different columns of this table are sufficiently explained by the headings．The abbrevia－ tion B．T．U．stands for British thermal units．With the exception of column 3，which was calculated for this table，the data are taken from a table given hy Dwelshauvers－Dery（Trans．Am．Suc．Mech．Eng．vol．xi．）

1	144	0.068	102.0	334.23	0.0030	70.1	980.6	62.34	1043.	1113.0
2	288	． 136	126.3	173.23	． 0058	94.4	961.4	64.62	1026.	II 20.4
3	432	． 204	141.6	117.98	． 0085	109.9	949.2	66.58	1011.	1127.0
4	576	． 272	153.1	89.80	． 0111	121.4	940.2	67.06	1007.	1128.6
5	720	． 340	162.3	72.50	． 0137	130.7	932.8	67.89	1001.	1131.4
6	864	0.408	170.1	61.10	0.0163	138.6	926.7	68.58	995－2	1133.8
7	1008	． 476	176.9	53.00	． 0189	145.4	921.3	69．18	990.5	I 135.9
8	1152	． 544	182.9	46.60	． 0214	151.5	916.5	69.71	986.2	1137.7
9	1296	． 612	188.3	41.82	． 0239	156.9	912.2	70.18	982.4	1139.4
10	1440	． 680	193.2	37.80	． 0264	161.9	908.3	70.61	979.0	1140.9
11	1584	0.748	197.8	34.61	0.0289	166.5	904.8	70.99	975.8	1142.3
12	1728	． 818	202.0	31.90	． 0314	170.7	901.5	71.34	972.8	1143.5
13	1872	． 884	205.9	29.58	．0338	174.7.	898.4	7 7 .68	970.0	1144.7
14	2016	． 952	209.5	27.59	． 0362	I78．4	895.4	72.00	967.4	I145．9
15	2160	1.020	213.0	25.87	． 0387	181．9	892.7	72.29	965.0	1146.9
16	2304	1.088	216.3	24.33	0.0411	185.2	890.1	72.57	962.7	1147.9
17	2448	． 156	219.4	22.98	． 0435	188.4	887.6	72.82	960.4	1148.9 I 149.8
18	2592	． 224	222.4	21.78	． 0459	191.4	885.3	73.07	958.3	1149.8
19	2736	． 292	225.2	20.70	． 0483	194.3	883.1	73.30	956.3	II 50.6
20	2880	$\cdot 360$	227.9	19.72	． 0507	197.0	880.9	73.53	954.4	1151.4
21	3024	1.429	230.5	18.84	0.0531	199.7	878.8	73.74	952.6	1152.2
22	3168	． 497	233.0	18.03	． 0554	202.2	876.8	73.94	950.8	1153.0
23	3312	． 565	235.4	17.30	． 0578	204.7	874.9	74.13	949.1	1153.7
24	3456	． 633	237.7	16.62	． 0662	207.0	873.1	$74 \cdot 32$ 74.51	947.4 945.3	1154.4 II 55.1
25	3600	．701	240.0	15.99	． 0625	209.3	871.3	74.51	945.3	1155.1
26	3744	1.769	242.2	15.42	0.0649	211.5	869.6	74.69	944．3	II 55.8
27	3888	． 837	244.3	14.88	． 0672	213.7 215	867.9 866.3	74.85 75.01	942.8 941.3	1156.4 II 57.1
28	4032	． 905	246.3	14.38	． 0695	215.7	866.3 864.7	75.01	941.3 939.9	1157.1 1157.7
29	4176	． 973	248.3	13.91 13.48	．0619	217.8 219.7	864.7 863.2	75.17 75.33	939.9 93.5	1157.7 II 58.3
30	4320	2.04 I	250.2	13.48	． 0742	219.7	863.2	753	93.5	1
31	4464	2.109	252.1	13.07	0.0765	221.6	861.7	75.47	937.2	1158.8
32	4608	． 177	253.9	12.68	． 0788	223.5	860.3	75.61	935.9	1159.4
33	4752	． 245	255.7	12.32	．0811	225.3	858.9	75.76	934.6	1159.9
34	4896	． 313	257.5	11.98 I 1.66	.0835 .0858	227.1 228.8	857.5 856.1	75.89 76.02	933.4	1161.0
35	5040	$\cdot 3^{81}$	259.2	11.66	． 0858	228.8	856.1	76.02	93－1	
36	5184	2.449	260.8	11.36	0.0881	230.5	854.8	76.16	931.0	1161.5
37	5328	． 517	262.5	11.07	． 0903	232.2	853.5	76.28	929.8 928.7	1162.0 1162.5
38	5472	． 58	264.0	10.79 10.53	．0926	233.8 235.4	852.3 851.0	76.40 76.52	927.6 927.6	1162.9
39	5616	． 653	265.6	10.53 10.29	.0949 .0972	235.4 236.9	851.8 849	76.63	926.5	1163.4
40	5760	． 722	267.1	10.29	． 0972	23.				
41	5904	2.789	268.6	10.05 9.83	0.0995 .1018	238.5 239.9	848.7 847.5	76.75 76.86	925.4 924.4	1163.9 1164.3
42	6048	.857 .925	270.1 271.5	9.83 9.61	． 1018	239.9 24.4	847.5 846.4	76.97	923.3	1164.7
43 44	6192 6336	． 925	271.5 272.9	9.61	． 1063	242.9	845.2	77.07	922.3	1165.2
44 45	6336 6480	.993 3.061	272.9 $274 \cdot 3$	9.21	． 1086	$244 \cdot 3$	844.1	77.18	921.3	1165.6
46	6624	3.129	275.6	9.02	0.1108	245.6	843.1	77.29	920.4	1166.0
46 47	6768	3.129 .197	277.0	8.84	．1531	247.0	842.0	77.39	919.4	1166.4
48	6912	． 265	278.3	8.67	．1153	248.3	841.0	77.49 77.58	918.5 917.5	1166.8 I 167.2
49	7056	． 333	279.6	8.50	． 1176	249.7	840.0	77.5	917	

PROPERTIES OF STEAM．

British Measure．

50	7200	3．401	280．8	8.34	0.1198	251.0	839.0	77.67	916.6	1167.6
51	7344	． 469	282．I	8.19	．1221	252.2	838.0	77.76	915.7	1168.0
52	7488	． 537	283.3	8.04	． 1243	253.5	837.0	77.85	914.9	1168.3
53	7632	． 605	284.5	7.90	． 1266	254.7	836.0	77.94	914.0	1168.7
54	7776	． 673	285.7	7.76	． 1288	256.0	835.1	78.03	913.1	1169.1
55	7920	3.741	286.9	7.63	0.1310	257.1	834.2	78.12	912.3	1169.4
56	8064	． 810	288.1	7.50	． 1333	258.3	833.2	78.21	911.5	1169.8
57	8208	． 878	289.2	$7 \cdot 38$	． 1355	259.5	832.3	78.29	910.6	1170.1
58	8352	． 946	290.3	7.26	.1377	260.7	831.5	78.37	909.8	1170.5
59	8496	4.014	291.4	7.14	． 1400	261.8	830.6	78.45	909.0	1170.8
60	8640	4.082	292.5	7.03	0.1422	262.9	829.7	78.53	908.2	1171.2
61	8784	． 150	293.6	6.92	． 1444	26.4 .0	828.9	78.61	907.5	1171.5
62	8928	． 218	294.7	6.82	． 1466	265.1	828.0	78.68	906.7	1171.8
63	9072	． 286	295.7	6.72	． 1488	266.1	827.2	78.76	905.9	1172.1
64	9216	． 354	296.7	6.62	． 1511	267.2	826.4	78.83	905.2	1172.4
65	9360	4.422	297.8	6.52	0.1533	268.3	825.6	78.90	904.5	1172.8
66	9504	． 490	298.8	6.43	． 1555	269．3	824.8	78.97	903.7	1173.1
67	9648	． 558	299.8	6.34	． 1577	270.4	824.0	79.04	903．1	1173.4
68	9792	． 626	300.8	6.25	． 1599	271.4	823.2	79.11	902.3	1173.7
69	9936	． 694	301.8	6.17	．162I	272.4	822.4	79.18	901.6	1174.0
70	10080	4.762	302.7	6.09	0.1643	273.4	821.6	79.25	900.9	1174.3
71	10224	． 830	303.7	6.00	． 1665	274.3	820.9	79.32	900.2	1174.6
72	10368	． 898	304.6	5.93	． 1687	275.3	820.1	79.39	899.5	1174.9
73	10512	． 966	305．5	5.85	． 1709	276.3	819.4	79.46	898.8	1175.1
74	10656	5.034	306.5	5.78	．1731	277.2	818.7	79.53	898.1	1175.4
75	10800	5.102	307.4	5.70	0.1753	278.2	817.9	79.59	897.5	1175.7
76	10944	． 170	308.3	5.63	． 1775	279.1	817.2	79.65	896.9	1176.0
77	11088	． 238	309.2	5.57	． 1797	280.0	816.5	79．71	896.2	1176.2
78	11232	． 306	310.1	$5 \cdot 50$	． 1818	280.9	815.8	79.77	895.6	1176.5
79	11376	－374	310.9	5.43	． 1840	281.8	815．1	79.83	895.0	1176.8
80	11520	5.442	311.8	$5 \cdot 37$	0.1862	282.7	814.4	79.89	894.3	1177.0
81	11664	． 510	312.7	5．31	． 1884	283.6	813.8	79.95	893.7	1177.3
82	11808	． 578	313.5	5.25	． 1906	284.5	813.0	80.01	893.1	1177.6
83	11952	． 646	314.4	5.19	． 1928	285.3	812.4	80.07	892.5	1177.8
84	12096	.714	315.2	5.13	． 1949	286.2	811.7	80.13	89 I .9	1178.0
85	12240	5.782	316.0	5.07	0.1971	287.0	811.1	80.19	891.3	1178.3
86	11384	． 850	316.8	5.02	． 1993	287.9	810.4	80.25	890.7	1178.6
87	12528	． 918	317.6	4.96	． 2015	288.7	809.8	80.30	890.1	1178.9
88	12672	． 986	318.4	4.91	． 2036	289.5	809.2	80.35	889.5	1179.0
89	12816	6.054	319.2	4.86	． 2058	290.4	808.5	80.40	888.9	1179.3
90	12960	6.122	320.0	4.81	0.2080	291.2	807.9	80.45	888.4	II79．5
91	13104	． 190	320.8	4.76	． 210	292.0	$807 \cdot 3$	80.50	887.8	1179.8
92	13248	． 258	321.6	4.71	． 2123	292.8	806.7	80.56	887.2	1180.0
93	${ }^{1} 3392$	－327	322.4	4.66	． 2145	293.6	806.1	80.61	886.7	1180.3
94	13536	． 396	323．1	4.62	． 2166	294.3	805.5	80.66	886.1	1180.5
95	13680	6.463	323.9	4.57	0.2188	295．1	804.9	80.71	885.6	1180.7
96	13824	． 531	324.6	4.53	． 2209	295.9	804.3	80.76	885.0	1180.9
97	13963	． 599	325．4	4.48	．2231	296.7	803.7	80.81	884.5	118 I .2
98 99	14112	． 667	326.1 326.8	4.44 4.40	． 2252	297.4 298.2	803.1 802.5	80.86 80.91	884.0	1181．4
99	14256	． 735	326.8	4.40	． 2274	298.2	802.5	80.91	883.4	1181.6

Smithsonian Tables．

Table 291 (continued).
PROPERTIES OF STEAM.
British Measure.

100	14400	6.803	327.6	4.356	0.2295	298.9	802.0	80.95	882.9	1181. 8
101	14544	.871	328.3	. 316	. 2317	299.7	801.4	8 I .00	882.4	1182.1
102	14688	. 939	329.0	. 276	.2338	300.4	800.8	81.05	881.9	1182.3
103	14832	7.007	329.7	. 237	. 2360	301.1	800.3	81.10	881.4	1182.5
104	14976	. 075	330.4	. 199	. 2381	301.9	799.7	81.14	880.8	1182.7
105	15120	7.143	331.1	4.16I	0.2403	302.6	799.2	8 I .18	880.3	1182.9
106	15264	. 211	331.8	. 125	. 2424	303.3	798.6	81.23	879.8	1183.1
107	I 5408	. 279	332.5	. 088	. 2446	304.0	798.1	81.27	879.3	1183.4
108	I 5552	.347	333.2	. 053	.2467	304.7	$797 \cdot 5$	8 I .31	878.8	1183.6
109	I 5696	-415	333.8	. 018	. 2489	305.4	797.0	81.36	878.3	1183.8
110	15840	7.483	$334 \cdot 5$	3.984	0.2510	306.1	796.5	8 81 4 4	877.9	1184.0
III	15984	. 551	335.2	. 950	. 2531	306.8	795.9	8 8 .45	877.4	1184.2
112	16128	.619	335.8	. 917	. 2553	307.5	795.4	$8 \mathrm{8r} .50$	876.9	1184.4
113	16272	. 687	336.5	. 885	. 2574	308.2	794.9	81.54	876.4	1184.6
114	16416	. 755	337.2	. 853	. 2596	308.8	794.4	81 5^{8}	875.9	1184.8
115	16560	7.823	337.8	3.821	0.2617	309.5	793.8	8 8 .62	875.5	1185.0
116	16704	. 891	338.5	. 790	. 2638	310.2	$793 \cdot 3$	$8 \mathrm{8r} .66$	875.0	1185.2
117	16848	. 959	339.1	.760	. 26680	310.8	792.8	8 I .70	874.5	1185.4
118	16992	8.027	339.7	. 730	.2681	3 SI .5	792.3	8 81 .74	874.1	1185.6
119	17136	. 095	340.4	.700	. 2702	312.1	79 I .8	81.78	873.6	1185.7
120	17280	8.163	341.0	3.671	0.2724	3 I 2.8	791.3	$8 \mathrm{8r} .82$	873.2	1185.9
121	17424	.23I	341. 6	. 643	. 2745	313.4	790.8	81.86	872.7	1186.1
122	17568	. 299	342.2	. 615	. 2766	314.1	790.3	81.90	872.2	1186.3
123	17712	-367	342.8	.587	. 2787	314.7	789.9	$8 \mathrm{8r} .94$	871.8	1186.5
124	17856	. 435	$343 \cdot 5$. 560	. 2809	315.3	789.4	81.98	871.4	I 186.7
125	18000	8.503	344.1	3.534	0.2830	316.0	788.9	82.02	870.9	1186.9
126	18144	. 571	344.7	. 507	. 2851	316.6	788.4	82.06	870.5	1187.1
127	18288	. 639	345.3	-481	.2872	317.2	787.9	82.09	870.0	1187.2
128	18432	. 708	345.9	-456	. 2893	317.8	787.5	82.13	869.6	1187.4 ı 87.6
129	18576	.776	346.5	-431	.2915	318.4	787.0	82.17	869.2	
130	18720	8.844	347.1	3.406	0.2936	319.0	786.5	82.21	868.7	1187.8 I 88.8
131	18864	. 912	347.6	.382	. 2957	319.7	786.1	82.25 82.28	868.3 867.9	1188.0 I88.
132	19008	.980 0.048	348.2 348.8 3	. 358	. 2978	320.3 320.9	785.6	82.28 82.32	867.9 867.5	1188.1 1188.3
133 134	19152 19296	9.048 .116	348.8 349.4	- 3314	.2999 .3021	320.9 321.5	785.1 784.7	82.32 82.35	867.0	1188.5
134 135	19296 19440	.116 9.184	349.4 349.9	$\begin{array}{r}.38 \\ \hline\end{array}$.3021 0.3042	321.5 322.1	784.2	82.38	866.6	1 I88.7
136	19448	9.184 .252	349.9 350.5	. 265	. 3063	322.6	783.8	82.42	866.2	I 188.8
137	19728	. 320	351.1	. 442	. 3084	323.2	783.3	82.45	865.8	1189.0
138	19872	-388	351.6	. 220	. 3105	323.8	782.9	82.49 82.52	865.4 865.0	1189.2 1189.4
139	20016	456	352.2	. 199	$\cdot 3126$	324.4	782.4			1189
140	20160	9.524	352.8	3.177	0.3147	325.0	782.0	82.56	864.6	1 I89.5
141	20304	. 592	353.3	. 156	-3168	325.5 326.1	78 I .6	82.59 82.63	864.2 863.8	1189.7 1189.9
142	20448	. 660	353.9	. 135	-3190	326.1 326.7	781.1 780.7	82.66	863.4	1190.0
143	20592 20736	.728 .796	354.4 355.0	. 115	.3211	326.7 327.2	780.7 780.3	82.69	863.0	1190.2
144	20736		355.0	. 64	3				862.6	1190.4
145	20880	9.864	355.5 356.0	3.074 .054	0.3253 .3274	327.8 328.4 38.	779.8 779.4	82.72 82.75	862.2	1190.5
146	21024	9.932 10.000	356.0 356.6	. 054	. 3274	328.4 328.9	779.4	82.79	861.8	1190.7
147	21168 21312	10.000 .068	357.1	. 016	. 3315	329.5	778.6	82.82	86 r .4	1190.9
149	21456	. 136	357.6	. 997	. 3337	330.0	778.1	82.86	861.0	1 Igro

Smithsonian Tables.

Britlsh Measure.

150	21600	10.204	358.2	2.978	0.3358	330.6	777.7	82.89	860.6	1191.2
151	21744	. 272	358.7	. 960	. 3379	331.1	777.3	82.92	860.2	1191.3
152	21888	-340	359.2	. 941	. 3400	331.6	776.9	82.95	859.9	1191.5
153	22032	. 408	359.7	. 923	. 3421	332.2	776.5	82.98	859.5	1191.7
154	22176	.476	360.2	. 906	. 3442	332.7	776.1	83.01	859.1	1191.8
155	22320	10.544	360.7	2.888	0.3462	333.2	$775 \cdot 7$	83.04	858.7	1192.0
156	22464	. 612	361.3	. 871	. 3483	333.8	775.3	83.07	858.3	1192.1
157	22608	. 680	361.8	. 854	. 3504	334.3	774.9	83 -10	858.0	1192.3
158	22752	.748	362.3	. 837	. 3525	334.8	774.5	83.13	857.6	1192.4
159	22896	.816	362.8	. 820	. 3546	$335 \cdot 3$	774.1	83.16	857.2	1192.6
160	23040	10.884	363.3	2.803	0.3567	335.9	773.7	83.19	856.9	1192.7
161	23184	. 952	363.8	. 787	. 3588	336.4	773.3	83.22	856.5	1192.9
162	23328	11.020	364.3	.771	- 3609	336.9	772.9	83.25	856.1	1193.0
163	23472	. 088	364.8	. 755	. 3630	337.4	772.5	83.28	855.8	1193.2
164	23616	. 157	365.3	. 739	. 3650	337.9	772.1	83.31	855.4	1193.3
165	23760	11.225	365.7	2.724	0.3671	$33^{8.4}$	771.7	83.34	855.1	1193.5
166	23904	. 293	366.2	. 708	. 3692	338.9	771.3	83.37	854.7	1193.6
167	24048	$\cdot 361$	366.7	. 693	-3713	339.4	771.0	83.39	854.3	1193.8
168	24192	. 429	367.2	. 678	- 3734	339.9	770.6	83.42	854.0	1193.9
169	24336	. 497	367.7	. 663	. 3754	340.4	770.2	83.45	853.6	I194.1
170	24480	11.565	368.2	2.649	0.3775	340.9	769.8	83.48	853.3	11942
171	24624	. 633	368.6	. 634	. 3796	34 I .4	769.4	83.51	852.9	1194.4
172	24768	. 701	369.1	. 620	. 3817	341.9	769.1	83.54	852.6	1194.5
173	24912	.769	369.6	. 606	.3838	342.4	768.7	83.56	852.2	1194.7
174	25056	. 837	370.0	. 592	. 3858	342.9	768.3	83.59	851.9	1194.8
175	25200	11.905	370.5	2.578	0.3879	$343 \cdot 4$	767.9	83.62	851.6	1194.9
176	25344	. 973	371.0	. 564	. 3900	343.9	767.6	83.64	851.2	1195.1
177	25488	12.041	371.4	. 550	. 3921	344.3	767.2	83.67	850.9	1195.2
178	25632	. 109	371.9	. 537	. 3942	344.8	766.8	83.70	850.5	1195.4
179	25776	. 177	372.4	524	. 3962	345-3	766.5	83.73	850.2	1195.5
180	25920	12.245	372.8	2.510	0.3983	345.8	766.1	83.75	849.9	1195.6
181	26064	.313	$373 \cdot 3$. 497	. 4004	346.3	765.8	83.77	849.5	1195.8
182	26208 26352	.381	373.7 374.2	. 485	. 4025	346.7	765.4	83.80	849.2	1195.9
183 184	26352 26496	. 449	374.2 374.6	.472 .459	. 4046	347.2 347.7	765.0	83.83 83.86	848.9	1196.1
184	26496	. 517	374.6	. 459	. 4066	347.7	764.7	83.86	848.5	1196.2
185 186	26640	12.585	375.1	2.447	0.4087	348.1	764.3	83.88	848.2	1196.3
186	26784	. 653	375.5	. 434	. 4108	348.6	764.0	83.90	847.9	1196.5
187 188	26928	. 721	376.0	. 422	. 4129	349.1	763.6	83.92	847.5	1196.6
188 189	27072 27216	.789	376.4 376.8	. 410	.4150	349.5	763.3	83.95	847.2	1196.7
189	27216	. 857	376.8	. 398	. 4170	350.0	762.9	83.97	846.9	1196.9
190	27360	12.925	$377 \cdot 3$	2.386	0.4191	350.4	762.6	83.99	846.6	1197.0
191	27504	. 993	377.7	. 374	. 4212	350.9	762.2	84.02	846.3	1197.1
192	27648	13.061	378.2	. 362	. 4233	351.3	761.9	84.04	845.9	$1197 \cdot 3$
193	27792	.129	378.6	-351	. 4254	351.8	761.6	84.06	845.6	1197.4
194	27936	. 197	379.0	. 339	. 4275	352.2	761.2	84.08	$845 \cdot 3$	1197.5
195	28080	13.265	379.4	2.328	0.4296	352.7	760.9	84.10	845.0	1197.7
196	28224	. 333	379.9	. 317	. 4316	$353 \cdot 1$	760.5	84.13	844.7	1197.8
197	28368 28512	. 4010	380.3 380.7	. 306	. 4337	353.6	760.2	84.16	844.4	1197.9
198 199	28512 28656	. 469	388.7 381.1	. 295	. 43358	354.0 354.4	759.9 759.5	84.19 84.21	844.0	1198.1
		.537			-4379	$354 \cdot 4$	759.5	84.21	843.7	1198.2

PROPERTIES OF STEAM．

British Measure．

200	28800	13605	$3^{88} .6$	2.273	0.4399	354	75	84.23	843.4	1198.3
201	28944	－ 3.673	382.0	． 262	． 4420	355.3	758.9	84.26	843.1	1198.4
202	29088	13.742	382.4	． 252	． 4441	355.8	758.5	84.28	842.8	I 198.6
203	29232	13.810	382.8	． 241	－446I	356.2	758.2	84.30	842.5	I 198.7
204	29376	13.878	383.2	． 23 I	． 4482	356.6	757.9	84.33	842.2	1198.8
205	29520	13.946	383.7	2.221	0.4503	357．1	757.5	84.35	841.9	1199.0
206	29664	14.014	$3^{884 . I}$	1	． 4523	357.5	757.2	$84 \cdot 37$	841.6	1199.1
207	29808	14.082	384.5	． 201	． 4544	357.9	756.9	84.40	841.3	1199.2
208	29952	14.150	384.9	．19I	． 4564	358.3	756.6	84.42	841.0	1199.3
209	30096	14.218	385.3	． 181	． 4585	358.8	756.2	84.44	840.7	I 199.4
210	30240	14.386	385.7	2.171	0.4605	359.2	755.9	84.46	840.4	I 199.6
211	30384	14.454	386.1	.162	． 4626	359.6	755.6	84.48	840.1	1199.7
212	30528	14.522	386.5	． 152	． 4646	360.0	755.3	84.51	839.8	1199.8
213	30672	14.590	386.9	.143	． 4666	360.4	755.0	8	839.5 839.2	1199.9
214	30816	14.658	387.3	． 134	． 4687	360.9	754.7	84.55	839.2	1200.1
215	30960	14.726	$3^{87} 7.7$	2.124	0.4707	361.3	754.3	84.57	838.9	1200.2
216	3 3 104	14.794	388.1	．115	． 4727	361.7	754.0	84.60	838.6	1200.3
217	31248	14.862	388.5	． 106	． 4748	362.1	753.7	84.62	838.3	1200.4
218	$3^{1} 392$	14.930	388.9	． 097	． 4768	362.5	753.4	84.64 84.66	838.0 837.7	1200.5 1200.7
219	31536	14.998	389.3	． 088	． 4788	362.9	753.1	84.66	837.7	1200.7

Smithsonian Tasles．

RATIO OF THE ELECTROSTATIC TO THE ELECTROMAGNETIC UNIT OF ELECTRICITY $=\boldsymbol{V}$.

Date.	$\stackrel{V}{\text { Cm. per sec. }}$	Mean.	Determined by	Reference.
1856		3.11×10^{10}	R. Kohlrausch and W. Weber.	Pogg. Ann. 99 ; 1856.
1868	$2.75-2.92 \times 10^{10}$	2.84	Maxwell.	Phil. Trans.; 1868.
1869	2.71-2.88	2.81	Thomson and King.	B. A. Report ; 1869.
1874	2.86-3.00	2.90	McKichan.	Phil. Mag. 47; 1874.
1879	2.950-3.018	2.981	Rowland.	Phil. Mag. 28 ; 1889.
1879	-	2.96	Ayrton and Perry.	Phil. Mag. 7; 1879.
1879 1880	-	2.967	Hockin.	B. A. Report ; 1879.
1880	2.98-3.00	2.955	Shida.	Phil. Mag. 10; 1880.
1882	2.98-3.00	2.99 2.87	Stoletow. Exner.	Jour. de Phys. ; 1881. Wien. Ber. ; 1882.
1883	-	2.963	J. J. Thomson.	Phil. Trans.; 1883.
1884	$\begin{aligned} & 3.001-3.029 \\ & 3.016-3.031 \end{aligned}$	3.019	Klemenčič.	Wien. Ber. 83, 89, 93 ; 188ı-6.
1886		3.015	Colley.	Wied. Ann. 28; 1886.
1886-8	$2.999-3.009$ $3.003-3.008$		Himstedt.	
"	$\begin{aligned} & 3.003-3.008 \\ & 3.005-3.015 \end{aligned}$	3.009	Himstedt.	Wied. Ann. 29, 33, 35 ; 1887-8.
1888		2.92	Thomson, Ayrton and Perry.	Electr. Rev. 23 ; 1888-9.
1889 1890	2.995-3.010	3.000 2.996	Rosa.	Phil. Mag. 28 ; 1889.
1891	-	3.99	Searle. Pellat.	Phil. Trans.; 1890. Jour. de Phys. 10; 1891.
1892	2.990-2.995	2.991	Abraham.	Ann. Chim. et Phys. 27; 1829.
1896	-	3.001	Hurmuzescu.	Ann. Chim. et Phys. 10; 1897.
1898 1898	-	2.9973	Perot and Fabry.	Ann. Chim. et Phys. 13; 1898.
1898 1899	-	3.026 3.009	Webster. Lodge and Glaze-	Phys. Rev. 6; 1898.
1904-7	9706-2.99741	2.9971	brook. Rosa and Dorsey.	Cam. Phil. Soc. 18; 1899.

The last of the above determinations is the result of an extended series of measurements upon various forms of condensers, and is believed to be correct within $1 / 100$ per cent. This, however, assumes that the International Ohm is 10^{9} c.g.s. units. The value of V is therefore subject to one-half the error of the International Ohm.

Smithsomian Tables.

Table 293.
ABSOLUTE MEASUREMENTS OF CURRENTS AND OF THE ELECTROMOTIVE FORCE OF STANDARD CELLS.

Date.	Observer.	Method.	Electromotive Force* of		Electrochemical Equivalent of Silver.			苞			
			Clark Cell at ${ }^{15}{ }^{\circ} \mathrm{C}$.	$\left\lvert\, \begin{gathered} \text { Westoo } \\ \text { Cell at } \\ 20^{\circ} \mathrm{C} . \end{gathered}\right.$	Filter Paper Voltameter.	Porous Cup Voltameter.	$\begin{gathered} \text { No- } \\ \begin{array}{c} \text { Septum } \\ \text { Volta- } \\ \text { meter. } \end{array} \end{gathered}$				
			Volts.	Volts.	Mg.	g.	Mg.				
1872	Clark	\{ Electrodynamometer	I.4573				-	I			
	F. Kohlrausch	Tangeut Galvanometer	1.4562		1.1363		-	2			
	Mascart ${ }^{\text {F }}$ W. Kohlrausch	Current Balance			1.136		1.1156	2 3			
1884	Rayleigh and Sedgwick	Cungent Galvanometer			ג.1]794		${ }_{1.1183}$	4			
1886	Gray	Sine Galvanometer	1.435		1.11794		-1183	5			
1890	Potier and Pellat	Electromag. Balance			2.11740			7			
1896	Kahle \dagger	Electrodyamomometer	1.4325	1.0183			1.1192 1.1583	8			
1898	Patterson and Guthe	Electrodynamometer			1.1592		1.1583	9			
1899	Carhart and Guthe	Electrodynamometer	1.4333				-	I			
1902	Callendar and King Pellat and Leduc	Electrodyoamometer	I.4334					12			
1904	Van Dijk and Kunst	Tangent Galvanometer			${ }_{1.15823}^{1.1595}$			13			
1905	Guthe	Electrodynamometer	1.43296	1.01853	1.11823			14			
1506	Van Dijk	Revision of 1904 work	2.43-	1.01853		1.1180		6			
1907	Ayrton, Mather and Smith	Current Balance	1.4323	1.01819				17			
1907 1908	Smith, Mather and Lowry	With the above Current Balance	-					18			
1908	Janet, Laporte and Jouaust \ddagger	Current Balance		1.01836	$\overline{\text { I.1182I }}$	-		19			
1908	Guillet \ddagger	Current Balance		1.01812		ב		20			
1908	Pellat \ddagger	Electrodynamometer		1.01831		-		22			
1910	Haga and Boerema	Tangent Galvanometer		x.O1825		-		23			
1911	Rosa, Dorsey and Miller	Current Balance		1.01822							
	Rosa, Vinal and McDaniel Haga and Boerema	With the above Tangent Galvanometer				1.11804	$\left\|\begin{array}{l} 1.118004 \\ x .118802 \end{array}\right\|$	24 25 26			
I Proc. Roy. Soc. May 30th, 1872 (Values in B. A. volts at 15.5 C .). 2 Pogg. Ann. vol. 149, p. 170 (anode wrapped in cloth). 3 J. de Phys. vol. I, p. 109, vol. 3, p. 283. 4 Wied. Ann. vol. 27, p. 1, 1886. 5 Phil. Trans. A, vol. 175, p. 411, 1884. 6 Phil. Mag. vol. 22, p. 389, 1886. 7 Ann. d. Phys. vol. 31, p. 250, 1887. 8 J. de Phys. vol. 9, p. 38x, 1890. 9 Zs f Instr. vol. 17 , p. 97, 143-4, vol. 18, p. 276. 10 Phys. Rev. vol. 7, p. 257. (Added A820). 11 Phys. Rev. vol. 9, p. 288, 1899. 14 Ann. d. Phys. vol. 14, p. 569, 1904. I5 Bull. B. S. vol. 2, p. 33, 1906. 16 Ann. d. Phys. vol. 19, p. 249, roo6. I7 Phil. Trans. A, vol, 207, p. 463 , 1908. 18 Phil. Trans. A, vol. 207, p. 545, 1908. 19 Bull. Int. Soc. Electr. vol. 8, p. 459, 1908. C. R. vol. 153 p. 718, 191 r. 20 Bull. Int. Soc. Electr. vol. 8, p. 523, 1908. 21 Bull. Int. Soc. Electr. vol. 8, p. 535, 1908. 22 Bull. Int. Soc. Electr. vol. 8, p. 573, 1908. 23 Prac. Ak. Wiss. Amster. vol. 13, p. 587. 24 Bull. Bureau Standards, vol. 8, p. 269, 1912. 12 Phil. Trans. A, vol. 199, p. 8I, 1902. I2 Phil. Trans. A, vol. 199, p. 8I, 1902. I3 C. R. vol. 36 , p. 1649 . (Muslin and filter paper hoth 26 Arch. Neer. Sci. IIIA, vol. 3, p. 324, 1913.											

* The values given in these columns are not strictly absolute volts since they were in most cases determined in terms of an absolute ampere and an international ohm. Hence they may be called "semi-absolute." No absolute determications of the ohm bave been made in recent times, but some are in progress.
\dagger Other values usually given as Kahle's results and officially used by the Reichsanstalt are voltameter determinations. To include them here would necessitate including many others similarly made. The value 1.1183 includes 5 filter paper determinations out of 26 observations.
\ddagger These values have been corrected for the difference hetween the French ohm at this time and that in use elsewhere. (C. R. vol. 153, p. 718 .)

Measurements prior to Van Dijk (rg06) and the subsequent filter paper voltameter determinations are now only of historical interest, but the large amount of work done in recent years makes these early determinations of especial interest. The errors due to the use of filter paper and other impurities (acid, alkali, colloidal matter, etc.) in the valtameter electrolyte make it impossible to apply corrections. The values for the cell are not readily comparable owing to variations in the voltage of the cell itself and the unit of resistance. See Dorn, Wiss. Abhl. der Pbys. Tech. Reich, vol. II, p. 257. Since 19xx the voltage adopted for the Weston Normal Cell at $20^{\circ} \mathrm{C}$. is 1.0183 international volts in all the leading countries. The international volt is to be distinguished from the absolute volt since it is based on the definition of the mercury ohm and the silver voltameter, taking the electrochemical equivalent of silver to be 1.11800 mg per coulomb. The difference between the international volt and the absolute volt is oegligible for practical purposes. The temperature coefficient of the Weston Normal Cell (saturated type) is given in Tahle 294. The new value of the Weston cell was adopted in the United States on January 1, 19 Ix.

Smithsonian Tasleg.

COMPOSITION AND ELECTROMOTIVE FORCE OF VOLTAIC CELLS.
The electromotive forces given in this table approximately represent what may be expected from a cell in good working order, but with the exception of the standard cells all of them are subject to considerable variation.

(a) Doublb Flutd Cells.					
Name of cell.	Negative pole.	Solution.	Positive pole.	Solution.	
Bunsen . .	Amalgamated zinc	$\left\{\begin{array}{l}\text { I part } \mathrm{H}_{2} \mathrm{SO}_{4} \text { to } \\ \text { I } 2 \text { parts } \mathrm{H}_{2} \mathrm{O} .\end{array}\right\}$	Carbon	Fuming $\mathrm{H}_{2} \mathrm{NO}_{3}$	I. 94
"	" ${ }^{\text {a }}$	،	"	HNO_{3}, density $\mathrm{I} .3^{8}$	ェ. 86
Chromate .	" ${ }^{\text {a }}$	$\left\{\begin{array}{c}12 \text { parts } \mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7} \\ \text { to } 25 \text { parts of } \\ \mathrm{H}_{2} \mathrm{SO}_{4} \text { and } 100 \\ \text { parts } \mathrm{H}_{2} \mathrm{O}\end{array}\right\}$	"	$\left\{\begin{array}{l}\text { I part } \mathrm{H}_{2} \mathrm{SO}_{4} \text { to } \\ \text { I2 parts } \mathrm{H}_{2} \mathrm{O}^{\text {a }}\end{array}\right\}$	2.00
*	" "	$\left\{\begin{array}{c} \text { I part } \mathrm{H}_{2} \mathrm{SO}_{4} \text { to } \\ \text { I } 2 \text { parts } \mathrm{H}_{2} \mathrm{O} . \end{array}\right\}$	"	$\left\{\begin{array}{c} \mathrm{I} 2 \text { parts } \mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7} \\ \text { to } 100 \text { parts } \mathrm{H}_{2} \mathrm{O} \end{array}\right\}$	2.03
Daniell* .	" "	$\left\{\begin{array}{c}\text { I part } \mathrm{H}_{2} \mathrm{SO}_{4} \text { to } \\ 4 \text { parts } \mathrm{H}_{2} \mathrm{O}\end{array}\right\}$	Copper	$\left\{\begin{array}{c} \text { Saturated solution } \\ \text { of } \mathrm{CuSO}_{4}+5 \mathrm{H}_{2} \mathrm{O} \end{array}\right\}$	1.06
"	" "	$\left\{\begin{array}{c} \mathrm{I} \text { part } \mathrm{H}_{2} \mathrm{SO}_{4} \text { to } \\ \mathrm{I} 2 \text { parts } \mathrm{H}_{2} \mathrm{O} . \end{array}\right\}$	'	*	1.09
"	" ${ }^{\text {a }}$	$\left\{\begin{array}{c} 5 \% \text { solution of } \\ \mathrm{ZnSO}_{4}+6 \mathrm{H}_{2} \mathrm{O} \end{array}\right\}$	"	"	г. 08
"	" *	$\left\{\begin{array}{c} \text { I part } \mathrm{NaCl}^{\text {to }} \\ 4 \text { parts } \mathrm{H}_{2} \mathrm{O} . \end{array}\right\}$	"	"	1.05
Grove .	" ${ }^{\text {a }}$	$\left\{\begin{array}{c} \text { I part } \mathrm{H}_{2} \mathrm{SO}_{4} \text { to } \\ 12 \text { parts } \mathrm{H}_{2} \mathrm{O} \end{array}\right\}$	Platinum	Fuming HNO_{3}. .	1.93
"	" 6	Solution of ZnSO_{4}	"	HNO_{8}, density I .33	1. 66
" .	" "	$\left\{\begin{array}{c} \mathrm{H}_{2} \mathrm{SO}_{4} \text { solution, } \\ \text { density } 1.136 \end{array}\right\}$	"	Concentrated HNO_{3}	1.93
" .	" "	$\left\{\begin{array}{r} \mathrm{H}_{2} \mathrm{SO}_{4} \text { solution, } \\ \text { density } 1.136 . \end{array}\right\}$	"	HNO_{3}, density I .33	1.79
" .	" "	$\left\{\begin{array}{c} \mathrm{H}_{2} \mathrm{SO}_{4} \text { solution, } \\ \text { density } 1.06 \end{array}\right\}$	*	"	1.71
"	" "	$\left\{\begin{array}{c} \mathrm{H}_{2} \mathrm{SO}_{4} \text { solution, } \\ \text { density } 1.14 \end{array}\right\}$	"	HNO_{8}, density 1.19	1.66
" .	" "	$\left\{\begin{array}{c} \mathrm{H}_{2} \mathrm{SO}_{4} \text { solution, } \\ \text { density } \mathrm{I} .06 \end{array}\right\}$	"	" " "	1.61
"	" "	NaCl solution . .	*	" density 1.33	1. 88
Marié Davy	" "	$\left\{\begin{array}{c} \text { I part } \mathrm{H}_{2} \mathrm{SO}_{4} \text { to } \\ \text { I } 2 \text { parts } \mathrm{H}_{2} \mathrm{O} \end{array}\right\}$	Carbon	$\left\{\begin{array}{c} \text { Paste of protosul- } \\ \text { phate of mercury } \\ \text { and water . . } \end{array}\right\}$	1. 50
Partz . .	" "	Solution of $\mathrm{MgSO}_{4}{ }^{\text {a }}$	"	Solution of $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$	2.06

[^47]COMPOSITION AND ELECTROMOTIVE FORCE OF VOLTAIC CELLS.

Name of cell.	Negative pole.	Solutioa.	Positive pole.	E. M. F. in volts.
(b) Single Fluid Cells.				
Leclanche . . . Chaperon . . . Edison-Lelande Chloride of silver Law Dry cell (Gassner) Poggendorff J. Regnault . Volta couple	Amal.zinc $"$. $"$ $"$ Zinc . $"$. $"$. Amal.zinc $"$ $"$ " . Zinc .	($\left.\begin{array}{c}\text { Solution of sal-ammo- } \\ \text { niac }\end{array}\right\}$		1.46 0.98 0.70 1.02 1.37 1.3 1.08 2.01 0.34 0.98
(0) Standard Cells.				
Weston normal Clark standard	$\left\{\left.\begin{array}{l} \left\{\begin{array}{l} \text { Cadmi’m } \\ \text { am'lgam } \end{array}\right\} \\ \left\{\begin{array}{c} \text { Zinc } \\ \text { am'Igam } \end{array}\right\} \end{array} \right\rvert\,\right.$	$\left\{\begin{array}{c} \left.\begin{array}{c} \text { Saturated solution of } \\ \mathrm{CdSO}_{4} \end{array}\right\} \\ \left\{\begin{array}{c} \text { Saturated solution of } \\ \mathrm{ZnSO}_{4} \end{array}\right\} \end{array}\right\}$		$\underset{\text { at }{ }^{\text {I. }}{ }^{20} 83^{*}}{ }$ r. $434 \ddagger$ at $155^{\circ} \mathrm{C}$
(d) Skcondarv Cerles.				
Lead accumulator Regnier (1) . . . Main . (2) Edison	Lead . . Copper . Amal. zinc Amal. zinc Iron . .	$\left\{\begin{array}{c} \begin{array}{c} \mathrm{H}_{2} \mathrm{SO}_{4} \text { solution of } \\ \text { density } 1 . \mathrm{I} \end{array} . \end{array}\right\}$		

- \# E.M. F. hitherto used at Bureau of Standards. See p. 251. The temperature formula is $E_{t}=E_{20}-0.0000406$ ($\mathrm{t}-20$) - $0.00000095(\mathrm{t}-20)^{2}+0.0000001(\mathrm{t}-20)^{3}$. \ddagger The value given is that adopted by the Chicago lateroational Electrical Congress in 1893 . The temperature formula is $E_{4}=E_{15}-0.00119(t-15)-0.000007(t-15)^{2}$.
\dagger F. Streintz gives the followiog value of the temperature variation $\frac{\mathrm{dE}}{\mathrm{dt}}$ at different stages of charge :

$$
\begin{array}{cccccccc}
\text { E. M. F. } & 1.9223 & 1.9828 & 2.0031 & 2.0084 & 2.0105 & 2.0779 & 2.2070 \\
\mathrm{dE} / \mathrm{dt} \times \mathrm{IO}^{5} & 140 & 228 & 335 & 285 & 255 & 130 & 73
\end{array}
$$

Dolezalek gives the following relation between E. M. F. and acid concentration :

$$
\begin{array}{llllll}
\text { Per cent } \mathrm{H}_{2} \mathrm{SO}_{4} & 64.5 & \mathbf{5 2 . 2} & \mathbf{3 5 . 3} & 21.4 & \mathbf{5 . 2} \\
\text { E.M.F., } \mathrm{o}^{6} \mathrm{C} & \mathbf{2 . 3 7} & \mathbf{2 . 2 5} & \mathbf{2 . 1 0} & 2.00 & \mathbf{1 . 8 9}
\end{array}
$$

Smithsonian Tables.

| \begin{tabular}{ll}
\hline
\end{tabular} | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

* Everett's " Units and Physical Constants: " Table of

Smithsonian Tableb.

POTENTIAL IN VOLTS.

Liquids with Liquids in Alr.*

during experiment about $16^{\circ} \mathrm{C}$.

		$\begin{aligned} & \dot{6} \\ & \text { 監 } \end{aligned}$	菷							
Distilled water 100	. 231	-	-	-	-. 043	-	. 164	-	-
Alum solution : saturated $\}$ at $16^{\circ} .5 \mathrm{C}$.	-	-. 014	-	-	-	-	-	-	-	-
Copper sulphate solution : sp. gr. 1. 087 at 160.6 C .	-		-	-	-	-	. 090	-	-	-
Copper sulphate solution: saturated at $15^{\circ} \mathrm{C}$.	-	-	-	-. 043	-	-	-	.095	. 102	-
Sea salt solntion : sp. gr. 1.18 at $20^{\circ} .5 \mathrm{C}$.	-	-. 435		-	-	-	-	5	-	-
Sal-ammoniac solution: saturated at $15^{\circ} \cdot 5^{C}$.	-	-. 348	-	-	-	-	-	-	-	-
Zinc sulphate solution: $\}$ sp. gr. 1.125 at $16^{\circ} .9 \mathrm{C}$.	-	-	-	-	-	-	-	-	-	-
Zinc sulphate solution: $\}$ saturated at $15^{\circ} \cdot 3 \mathrm{C}$.	$-.284$	-	-	-. 200	-	-.095	-	-		
$\left.\begin{array}{l}\text { One part distilled water }+ \\ \left.\begin{array}{l}\text { parts saturated zinc } \\ \text { sulphate solution }\end{array}\right\} \\ \text {. . }\end{array}\right\}$	-	-	-	-	-	-. 102	-	-	-	-
Strong sulphuric acid in distilled water : I to 20 by weight	-	-	-	-	-	-	-	-	-	-
	-. 358	-	-	-	-	-	-	-	-	
I to 5 by weight 429	-		-	-	-	-	-	-	
5 to I by weight	-	-. 016	-	-	-	-	-	-	-	-
Concentrated sulphuric acid	. 848	--	-	1.298	I 4.456	1.269	-	1.699	-	-
Concentrated nitric acid .			-	-	-	-	-	-	-	-
Mercurous sulphate paste .	-	-	. 475	-	-	-	-	-	-	-
Distilled water containing $\}$ trace of sulphuric acid.	-	-	-	-	-	-	-	-	-	. 078

Ayrton and Perry's results, prepared by Ayrton.

Smithsonian Tables.

CONTACT DIFFERENCE OF POTENTIAL IN VOLTS.

Solids with Solids in Alr.*

The following results are the "Volta differences of potential," as measured by an electrometer. They represent the difference of the potentials of the air near each of two metals placed in contact. This should not be confused with the junction electromotive force at the junction of two metals in metallic contact, which has a definite value, proportional to the coefficient of Peltier effect. The Volta difference of potential has been found to vary with the condition of the metallic surfaces and with the nature of the surrounding gas. No great reliance, therefore, can be placed on the tabulated values.

The temperature of the substances during the experiment was about $18^{\circ} \mathrm{C}$.

	Carbon.	Copper.	Iron.	Lead.	Platinum.	Tin.	Zinc.	Zinc amalgam.	Brass.
Carbon .	0	.370	.485	. 858	. 113	.795	1.og6t	1.208 ${ }^{\text {¢ }}$	-414 ${ }^{1}$
Copper .	-. 370	0	. 146	-542	-. 238	. 456	. 750	. 894	. 087
Iron .	-. $48.5 \dagger$	-. 146	0	-401 \dagger	-. 369	. $313 \dagger$. $600 \dagger$. $744{ }^{\dagger}$	-. 064
Lead	-.858	-. 542	-.401	0	-.771	-. 099	. 210	. $357 \dagger$	-. 472
Platinum	-.113 \dagger	. 238	.369	.771	0	. 690	.981	1.125^{\dagger}	. 287
Tin .	-.795 ${ }^{\dagger}$	-.458	-.313	. 099	-.690	0	. 281	. 463	-. 372
Zinc .	-1.096 \dagger	-.750	-. 600	-. 216	-.981	.28I	0	. 144	-. 679
" amalgam	-1.208 \dagger	-. 894	-. 744	-.357 \dagger	-1.125 ${ }^{\dagger}$	$-.463$	-. 144	0	-.822
Brass	-.414	-. 087	. 064	. 472	-. 287	-372	. 679	. 822	0

The numbers not marked were obtained by direct experiment, those marked with a dagger by calculation, on the assumption that in a compound circuit of metals, all at the same temperature, there is no electromotive force.

The numbers in the same vertical column are the differences of potential in volts between the substance named at the top of the column and the substance named on the same line in the first column, when the two substances are in contact.

The metals used were tbose ordinarily obtained in commerce.

* Everett's "Units and Physical Constants." The table is from Ayrton and Perry's experiments, and was prepared by Ayrton.

Smithsonian Tablee.

 SALTS.The followiog numbers are given by G. Magnanini * for the difference of potential in hundredths of a volt between zinc in a normal solution of sulphuric acid and the metals named at the head of the different columns when placed in the solution oamed in the first column. The solutions were contained in a U-tube, and the sign of the difference of potential is such that the current will flow from the more positive to the less positive through the external circuit.

Strength of the solution in gram molecules per liter.		Zinc. \dagger	Cadınium. \dagger	Lead.	Tin.	Copper.	Silver.
No. of molecules.	Salt.	Difference of poteotial io centivolts.					
0.5	$\mathrm{H}_{2} \mathrm{SO}_{4}$	0.0	36.6	51.3	51.3	100.7	121.3
1.0	NaOH	-32.1	19.5	31.8	0.2	80.2	95.8
1.0	KOH	-42.5	15.5	32.0	-1.2	77.0	104.0
0.5	$\mathrm{Na}_{2} \mathrm{SO}_{4}$	1.4	35.6	50.8	51.4	101.3	120.9
1.0	$\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$	-5.9	24.I	$45 \cdot 3$	$45 \cdot 7$	38.8	64.8
1.0	KNO_{3}	$11.8 \ddagger$	31.9	42.6	31.1	8 I .2	105.7
1.0	NaNO_{3}	11.5	32.3	51.0	40.9	95.7	I 14.8
0.5	$\mathrm{K}_{2} \mathrm{CrO}_{4}$	$23.9 \ddagger$	42.8	41.2	40.9	94.6	121.0
0.5	$\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$	72.8	61.1	78.4	68.1	123.6	132.4
0.5	$\mathrm{K}_{2} \mathrm{SO}_{4}$	1.8	34.7	51.0	40.9	95.7	114.8
0.5	$\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$	-0.5	37.1 33.6	53.2	${ }_{57.6} \mathbf{4 1 . 2}$	101. 5	
0.25		-6.1	33.6 80.8	50.7 8 l .2	41.2 130.9	110.7	87.8 124.9
0.167 1.0	$\mathrm{K}_{8} \mathrm{Ke}_{2}(\mathrm{CN})_{2}$	${ }_{-11.08}^{-1.2}$	80.8 32.5	81.2 52.8	130.9 52.7	110.7 52.5	124.9 72.5
1.0	NaNO_{6}	4.5	35.2	50.2	49.0	103.6	104.6?
0.5	SrNO_{3}	14.8	38.3	50.6	48.7	103.0	119.3
0.125	$\underset{\mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}}{ }$	21.9	39.3	51.7	52.8	109.6	121.5
1.0	KNO_{3}	- \ddagger	35.6	47.5	49.9	104.8	115.0
0.2	KClO_{3}	15-10¢	39.9	53.8	57.7	105.3	120.9
0.167	KBrO_{3}	13^{-201}	40.7	51.3	50.9	III. 3	120.8
1.0	$\mathrm{NH}_{4} \mathrm{Cl}$	2.9	32.4	51.3	50.9	8 I .2	
1.0	KF	2.8	22.5	41.1	50.8	61.3	6 I .5 10r.
1.0	$\mathrm{NaCl}^{\mathrm{NBr}}$	2.3	31.9 31.7	51.2 47.2	50.3 52.5	80.9 73.6	101.3 82.4
1.0 1.0	$\underset{\mathrm{KBr}}{\mathrm{KBr}}$	2.3	31.7 32.1	47.2 51.6	52.5 52.6	73.6 81.6	82.4 107.6
	$\mathrm{Na}_{2} \mathrm{SO}_{3}$	-8.2	28.7	41.0	31.0	68.7	103.7
- 11	NaOBr	18.4	41.6	73.1	$70.6 \ddagger$	89.9	99.7
1.0	$\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{6}$	5.5	39.7	6 r .3	54.48	104.6	123.4
0.5	$\mathrm{C}_{4} \mathrm{H}_{6} \mathrm{O}_{6}$	4.1	4 I .3	61.6	57.6 $42-47$	110.9 100.8	125.7 119.7
0.5	$\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{KNaO}{ }_{6}$	-7.9	31.5	51.5	42-47		119.7

[^48]
Emithsonian Tables.

THERMOELECTRIC POWER.

The thermoelectric power of a circuit of two metals is the electromotive force produced by one degree C. difference of temperature between the junctions. The thermoelectric power varies with the temperature, thus : thermoelectric power $=Q=d E / d t=A+B t$, where A is the thermoelectric power at $0^{\circ} C$., B is a constant, and t is the mean temperature of the junctions. The neutral point is the temperature at which $d E / d t=0$, and its value is $-A / B$. When a current is caused to flow in a circuit of two metals originally at a uniform temperature, heat is liberated at one of the junctions and absorbed at the other. The rate of production or liberation of heat at each junction, or Peltier effect, is given in calories per second, by multiplying the current by the coefficient of the Peltier effect. This coefficient in calories per coulomb $=Q T / \mathcal{F}$, in which Q is in volts, T is the absolute temperature of the junction, and $\mathscr{F}=4.19$. Heat is also liberated or absorbed in each of the metals as the current flows through portions of varying temperature. The rate of production or liberation of heat in each metal, or the Thomson effect, is given in calories per second by multiplying the current by the coefficient of the Thomson effect. This coefficient, in calories per coulomb, $=B T \theta / \mathcal{7}$, in which B is in volts per degree C., T is the nean absolute temperature of the junctions, and θ is the difference of temperature of the junctions. ($B T$) is Sir W. Thomson's "Specific Heat of electricity." The algebraic signs are so chosen in the following table that when A is positive, the current flows in the metal considered from the cold junction to the hot. When B is positive, Q increases (algebraically) with the temperature. The values of A, B, and thermoelectric power, in the following table are with respect to lead as the other metal of the thermoelectric circuit. The thermoelectric power of a couple composed of two metals, I and 2 , is given by subtracting the value for 2 from that for 1 ; when this difference is positive, the current flows from the cold junction to the hot in I. In the following table, A is given in microvolts, B in microvolts per degree C ., and the neutral point in degrees C .

The table has been compiled from the results of Becquerel, Matthiessen and Tait ; in reducing the results, the electromotive force of the Grove and Daniell cells has been taken as 1.95 and I. 07 volts. The value for constantin was reduced from results given in Landolt-Börnstein's tables. The thermoelectric powers of antimony and bismuth alloys are given by becquerel in the reference given below.

Substance.	$\underset{\text { Microvolts. }}{A}$	$\underset{\text { Microvolts. }}{B}$	Thermoelectric power at mean temp. of junctions (microvolts).		Neutral point ${\underset{B}{A}}_{\boldsymbol{A}}^{\boldsymbol{A}}$	Authority.
			$20^{\circ} \mathrm{C}$.	$50^{\circ} \mathrm{C}$.		
Aluminum	0.76	-0.0039	0.68	0.56	195	T
Antimony, comm'l pressed wire	-	-	-6.0		,	M
" axial	-	-	-22.6	-	-	"
" equatorial . . .	-	-	-26.4	-	-	"
" ordinary . .	-	-	-17.0	-	-	B
Argentan	$\underline{11.94}$	0.0506	12.95	14.47	-236	T
Arsenic	-	-	13.56	12.7	-	M ${ }_{\text {M }}$
Bismuth, comm'l pressed wire	-	-	97.0	-	-	"
" pure " "		-	89.0	-	-	،
" crystal, axial. . .	-	-	65.0	-	-	"
" commercial equalorial. .	-	-	45.0	-	-	"
Cadmium commercial	-2.63	0.0424		39.9	-62	B
${ }^{\text {" }}$ fused	-2.63	0.0424	-3.48	-4.75	2	T
Cobalt	-	-	22.	-2.45	-	$\stackrel{\text { M }}{ }$
Constantin	-	-	-	+19.3	-	-
Copper	-1.34	-0.0094	-1.52	-1.81	-143	T
" ${ }^{\text {commercial }}$. . .		-	$\bigcirc 0.10$	-	-	M
Gold . galvanoplastic . . .		-	-3.8	-	-	"
"	-2.80	-0.0101	-1.2	-		"
Iron :	-17.15	-0.0482	-3.0 -16.2	-3.30 -14.74	$\left[\begin{array}{c}\text {-277] } \\ 356\end{array}\right.$	T
"\% pianoforte wire . . .	-	0.0482	-17.5	-14.74	356	M
" commercial	-	-	-	-12.10	-	B
Lead	-	-	-	-9.10	-	6
Magnesium ${ }^{\text {- }}$	-	0.0000	0.00	0.00	-	-
Magnesium Mercury . . .	-2.22	0.0094	-2.03	-1.75	236	T
$\underset{\text { Mercury }}{ }$	-	-	0.413	- 75		M
Nickel		-		3.30	-	B
"، (-1880 to 175).	21.8	0.0506	22.8	15.50 24.33		
" ${ }^{\text {c }}$ ($250^{\circ}-300^{\circ}$).	83.57	$\bigcirc 0.2384$	22.8	24.33	[-431]	T
" (above 3400).	3.04	0.0506	-	-		*

[^49]TABLE 298. - Thermoeleotric Power (continued).

Substance.	$\underset{\text { Microvolts. }}{\text { A }}$	$\underset{\text { Microvolts. }}{B}$	Thermoelectric power at mean temp of junctions (inicrovolts).		Neutral point $-\frac{A}{B}$.	Authority.
			$20^{\circ} \mathrm{C}$.	$50^{\circ} \mathrm{C}$		
Palladium	6.18	0.0355	6.9	7.96	-174	T
Phosphorus (red)		-	-29.9	6.9	-	$\begin{aligned} & \mathrm{B} \\ & \mathrm{M} \end{aligned}$
Platinum	-	-	-29.9 -0.9	-	-	"
" (hardened) . . .	-2.57	0.0074	-2.42	-2.20	347	T
" (malleable)	0.60	0.0109	8.82	1.15	-55	"
" Wire another specimen . .	-	-	-	$\bigcirc 0.94$	5	B
Platinum-iridium alloys:	-		-			
$85 \% \mathrm{Pt}+15 \% \mathrm{Ir}$.	-7.90	-0.0062	-8.03	-8.21	[-1274]	T
$90 \% \mathrm{Pt}+10 \% \mathrm{Ir}$. .	-5.90	0.0133	-5.63	-5.23	$\text { r } 444$	\%
	-6.15	-0.0055	-807.	-6.42	[-1118]	M
Silver	-2.12	-0.0147	-807.	-2.86	-144	T
" (pure hard) . .	-	-0.014	-3.00		-44	M
" wire	-			-2.18		B
Steel Tellurium	-11.27	0.0325	-10.62	-9.65	347	' M
"	-		-502.	-429.3		M
Tellurium β. -	-	-	-500.	,	-	H
Tin" ${ }^{\boldsymbol{a}}$. ${ }^{\text {a }}$ - .	-	-	-160.	-	-	H
Tin (commercial)	-	-	-	-0.33	-	M
"	0.43	-0.0055	0.33	0.16	78	'T
Zinc -	-2.32	0.0238	-2.79	-3.51	$\underline{-8}$	"
* pure pressed	-	-	-3.7	-	-	M

B Ed. Becquerel, "Ann. de Chim. et de Phys." [4] vol. 8.
M Matthiesen, "Pogg. Ann." vol. 103, reduced by Fleming Jenkin.
T Tait, "Trans. R. S. E." vol. 27, reduced by Mascart.
B Haken, Ann. der Phys. 32, p. 291, 1910. (Electrical conductivity of $\mathrm{Te} \beta=0.04$, $\mathrm{Te} a 1.7$ e. m. units.)

TABLE 299. - Thermoelectrio Power of Alloys.
The thermoelectric powers of a number of alloys are given in this table, the authority being Ed. Becquerel. They are relative to lead, and for a mean temperature of $50^{\circ} \mathrm{C}$. In reducing the results from copper as, a reference metal, the thermoelectric power of lead to copper was taken as - r.g.

Substance.	号宫		Substance.			Substaoce.		
Antimony	806		Antimony	2 1		Bismuth	$\left.\begin{array}{l}4 \\ 1\end{array}\right\}$	-51.4
Cadmium	696	227	Zinc	1 1	43	Antimony	I	-51.4
Antimony	4 \}		Tin	1)		Bismuth	83	
Cadmium	$2\}$	146	Antimony	$12)$		Antimony	1)	-63.2
Zinc	$1)$		Cadmium	10	35		IO ${ }^{1}$	
Antimony	$806\}$		Zinc	3)		Bismuth Antimony	1 1 \}	-68.2
Cadmium	$\left.\begin{array}{l}696 \\ 121\end{array}\right\}$	137		10 $\}$				
Bismuth	$121)$		Tellurium	1)	10.2	Bismuth Antimony	$\left.\begin{array}{r}12 \\ 1\end{array}\right\}$	-66.9
Antimony	$806\}$	95	Antimony	$10\}$	8.8			
Zinc	406	95	Bismuth	1)	8.8	Bismuth	$\left.\begin{array}{l}2 \\ 1\end{array}\right\}$	60
Antimony Zinc	$\left.\begin{array}{l}806 \\ 406\end{array}\right\}$	8.1	Antimony	$4\}$	2.5		1	
Bismuth	121)		Iron	1		Bismuth Selenium	I $\}$	-24.5
Antimony	4		Antimony	81	1.4		12	
Cadmium	2	76	Magnesium	1		Bismuth Zinc	12	-31.1
Lead	$1\}$	76	Antimony	8 \}	-0.4	Zinc	I)	
Zinc	$1)$		Lead	I)		Bismuth	$12\}$	-46.0
Antimony	4		Bismuth	-	-43.8	Arsenic	1	-46.0
Cadmium	$2\}$	46		$2\}$		Bismuth	I $\}$	68.1
Zinc Tin	1 I		Antimony	I $\}$	-33.4	Bismuth sulphide	I)	68.1

One junction is supposed to be at $0^{\circ} \mathrm{C}$; + indicates that the current flows from the \circ° junction into the platinum. The rhodium and iridium were rolled, the other metals drawn.*

Temperature, ${ }^{\circ} \mathrm{C}$.	Au.	Ag.	$\begin{aligned} & 90 \% \mathbf{P t}+ \\ & 10 \% \mathbf{P d} . \end{aligned}$	$\begin{aligned} & 10 \% \mathrm{Pt}+ \\ & 90 \% \mathrm{Pd} . \end{aligned}$	Pd.	$\begin{aligned} & 90 \% \mathrm{Pt}+ \\ & \mathrm{ro} \mathrm{\%} \mathrm{Rh} . \end{aligned}$	$90 \% \mathrm{Pt}+$ no\%Ru.	Ir.	Rh.
-185	-0.15	-0.16	-0.11	+0.24	+0.77	-	-0.53	-0.28	-0.24
-80	-0.31	-0.30	-0.09	+0.15	+0.39	-	-0.39	-0.32	-0.31
+100	+0.74	$+0.72$	+0.26	-0.19	-0.56	-	+0.73	+0.65	+0.65
+200	+1.8	+1.7	+0.62	-0.31	-1.20	-	+1.6	+1.5	+1.5
+300	+3.0	+3.0	+1.0	-0.37	-2.0	+2.3	+2.6	+2.5	$+2.6$
+400	+4.5	+4.5	+1.5	-0.35	-2.8	$+3.2$	$+3.6$	-3.6	+3.7
+ 500	+6.1	+6.2	+1.9	-0.18	-3.8	+4.1	+4.6	+4.8	$+5.1$
+600	+7.9	+8.2	+2.4	+0.12	-4.9	+5.1	+5.7	+6.1	+6.5
+700	+9.9	+10.6	+2.9	+0.61	-6.3	+6.2	+6.9	+7.6	+8.1
+800	+12.0	+13.2	+3.4	+1.2	-7.9	+7.2	+8.0	+9. 1	$+9.9$
+900	+14.3	+16.0	+3.8	+2.1	-9.6	+8.3	+9.2	+10.8	+11.7
+1000	+16.8	-			-II.5	+9.5	+10.4	+12.6	+13.7
+1100		-	+4.8	$+4.2$	-I 3.5	+10.6	+11.6	+14.5	+15.8
+ 11300$)$ $+(1500)$	-	-	-	-	-	+13.1 +15.6	+14.2 +16.9	+18.6 +23.1	+20.4 +25.6

* Holborn and Day.

TABLE 301.-Thermal E. M. P. of Pure Platinum Against Platinum-Rhodium Alloye, in Milivolta.*

t	I p. ct.	$5 \mathrm{p} . \mathrm{ct}$.	1o p. ct.			15 p. ct.	$20 \mathrm{p} . \mathrm{ct}$.	$30 \mathrm{p.ct}. \dagger$	40 p. ct. \dagger	100 p.ct. \ddagger
			Low.	High.	Standard.					
100°	0.21	0.55	0.63	0.64	0.64	0.65	\cdots	\ldots	0.65
200	0.42	1.18	1.41	I. 43	1.43	1.50	1.51
300	0.63	1.85	2.28	2.32	2.32	2.41	2.34	2.45	2.57
400	0.84	2.53	3.21	3.26	3.25	3.45	$3 \cdot 50$	3.50	3.64	3.76
500	1.05	3.22	4.17	4.23	4.23	4.55	4.60	4.74	4.93	5.08
600	1.25	3.92	5.16	5.24	5.23	5.71	5.83	6.06	6.31	6.55
700	1.45	4.62	6.19	6.28	6.27	6.94	7.18	$7 \cdot 49$	7.80	8.14
800	1.65	5.33	7.25	$7 \cdot 35$	7.33	8.23	8.60	9.01	9.37	9.87
900	1.85	6.05	8.35	8.46	8.43	9.57	10.09	10.67	11.09	11.74
1000	2.05	6.79	9.47	9.60	9.57	10.96	11.65	12.42	12.94	13.74
1100	2.25	7.53	10.64	10.77	10.74	12.40	13.29	14.33	14.99	15.87
1200	2.45	8.29	11.82	11.97	11.93	13.87	14.96	16.39	17.13	18.10
1300	2.65	9.06	13.02	13.18	13.13	15.38	16.65	18.51	19.51	20.46
1400	2.86	9.82	14.22	14.39	14.34	16.98	18.39	20.67	21.73	20.4
1500	3.06	10.56	15.43	15.61	15.55	18.41	20.15	.	21.73
1600	3.26	11.31	16.63	16.82	16.75	19.94	21.90	...		
1700	3.46	12.05	17.83	18.03	17.95	21.47	23.65			
1755	$3 \cdot 56$	12.44	18.49	18.70	18.61	22.31	24.55	...		

Smithgonian Tableg.

Tables 302－304．
TABLE 302．－Peltier Effeot．
The coefficient of Peltier effect may be calculated from the constants A and B of Table 298， as there shown．Experimental results，expressed in slightly different units，are here given．The figures are for the heat production at a junction of copper and the metal named，in calories per ampere－hour．The current flowing from copper to the metal named，a positive sign indicates a warming of the junction．The temperature not being stated by either author，and Le Roux not giving the algebraic signs，these results are not of great value．

Calorieş per ampere－hour．											
	＋		号	\propto	نை		$\stackrel{\text { ¢ }}{\sim}$	浤	去	$\stackrel{\square}{4}$	込
Jahn＊．	－	－	－	－	－． 62	－	$-3.6 \mathrm{r}$	4.36	0.32	－．41	－． 5^{8}
Le Rouxt ．	13.02	4.8	19.1	25.8	0.46	2.47	2.5	－	－	－	． 39

[^50]TABLE 303．－Peltier Effect，Fe－Conetantan，Ni－Ot，0－660 0.

Temperature．	\bigcirc°	20°	${ }^{2} 0^{\circ}$	240°	$320{ }^{\circ}$	$560{ }^{\circ}$	
Fe－Constantan．	3．1	3.6	4.5	6.2	8.2	12.5	（ in Gram．Cal．\times ¢ ${ }^{10^{8}}$
$\mathrm{Ni}-\mathrm{Cu}$ ．	1.92	2.15	2.45	2.06	1．91	2.38	per coulomb．

TABLE 304．－Peitier Electromotive Force in milizolts．

$\begin{gathered} \text { Metal } \\ \text { against } \\ \text { Copper. } \end{gathered}$	良	$\stackrel{\text { ¢ }}{\text { ¢ }}$	®	這	奖	¢	А	它	यं	H	a	安	㐫
Le Roux	－5．64	－2．93	$-.53$	－． 45						－			＋22．3
Jahn ．		－3．68	－． 72	－． 68	$-.48$					＋． 37	－	＋5．07	
Edlund ．		－2．96	－． 16	－．os	＋．03	＋．33	＋． 50	＋． 56	＋． 70	＋ t .02	＋2．17	－	＋ 87.7
Caswell	－		－	－	＋．03		－	－	＋．70	$+85$	－	＋6．0	＋$\times 6.1$

Le Roux， 8867 ；Jahn， 1888 ；Edlund， $1870-7 \mathrm{~F}$ ；Caswell，Phys．Rev．33，p．381， 191 r．

Smithsonian Tableg．

VARIOUS DETERMINATIONS OF THE VALUE OF THE OHM.

Date.	Observer,	Method.	Value of B. A. unit in olims.	Value of Siemens unit, B. A. unit.	Value of ohm in cms. of Hg .
1882	Lord Rayleigh	Rotating coil	0.98651	0.95412	106.24
1883	Lord Rayleigh	Lorenz method	. 98677	. 95412	106.21
1884	Mascart . .	Induced current - .	. 98611	. 95374	106.33
1887	Rowland.	Mean of several methods	. 98644	. 95349	106.32
1887	Kohlrausch	Damping of magnets .	. 98660	-95338	106.32
1882	Glazebrook	Induced currents .	. 98665	-95352	106.29
1888 1890	W uilleumeier .	Mean effect of induced			
1890	Wailleumeier -	currents . .	. 98686	. 95355	106.31
1890	Duncan and Wilkes	Lorenz method	. 98634	. 95341	106.34
1891	Jones .	Lorenz method	-		106.31
1894	Jones *	Lorenz method ${ }^{\text {d }}$	-	-	106.33
1895	Himstedt	Mean effect of induced current		-	106.28
1897	Ayrton and Jones	Lorenz method - .	(.98634)	-	106.27
1899	Guillet	Mean effect of induced cur a calibrated $1000-\mathrm{hm}$	nt, using	-	106.20
		Means	0.98651	0.95366	106.288
1883	Wild	Damping of magnet	-	-	106.03
1884	Wiedemann	Earth inductor	-	-	106.19
1884	H. F. Weber	Induced current .	-	-	105.37
1884	H. F. Weber	Rotating coil - .	-	-	106.16
1884	Roiti	Mean effect of induced cur German silver coils certified	ent, using bymakers	-	105.89
1885	Himstedt	Mean effect of induced cur	ent, using		
		Gernnan silver coils certified	bymakers	-	105.98
1885	Lorenz	Lorenz method . .	-	-	105.93
1889	Dorn . ${ }^{\text {a }}$	Damping of magnet	-	-	106.24
1911	Nat. Phys. Lab.	2 phase	-	-	106.27

The legal value of the ohm is the resistance of a column of mercury of uniform cross-section, weighing 14.4521 gms , and having a length of 106.30 cms . This is known as the international ohm. Mercury ohms conforming to these specifications have been prepared in recent years at the Physikalisch-Technische Reichsanstalt, the National Physical Laboratory, and the Bureau of Standards. The wire standards of resistance at the above-named laboratories agree in value to within two parts in 100000 . Hence there is a very close agreement in the values of precision resistances calibrated at these laboratories.

Smithsonian Tables.

SPECIFIC RESISTANCE OF METALLIC WIRES．

This table is madified from the table compiled by Jenkin（1862）from Matthiessen＇s results by taking the resistance of silver，gold，and copper from the observed metre gramme value and assuming the deosities found by Matthiessen， namely，10．468， 19.265 ，and 8.95 ．

Substance．	뜽 $\circ \circ$ 宮品． 苗家			$\underset{~}{\dddot{\circ}}$ ن 品号管 哭点 	뜽	
Silver annealed ．	1.460×10^{-6}	0.01859	． 1523	8.78 I	.2184	0.377
＂hard drawn	1．585＂	0.02019	． 1659	9.538	.2379	－
Copper annealed	1.584 ＂	0.02017	.1421	9.529	． 2037	0.388
＂hard drawn	1．619＂	0.02062	.1449	9.741	． 2078	－
Gold annealed	2.088 ＂	0.02659	.4025	12.56	． 5771	0.365
＂hard drawn	2.125 ＂	0.02706	． 4094	12.78	.5870	－
Aluminium annealed ．	2.906 ＂	0.03699	． 0747	17.48	．1071	\cdots
Zinc pressed＊．	5.613 ＂	0.07146	． 4012	33.76	． 5753	0.365
Platinum annealed	9.035 ＂	0.1150	1.934	54.35	2.772	－
Iron＂	9.693 ＂	0.1234	.7551	58.31	1.083	－
Nickel＂	12.43 ＂	0.1583	I． 057	74.78	1.515	－
Tin pressed ．	13.18 ＂	0.1678	． 9608	79.29	1.377	0.365
Lead＂	19.14 ＂	0.2437	2.227	115．1	3.193	0.387
Antimony pressed ．．	$35 \cdot 42$＂	0.4510	2.379	213.1	3.410	0.389
Bismuth＂	130.9 ＂	1.667	12.86	787.5	18.43	0.354
Mercury＂	94.07 ＂	1.198	12.79	565.9	18.34	0.072
$\left.\begin{array}{c} \text { Platinum-silver, } 2 \text { parts Ag, } \\ \text { I part Pt, by weight } \end{array}\right\}$	24.33 ＂	0.3098	2.919	146.4	4.186	0.031
German silver－．	20.89	0.2660	1.825	$\mathbf{5 2 5 . 7}$	2.617	0.044
$\left.\begin{array}{c} \text { Gold-silver, } 2 \text { parts } A u, \\ \text { r part Ag, by weight } \end{array}\right\}$	10.84 ＂	0.1380	1.646	65.21	2.359	0.065

Smithsonian Tables，

SPECIFIC RESISTANCE OF METALS.

The resistance is here given as the resistance in microhms per cm . cube when the specific resistance of mercury at 0° is taken as 94.1 microhms.

Smithsonian Tables.

TABLE 307 (continued).
SPECIFIC RESISTANCE OF METALS.
The resistance is here given as the resistance in microhms per cm . cube when the specific resistance of mercury at $0^{\circ} \mathrm{C}$ is taken as $94 . \mathrm{I}$ microhms.

Substance.	State.	Temperature, ${ }^{\circ} \mathrm{C}$.	Resistance.	Authority.
Lithium, continued		$\text { o. } 99.3$	$\begin{gathered} 8.55 \\ 12.7 \end{gathered}$	Guntz, Broniewski.
" "	liquid	23.	45.2	Bernini, 1905.
Manganese .	free from zn .	-183.	${ }_{1}^{5.00}$	Dewar, Fleming,
"	" " "	- 78.	2.97	Dickson, 1898.
"	" " "	0.	4.35	D, \%, D, 1898.
"	" "	98.5	5.99	Niccoi
Mercury .	pure	- 480.	${ }^{11.9} 6$	D, F, D, 1898.
		-147.5	10.57	" "
"	"	-102.9	15.04	" "
"	"	- 50.3	21.3	" "
"	"	- 39.2	25.5	"، "
"	liquid	- $\begin{array}{r}36.1 \\ 0.0\end{array}$	80.6	"
"	${ }^{\text {Had }}$	10.	94.92	Strecker, 1885.
"	"	20.	95.74	" "
"	"	50.	98.50	Grimaldi, 1888.
"	"	100.	103.25	Vincentini, Omodei,
"	"	200.	114.27	${ }^{1890}$
Nickel	pure	-182.5	1.	Fleming, 1900.
		- 78.2	4.31	"، "
"	"	-.	6.93	"، "
"'	"	94.9	11.1 60.2	Niccolai, 190\%.
Osmium . .		20.	9.5	Blau, 1905.
Palladium	very pure	-183.	2.78	Dewar, Fleming,'\%6
	" ${ }^{\prime}$	- 78.	7.17	"، "، "
"	"		10.21	" ${ }^{\text {" }}$ " "
"	" "	98.5	13.79	
$\underset{\text { Platinum . . . - }}{ }$	wire	-203.1	2.44 6.87	
،	"	-97.5	10.96	" " "
"	"	100.	14.85	"، "
"		400.	26.0	Niccolai, 1907.
Rhodium		-186.	0.70	Broniewski, Hack-
		-78.3	3.09	spill, $19{ }^{11}$ I.
"		\%.	6.60	" "
Rubidium	solid	-190.	2.5	Hackspill, 1910.
Ru'	"	0.	11.6	"
"	liquid	40.	19.6	, " ${ }^{\text {c }}$ "
Silver .	electrolytic	-183.	0.390	D, F, D, 1898.
"		-78.	1.021	
"	"	${ }^{\circ} \mathrm{O}$	1.468 2.062	"، " . ${ }^{\text {" }}$ "
"	"	98.15	2.062 2.608	"،"، "
"		192.1	2.608	Niccolai, 1907.
"	999.8 pure	${ }^{400 .}$	1.629	Jäger, Diesselhorst
Silicium		-	$58 . \pm$	-
Strontium . . .		20.	${ }^{24.8} 0.80$.	Matthiessen, 1857. Guntz, Broniewski,
$\underset{\text { Sodium . . . }}{ }$	solid	$\begin{aligned} & \text { — } \\ & -178 . \\ & 78.3 \end{aligned}$	2.86	$1909 .$
"	"	O.	4.48	"
"	"	50.	$5 \cdot 32$	

Smithsonian Tables.

specific resistance of metals.

TABLE 307 (concluded).
The resistance is here given as the resistance in microhms per cm . cube when the specific resistance of mercury at $0^{\circ} \mathrm{C}$. is taken as 94.1 microhms.

TABLE 308. - Temperature Realstance Ooefflciente.
If R_{0} is the resistance at the temperature t_{0}, and R_{t} at the temperature t, then R_{t} may over small ranges of temperature be approximately represented by the formula $R_{t}=R_{0}(I+a t)$.

Substance.	Temperature.	a.	$\left\lvert\, \begin{gathered} \text { see } \\ \text { feot. } \end{gathered}\right.$	Substance.	Temperature.	a.	
Aluminum	${ }^{18-100}{ }^{\circ} \mathrm{C}$.	0.0039	1	Nickel	$0-100^{\circ} \mathrm{C}$.	0.0062	3
"	$t_{0}=25^{\circ}$. 0034	2	" . .	$\mathrm{t}_{0}=25^{\circ}$	0.0043	2
"	100	. 0040	"		100	. 0043	"
"	500	. 0050	"	" \cdot	500	. 0030	"
Bismuth .	0-100	. 00458	-	dio	1000	. 0037	.
Cadmium	0-100	. 0042	-	Palladium .	$0-100$. 0035	3
Copper	see p. 284-85	.0040	-	Platinum	0-100	. 0037	"
"	$t_{0}=100^{\circ}$. 0038	2	Silver	$0-100$. 0040	"
"	400	. 0042	"	"	$\mathrm{t}_{0}=25^{\circ}$. 0030	2
Gold	1000	. 0062	"	"	100	.0036	"
Gold - . ${ }^{\text {a }}$ (18-100	.00368	1	"	500	. 0044	"
" annealed	$\mathrm{t}_{0}=100^{\circ}$. 0025	$\stackrel{2}{4}$	Tantalum.	-100	. 0033	6
" . "	500	. 0035	"	Tin	18-100	. 0046	1
"' ${ }^{\text {" }}$ "	1000	. 0049	"	Tungsten	18-100	. 0045	"
Iron, pure	$0-100$. 0062	3	"	$\mathrm{ta}_{0}=500^{\circ}$. 0057	2
" " . .	$\mathrm{t}_{0}={ }_{100} 5^{\circ}$.0052	2	Zinc.	1000	.0089	"
" "	100 500	.0068	"	Zinc .	0-100	. 0040	3
"	1000	. 0050	"	Advance			
- steel	glass, h'd	. 0016	4	Advance	$t_{0}=12{ }^{\circ}$	+.000020 -.000008	$\stackrel{2}{6}$
"	. blue	. 0033	"	"	100	-.000007	"
	piano wire	. 0032	"	" .	200	+.000007	"
Lead	18-100	. 0043	I	Constantin	12	+.000008	"
Magnesium .	0-100	.0038	3		25	+.000002	"
"	$t_{0}=25^{\circ}$. 0050	3	"	100	-.000033	"
"	100	. 0045	"	"	200	-.000020	"
"	500 600	. 0010	"	Manganin	500	$+.000027$	"
Mercury* ${ }^{*}$	$0-15$. 00088	5	Manganin	12	$\begin{array}{r} +.000006 \\ .000000 \end{array}$	"
Molybdenum	$t_{0}=25^{\circ}$. 0033	2		100	-.000042	"
"	100	. 0034	"	"	250	-.000052	"
/	500	. 0050	"	4	475	. 000000	،
\%	1000	. 0048	"	" .	500	-.000110	"

1, Jäger, Diesselhorst, Wiss. Abh. D., Phys. Tech. Reich. 3, p. 269, 1900; 2, Somerville, Phys. Rev. 31, p. 261, 1910, 33, p. 77, 1911; 3, Dewar, Fleming, 1893, 1896; Strouhal, Barus, 1883; 5, Glazebrook Phil. Mag. 20, p. 343, 1885; 6, Pirani.

CONDUCTIVITY OF THREE-METAL AND MISCELLANEOUS ALLOYS.

$$
\text { Conductivity in mhos or } \frac{1}{\text { ohms per } \mathrm{cm} . \text { cube }}=C_{t}=C_{0}\left(\mathrm{r}-a t+b t^{2}\right) \text {. }
$$

Metals and alloys.	Composition by weight.	$\frac{C_{0}}{10^{4}}$	$a \times 10^{6}$	6×10^{8}	\|
	58.3 $\mathrm{Au}+26.5 \mathrm{Cu}+15.2 \mathrm{Ag}$ $66.5 \mathrm{Au}+15.4 \mathrm{Cu}+18.1 \mathrm{Ag}$ $7.4 \mathrm{Au}+78.3 \mathrm{Cu}+14.3 \mathrm{Ag}$	$\begin{gathered} 7.58 \\ 6.83 \\ 28.06 \end{gathered}$	$\begin{array}{r} 574 \\ 529 \\ 1830 \end{array}$	$\begin{gathered} 924 \\ 93 \\ 7280 \end{gathered}$	I
Nickel-copper-zinc . . .	$\left\{\begin{array}{l} 12.84 \mathrm{Ni}+30.59 \mathrm{Cu}+ \\ 6.57 \mathrm{Zn} \text { by volume } . \end{array}\right\}$	4.92	444	51	I
Brass " hard drawn " annealed		$12.2-15.6$ 12.16 14.35	$1-2 \times 10^{8}$ $=$	-	2 3 3
German silver	$\left\{\begin{array}{l} \text { Various } \\ 60.16 \mathrm{Cu}+25.37 \dot{\mathrm{Z}} \mathrm{n}+ \\ \mathrm{I} 4.03 \mathrm{Ni}+.30 \mathrm{Fe} \text { with trace } \\ \text { of cobalt and manganese } \end{array}\right\}$	$3-5$ 3.33	360	-	2
Aluminum bronze . .	- - -	7.5-8.5	$5-7 \times 10^{2}$	-	2
Phosphor bronze . . .	- - -	10-20	-	-	2
Silicium bronze . . .	-	41	-	-	5
Manganese-copper . . .	$30 \mathrm{Mn}+70 \mathrm{Cu}$. . . .	1.00	40	-	4
Nickel-manganese-copper	$3 \mathrm{Ni}+24 \mathrm{Mn}+73 \mathrm{Cu}$.	2.10	-30	-	4
Nickelin	$\left\{\begin{array}{l}18.46 \mathrm{Ni}+6 \mathrm{r} .63 \mathrm{Cu}+ \\ 19.67 \mathrm{Zn}+0.24 \mathrm{Fe}+ \\ 0.19 \mathrm{Co}+0.18 \mathrm{Mn} \\ 25.1 \mathrm{Ni}+74.4 \mathrm{Cu}+\end{array}\right\}$	3.01	300	-	4
Patent nickel -	$\left\{\begin{array}{l} 0.42 \mathrm{Fe}+0.23 \mathrm{Zn}+ \\ 0.13 \mathrm{Mn}+\text { trace of cobalt } \end{array}\right\}$	2.92	190	-	4
Rheotan .		1.90	410	-	4
Copper-manganese-iron " " " " "	$\begin{aligned} & 91 \mathrm{Cu}+7.1 \mathrm{Mn}+1.9 \mathrm{Fe} \\ & 70.6 \mathrm{Cu}+23.2 \mathrm{Mn}+6.2 \mathrm{Fe} \\ & 69.7 \mathrm{Cu}+29.9 \mathrm{Ni}+0.3 \mathrm{Fe} . \end{aligned}$	$\begin{aligned} & 4.98 \\ & 1.30 \\ & 2.60 \end{aligned}$	$\begin{gathered} 120 \\ 22 \\ 120 \end{gathered}$	-	6 6 7
Manganin Constantan	$\begin{aligned} & 84 \mathrm{Cu}+12 \mathrm{Mn}+4 \mathrm{Ni} . \\ & 60 \mathrm{Cu}+40 \mathrm{Ni} . \end{aligned}$	$\begin{aligned} & 2.3 \\ & 2.04 \end{aligned}$	6 8	-	2
$\begin{array}{ll}1 \\ 2 & \text { Matthiessen. } \\ 2 \text { Various. } & 8 \text { W. } \\ & \end{array}$	Siemens. 6 Van de	r Ven.	${ }^{6}$ Feussner 7 Jaeger-D	selhor	

[^51]
CONDUCTING POWER OF ALLOYS.

This table shows the conducting power of alloys and the variation of the conducting power with temperature." The values of C_{o} were ohtained from the original results by assuming silver $=\frac{106}{1.585}$ mbos. The codductivity is taken as $C_{z}=C_{0}\left(\mathrm{r}-a t+b t^{2}\right)$, and the range of temperature was from 0° to $100^{\circ} \mathrm{C}$.
The table is arranged in three groups to show (1) that certain metala when melted together produce a solution which has a conductivity equal to the mean of the conductivities of the components, (2) the bebavior of those metals alloyed with others, and (3) the behavior of the otber metals alloyed together.
It is pointed out that, with a few exceptions, the percentage variation between 0° and 100° can be calculated from the formula $P=P_{c} \frac{l}{l}$, where l is the observed and l^{\prime} the calculated conducting power of the mixture at $100^{\circ} \mathrm{C}$., and P_{c} is the calculated mean variation of the metals mixed.

Alloys.	Weight \%	Volume \%	$\frac{C_{0}}{10^{4}}$	$a \times 10^{6}$	6×10^{9}	Variation per $100^{\circ} \mathrm{C}$.	
	of first named.					Observed.	Calculated.
Group r .							
$\mathrm{Sn}_{6} \mathrm{~Pb}$	77.04	83.96	$7 \cdot 57$	3890	8670	30.18	29.67
$\mathrm{Sn}_{4} \mathrm{Cd}$	82.41	83.10	9.18	4080	11870	28.89	30.03
SnZn	78.06	77.71	10.56	3880	8720	30.12	30.16
PbSn	64.13	53.41	6.40	3780	8420	29.41	29.10
ZnCd_{2}	24.76	26.06	16.16	3780	8000	29.86	29.67
SnCd_{4}	23.05	23.50	13.67	3850	9410	29.08	30.25
CdPb_{6}	$7 \cdot 37$	10.57	5.78	3500	7270	27.74	27.60
Group 2.							
Lead-silver ($\mathrm{Pb}_{20} \mathrm{Ag}$) Lead-silver (PbAg) Lead-silver (PbAg_{2})	95.05	94.64	5.60	3630	7960	28.24	19.96
	48.97	46.90	8.03	1960	3100	16.53	7.73
	32.44	30.64	13.80	1990	2600	17.36	10.42
$\operatorname{Tin}_{*} \operatorname{gold}_{\pi}^{\left(\mathrm{Sn}_{12} \mathrm{Au}\right)}\left(\mathrm{Sn}_{5} \mathrm{Au}\right) .$	77.94	90.32	5.20	3080	6640	24.20	14.83
	59.54	79.54	3.03	2920	6300	22.90	5.95
		93-57	7.59 8.05	3680 3330	8130 6840	28.71	19.76
	80.58	83.60	8.05	3330	6840	26.24	14.57
	12.49	14.91	$5 \cdot 57$	547 666	294 1185	5.18	3.99
	10.30	12.35	6.41	666	1185	$5 \cdot 48$	4.46
	9.67	11.61	7.64	691	304	6.60	5.22
	4.96	6.02	12.44	995	705	9.25	7.83
	I.I 5	1.41	39.41	2670	5070	21.74	20.53
${ }_{\text {Tin-silver }}{ }^{\text {c }}$.		96.52		3820		30.00	23.31
	53.85	75.51	8.65	3770	8550	29.18	11.89
	36.70	42.06	13.75	${ }^{1} 370$	I $34{ }^{\circ}$	12.40	
	25.00 16.53	29.45	13.70	1270	1240	11.49	10.08
	16.53	23.61	13.44	1880	1800	12.80	12.30
	8.89	10.88	29.61	2040	3030	17.41	17.42
	4.06	5.03	38.09	2470	4100	20.61	20.62

Notr. - Barus, in the " Am. Jour. of Sci." vol. 36, has pointed out that the temperature variation of platinum alloys containing less than 20% of the other metal can be nearly expressed by an equation $y=\frac{n}{x}-m$, where y is the temperature coefficieut and x the specific resistance, m and n being constadts. If a be the temperature coefficient at $0^{\circ} \mathrm{C}$. and s the corresponding specific resistance, $s(\alpha+m)=n$.

For platinum alloys Barus's experiments gave $m=-.000194$ add $n=.0378$.
For steel $m=-.000303$ and $n=.0620$.
Matthiessen's experiments reduced by Barus gave for
Gold alloys $m=-.000045, n=.00721$.
Silver " $m=$ =.000112, $n=.00538$.
Copper " m =-.000386, $n=.00055$.
*From the experiments of Matthiessen add Vogt, "Phil. Trans. R. S." v. 154.
\dagger Hard-drawn.
8mithsonian Tables.

Tables 310 (continued)-311.
TABLE 310. - Conduoting Power of Alloys.

TABLE 311.-Allowable Carrying Capacity of Rubber-covered Copper Wires.

(For inside wiring — Nat. Board Fire Underwriters' Rules.)

B+S Gage	18	16	${ }^{4}$	12	10	8	6	5	4	3	2	\pm	-	∞	0
Amperes	3	6	12	17	24	33	46	54	65	76	90	107	127	150	210
500,000 circ. mills, 390 amp .; $1,000,000 \mathrm{c} . \mathrm{m} ., 650 \mathrm{amp} . ; 2,000,000 \mathrm{c}$. m., 1,050 amp. For insulated al. wire, capacity $=84 \%$ of cu . Preece gives as formula for fusion of bare wires $\mathrm{I}=\mathrm{ad}^{\frac{3}{3}}$, where $\mathrm{d}=$ diam. in inches, a for cu. is 10,244 ; al., 7585 ; pt., 5172 ; German silver, 5230; platinoid, 4750 ; Fe, 3148 ; Pb., 1379 ; alloy 2 pts. Pb., 1 of $\mathrm{Sn} ., 1318$.															

The electrical resistance of some pure metals and of some alloys have been determined by Dewar and Fleming and increases as the temperature is lowered. The resistance seems to approach zero for the pure metals, but not for temperature tried. The following table gives the results of Dewar and Flemiog.*
When the temperature is raised above $o^{\circ} \mathrm{C}$. the coefficient decreases for the pure metals, as is shown by the experiexperiments to be approximately true, namely, that the resistance of any pure metal is proportional to its absolute is greater the lower the temperature, because the total resistance is smaller. This rule, however, does not even zero Centigrade, as is showo in the tables of resistance of alloys. (Cf. Table 262.)

Temperature $=$	100°	20°	$0{ }^{\circ}$	-80°
Metal or alloy,	Specific resistance in c. g. s. units.			
Aluminium, pure hard-drawn wire . .	4745	3505	3161	-
Copper, pure electrolytic and annealed.	1920	1457	1349	-
Gold, soft wire . .	2665	2081	1948	1400
Iron, pure soft wire	${ }^{1} 3970 \dagger$	9521	8613	-
Nickel, pure (prepared by Mond's process from compound of nickel and carbon monoxide)	19300	13494	12266	7470
Platinum, annealed . .	10907	8752	8221	6133
Silver, pure wire	2139	1647	1559	1138
Tin, pure wire	13867	10473	9575	668 r
German silver, commercial wire . .	35720	34707	34524	33664
Palladium-silver, $20 \mathrm{Pd}+80 \mathrm{Ag}$. .	15410	14984	14961	14482
Phosphor-bronze, commercial wire . .	9071	8588	8479	8054
$\left.\begin{array}{l}\text { Platinoid, Martino's platinoid with } \mathrm{I} \text { to } 2 \% \\ \text { tungsten }\end{array}\right\}$.	44590	43823	43601	43022
Platinum-iridium, $80 \mathrm{Pt}+20 \mathrm{Ir}$. ${ }^{\text {a }}$	31848	29902	29374	27504
Platinum-rhodium, $90 \mathrm{Pt}+10 \mathrm{Rh} . \quad$.	18417	14586	13755	10778
Platinum-silver, 66.7 Ag + 33.3 Pt . .	27404	26915	26818	26311
$\left.\begin{array}{l}\text { Carbon, from Edison-Swan incandescent } \\ \quad \text { lamp }\end{array}\right\}$.	-	4046×10^{8}	4092×10^{8}	4189×10^{8}
$\underset{\text { lamp }}{\text { Carbon, from Edison-Swan incandescent }}\}$.	3834×10^{3}	3908×10^{8}	3955×10^{8}	4054×10^{3}
$\left.\begin{array}{l}\text { Carbon, adamantine, from Woodhouse and } \\ \quad \text { Rawson incandescent lamp }\end{array}\right\}$.	$6 \mathrm{I} 68 \times 1{ }^{8}$	6300×10^{8}	6363×10^{8}	6495×10^{8}

* "Phil. Mag." vol. 34, 8892.
\dagger This ia given by Dewar and Fleming aa 13777 for $96^{\circ} .4$, which appears from the other measurements too high.
Bmithsonian TAbles.

ALLOYS AT LOW TEMPERATURES.

by Cailletet and Bouty at very low temperatures. The resulte show that the coefficieot of change with temperature the alloys. The resistance of carboo was found by Dewar and Fleming to increase continuously to the lowest
ments or Müller, Benoit, and others. Probably the simplest rule is that suggested by Clausius, and showa by these temperature. This gives the actual change of resistance per degree, a constant; and heoce the perceatage of change approximately hold for alloys, some of which have a negative temperature coefficient at temperatures oot far from

Temperature $=$	-100°	-182°	-197°	Mean value of temperature coefficient bet ween -100° and$+100^{\circ} \mathbf{C}$. $+100{ }^{\circ} \mathrm{C}$.
Metal or alloy.	Specific resistance io c. g. as units.			
Aluminum, pure hard-drawn wire . .	1928	894	-	. 00446
Copper, pure electrolytic and annealed . .	757	272	178	431
Gold, soft wire	1207	604	-	375
Iron, pure soft wire	4010	1067	608	578
Nickel, pure (prepared by Mond's process from compound of nickel and carbon monoxide) .	6110	1900	-	53^{8}
Platinum, annealed	5295	2821	2290	341
Silver, pure wire	962	472	-	377
Tin, pure wire	5671	2553	-	428
German silver, commercial wire . . .	33280	32512	-	035
Palladium-silver, $20 \mathrm{Pd}+80 \mathrm{Ag} \cdot \mathrm{C}$	14256	13797	-	039
Phosphor-bronze, commercial wire . . .	7883	7371	-	070
$\left.\begin{array}{c}\text { Platinoid, Martino's platinoid with I to } 2 \% \\ \text { tungsten }\end{array}\right\}$.	42385	41454	-	025
Platinum-iridium, $80 \mathrm{Pt}+20 \mathrm{Ir}$. . .	26712	24440	-	087
Platinum-rhodium, $90 \mathrm{Pt}+10 \mathrm{Rh} . \quad . \quad$.	9834	7134	-	312
Platinum-silver, 66.7 Ag + 33.3 Pt . . .	26108	25537	-	024
$\begin{aligned} & \text { Carbon, from Edison-Swan incandescent } \\ & \text { lamp } \end{aligned}$	4218×10^{8}	4321×10^{8}	-	-
$\begin{aligned} & \text { Carbon, from Edison-Swan incandescent }\} \text {. } \quad \text { lamp } \end{aligned}$	4079×10^{8}	4180×10^{8}	-	${ }^{\circ 31}$
$\left.\begin{array}{l} \text { Carbon, adamantine, from Woodhouse and } \\ \text { Rawson incandescent lamp } \end{array}\right\} \text {. }$	6533×10^{8}	-	-	029

* This is a in the equation $R=R_{0}(1+a t)$, as calculated from the equation $a=\frac{R_{100}-R_{-100}}{200 R_{0}}$.

Smithsonian Tables.

TABLE 313. - Variation of Electrioal Resiotanoe of Class and Porcelain with Temperature.
The following table gives the values of a, b, and c in the equation
$\log R=a+b t+c t^{2}$,
where R is the specific resistance expressed in ohms, that is, the resistance in ohms per centimeter of a rod one square centimeter in cross section.*

No.	Kind of glass.		Density.	a		b			Range of temp. Centigrade.
1			-	13.86	-. 044		. 000065		$0^{\circ}-250^{\circ}$
2			2.458	14.24	-. 055		. 0001		37-131
3			2.43	16.21	-. 043		. 0000394		60-174
4			2.55	13.14	-.031		-.000021		10-85
5			2.499	14.002	-. 025		-.00006		35-95
6			2.533	14.58	-. 049		. 000075		45-120
7			2.58	16.34	-.0425		.0000364		66-193
8			3.07	18.17	-. 055		. 000088		105-135
9			3.172	18.021	-.036		-.0000091		100-200
ro			-	15.65	-. 042		. 00005		68-290
Composition of somb of the above Spacimens of Glass.									
Number of specimen $=$		3	4		5		7	8	9
	Slica	61.3	57.2	70.05			75.65	54.2	55.18
	ash	22.9	21.1	1.44			7.92	10.5	13.28
	da	Lime, etc.	Lime,	tc. 14.32			6.92	7.0	-
	ad oxide	by diff.	by dif	2.70			-	23.9	3 3 .01
	me	15.8	16.7		10.33		8.48	0.3	0.35
	gnesia . . .	-	-				0.36	0.2	0.06
	ssenic oxide . .	-	-		-		0.70	3.5	-
	umina, iron oxide, etc.	-	-		1.45			0.4	0.67

[^52]TABLE 314. - Temperature Resistance Coefficients of Glass, Porcelain and Qnartz dr/dt.

Somerville, Physical Review, 31, p. 261, 1910.

Smithsonian Tables.

TABULAR COMPARISON OF WIRE GAGES.

Gage No.	American (B. \& S.) Mils.	American Wire Gage (B. \& S.) mm.	$\begin{aligned} & \text { Steel Wiire } \\ & \text { Gage* } \\ & \text { Mils. } \end{aligned}$	$\begin{gathered} \text { Steel Wire } \\ \text { Gage*. } \\ \mathrm{mm} . \end{gathered}$	$\begin{gathered} \text { Stuhs' Steel } \\ \text { Wire Gage } \\ \text { Mils. } \end{gathered}$	$\begin{aligned} & \text { (British) } \\ & \text { Standard } \\ & \text { Wire Gage } \\ & \text { Mils. } \end{aligned}$	$\left\lvert\, \begin{gathered} \text { Birmingham } \\ \text { Wire Gage } \\ \text { (Stuhs) } \\ \text { Mils. } \end{gathered}\right.$	Gage No.
7-0			400.0	12.4		500.		
$\stackrel{1}{50}$			466.5 430.5	IT.7.		464.		6-0
$\stackrel{\substack{4-0 \\ 3 \\-0}}{ }$	460.	11.7	393.5 393.8	10.9 10.0		432. 400.	454.	$\stackrel{\text { S-0 }}{\substack{\text { 4-0. }}}$
-	${ }_{365 .}^{470 .}$	10.4 0.3	362.5 33 T .0	8.8		372. 348 348	425. 380	¢3-0 $2-0$
-	325.	8.3	331.0 306.5	8.8		348.	380.	${ }^{2-0}$
I	${ }^{289}$	${ }_{7} 7.5$	283.0	7.2	227.	300.	300.	1
${ }_{3}^{2}$	258.	6.5 5.8	262.5 243.7	6.7	21.	${ }^{276}$	284.	2
5	204.	5.2	${ }_{225.3}$	5.7	${ }_{20 \%}^{212 \%}$	${ }_{232}^{252 .}$	${ }_{238}^{259}{ }^{2}$	3 4 4
5	I82.	${ }_{4.1}^{4.6}$	$\xrightarrow{207.0} 1$	5.3	${ }^{204 .}$	${ }_{212}^{212}$	${ }_{220}$	5
7	144.	3.7	177.0	4.5	199.	192.	203.	7
	128.	3.3	${ }^{162.0}$	4.5	197.	${ }^{160}$.	${ }^{165}$.	8
${ }^{9}$	1114.	2.91 2.59	148.3 135.0	3.77 3.43	194.		148.	${ }_{10}$
1 I	9 I .	2.30	120.5	3.06	188.	115.	120.	11
12 13 1	8.	2.05 2.	105.5	${ }_{2}^{2.68}$	185.	104.	109.	12
13 14 14	72. 64.	I. 1.63 1.3	${ }^{\text {Or }}$ 80.5	2.32 2.03	182. 180.	8 c	${ }_{83 .} 9$.	13 14 14
15 15	${ }_{57}^{57}$	I. I. 20	72.0 62.5	1.83	178.	72.	72.	15
17	45.	1.129 1.15	62.5 54.0	1.59	175.	54.	${ }_{58} 8$.	
18	${ }_{36}{ }^{\text {a }}$	1.02	47.5	1.21	168.	48.	49.	18
19	36. 32.	0.81	44.8	1.04 0.88	164. 165. 1/	${ }_{36}^{40}$	42. 35.	19 20
$2 \mathrm{2I}$	${ }_{28}^{28.5}$.72	35.7	.85	${ }^{157}$.	32.	32.	2 I
${ }_{23}^{22}$	25.3 22.6	. 57	28.6 25.8	. 63	${ }_{153 .}^{15 .}$	28. 24.	${ }_{25}^{28 .}$	22 23
${ }_{24}^{24}$	20.1	. 515	23.0	. 58	15.	22.	22.	24
${ }_{25}^{25}$	17.9 15.9	. 45	20.4 18.1	. 52	148. 146.	20.	20.	25 26
27 28 28		. 36	17.3 17.3	. 439	143.	16.4	16.	27
28	12.6	. 32	16.2	.412	139.	14.8	${ }^{14 .}$	${ }^{28}$
29 30	IT. ${ }_{\text {IT }}$. 29	15.0 14.0	$\stackrel{.387}{.356}$	134.	13.6 12.4 1	13.	29 30
$3{ }_{3}$	88	.227	13.2	${ }^{\text {. }} 335$	120.	11.6	ro.	31
32	8.0	. 202	12.8	325	115.	10.8	8.	32
33 34 3	7.1 6.3	.180 .160	11.8 10.4		112. IIO.	$\begin{array}{r}10.0 \\ 0.0 \\ \hline 0.2\end{array}$		33 34 34
${ }_{35}$	5.6	.143	10.4 9.5	.24r	ro8.	8.4	5.	35
${ }^{36}$	${ }_{4} 5.5$.127		. 229	106.	${ }^{7.6}$	4.	36
37 38 38	4.5	.101	-8.0."	. 203	103.	6.0		${ }_{38}$
39	3.5	.080	7.5	.197	${ }_{9 \%}^{99}$	5.2 4.8		${ }^{39}$
40 48 48	3.1	.080	7.6 6.6	. 168	95.	4.4		${ }_{4}$
42			6.2	$\begin{array}{r}.157 \\ .152 \\ \hline\end{array}$	88.	4.6		${ }_{43}^{42}$
${ }_{44}^{43}$			5.8	. 147	85.	3.2		${ }_{44}$
45			5.5 5.2	.148 .132	85. 79.	2.8 2.4		45
48			5.9 4.8	. 122	777.	2.0 1.6		47
48 49			4.6 4.4	. 1117	72. 69. 60.	I. I .1		${ }_{49}^{48}$
50			4.4	.112	69.	1.0		50

*The Steel Wire Gage is the samegage which has been known by the various names: "Washhurn and Moen," "Roebling," "American Steel and Wire Co.'s." Its abbreviation should be written "Stl. W. G.," to distinguisk it from " S . W. G.," the usual abbreviation for the (British) Standard Wire Gage.

Taken from Circular No. 3I. Copper Wire Tables, U.S. Bureau of Standards which contains more complete tables.

Smithsonian Tables.

WIRE TABLES.

TABLE 316. - Introdaction. Mass and Volame Resistivity of Ooppor and Aluminnm.

The following wire tables are abridged from those prepared by the Bureau of Standards at the request and with the coöperation of the Standards Committee of the American Institute of Electrical Engineers (Circular No. 31 of the Bureau of Standards). The standard of copper resistance used is "The International Annealed Copper Standard" as adopted Sept. 5, 1913, by the International Electrotechnical Commission and takes the Resistivity at $20^{\circ} \mathrm{C}$. of an annealed copper wire one meter long weighing one gram as equal to 0.15328 ohm . This standard corresponds to a conductivity of $58 . \times 10^{-5}$ cgs. units, and a deusity of 8.89 , at $20^{\circ} \mathrm{C}$.

In the various units of mass and volume resistivity this may be stated as

$$
\begin{aligned}
& 0.15328 \text { ohm (meter, gram) at } 20^{\circ} \mathrm{C} . \\
& 875.20 \text { ohms (mile, pound) at } 20^{\circ} \mathrm{C} \text {. } \\
& \text { 1.7241 microhm-cm. at } 20^{\circ} \mathrm{C} \text {. } \\
& 0.67879 \text { microhm-inch at } 20^{\circ} \mathrm{C} \text {. } \\
& 10.371 \text { ohms (mil, foot) at } 20^{\circ} \mathrm{C} \text {. }
\end{aligned}
$$

The temperature coefficient for this particular resistivity is $\mathrm{a}_{20}=0.00393$ or $\mathrm{a}_{0}=0.00427$. However, the temperature coefficient is proportional to the conductivity, and hence the change of resistivity per degree C. is a constant, 0.000597 ohm (meter, gram). The "constant mass" temperature coefficient of any sample is

$$
\mathbf{a}_{\mathrm{t}}=\frac{0.000597+0.000005}{\text { resistivity in ohms (meter, gram) at } \mathrm{t}^{\circ} \mathrm{C}} .
$$

The density is 8.89 grams per cubic centimeter at $20^{\circ} \mathrm{C}$., which is equivalent to 0.3212 pounds per cubic inch.
The values in the tables are for annealed copper of standard resistivity. The user of the tables must apply the proper correction for copper of other resistivity. Hard-drawn copper may be taken as about 2.7 per cent higher resistivity than annealed copper.
The aluminum tables are based on a figure for the conductivity published by the U.S. Bureau of Standards, which is the result of many thousands of determinations by the Aluminum Company of America. A volume resistivity of 2.828 michrom-cm., and a density of 2.70 may be considered to be good average values for commercial hard-drawn aluminum. These values give :

Smithsonian Tables.

Tasles 317，318．
WIRE TABLES．
TABLE 317．－Temperature Ooesficients of Oopper for Different Indital Temperatares（Oentigrade） and Different Condnotivities．

$\begin{gathered} \text { Ohms } \\ \text { (meter.gram) } \\ \text { at } 20^{\circ} \mathrm{C} \text {. } \end{gathered}$	Per cent conductivity．	α_{0}	a_{15}	α_{20}	a_{25}	a_{30}	a_{50}
$\begin{array}{r} \text { O.I6I } 34 \\ . I 5966 \end{array}$	$\begin{aligned} & 95 \% \\ & 96 \% \end{aligned}$	$\begin{array}{r} 0.00403 \\ .00408 \end{array}$	$\begin{array}{r} 0.00380 \\ .00385 \end{array}$	$\begin{array}{r} 0.00373 \\ .00377 \end{array}$	0.00367 .00370	$\begin{gathered} 0.00360 \\ .00364 \end{gathered}$	$\begin{array}{r} 0.00336 \\ .00339 \end{array}$
$\begin{array}{r} .15802 \\ .15753 \end{array}$	$\begin{aligned} & \mathbf{9 7 \%} \% \\ & 97.3 \% \end{aligned}$	$\begin{aligned} & .004 \mathrm{II}_{3} .004 \mathrm{I}_{4} \end{aligned}$	$\begin{aligned} & .00389 \\ & .00390 \end{aligned}$	$\begin{aligned} & .0038181 \\ & .00382 \end{aligned}$	$\begin{array}{r} .00374 \\ .00375 \end{array}$	$\begin{aligned} & .00367 \\ & .00368 \end{aligned}$	$\begin{array}{r} \text { oos } 42 \\ . \infty 0343 \end{array}$
$\begin{array}{r} .15640 \\ .15482 \end{array}$	$\begin{aligned} & \mathbf{9 8 \%} \\ & \mathbf{9 9 \%} \end{aligned}$.00417 .00422	$\begin{aligned} & .00393 \\ & .00397 \end{aligned}$.00385 .00389	$\begin{aligned} & .00378 \\ & .003888 \end{aligned}$	$\begin{aligned} & .063 \\ & .003 \\ & 71 \end{aligned}$	$\begin{aligned} & .00345 \\ & .00348 \end{aligned}$
$\begin{array}{r} .16328 \\ .15176 \end{array}$	$\begin{aligned} & 100 \% \\ & 101 \% \end{aligned}$	$\begin{aligned} & .00427 \\ & .0043 \mathrm{I} \end{aligned}$	$\begin{aligned} & .004 \text { or } \\ & .00405 \end{aligned}$	$\begin{array}{r} .00393 \\ .00397 \end{array}$	$\begin{array}{r} . \infty 385 \\ . \infty 389 \end{array}$	$\begin{array}{r} .00378 \\ . \infty 382 \end{array}$	$\begin{aligned} & .00352 \\ & . \infty 0355 \end{aligned}$

Note．－The fundamental relation hetween resistance and temperature is the following：

$$
\mathrm{R}_{\mathrm{t}}=\mathrm{R}_{\mathrm{t}_{1}}\left(\mathrm{r}+a_{\mathrm{t}_{1}}\left[\mathrm{t}-\mathrm{t}_{1}\right]\right)
$$

where $a_{t_{1}}$ is the＂temperature coefficient，＂and t_{1} is the＂initial temperature＂or＂temperature of reference．＂
The values of a in the above table exhihit the fact that the temperature coefficient of copper is proportional to the conductivity．The table was calculated by means of the following formula，which holds for any per cent conductivity，n ， within commercial ranges，and for centigrade temperatures．（ n is considered to he expressed decimally：e．g．，if per cent conductivity $=99$ per cent，$n=0.99$ ．）

$$
a_{t_{1}}=\frac{1}{\frac{1}{n(0.00393)}+\left(t_{1}-20\right)} .
$$

TABLE 319．－Rednction of Observations to Standard Temperature．（Copper．）

Temper－ ature C．	Corrections to reduce Resistivity to $20^{\circ} \mathrm{C}$ ．				Factors to reduce Resistance to $20^{\circ} \mathrm{C}$ ．			Temper－ ature C．
	Ohm（meter gram）．	$\begin{gathered} \text { Microhm- } \\ \mathrm{cm} . \end{gathered}$	Ohm（mile， pound）．	$\begin{gathered} \text { Microhm- } \\ \text { inch. } \end{gathered}$	For 96 per cent con－ ductivity．	For 98 per cent con－ ductivity．	For 100 per cent con－ ductivity．	
0	＋0．01194	＋0．1361	＋68．20	＋0．053 58	1.0816	T． 0834	1.0853	\bigcirc
5	＋．00896	$\underline{+1021}$	＋	＋．040 18	1.0600	т．0613	1.0626	5
10	＋．005 97	＋．0681	＋ 34.10	． 02679	1.0392		1.0409	10
II	＋．005 37	＋．0612	＋ 30.69	＇． 024 II	1.0352	1．0359	1.0367	11
12	+.00478 .+ .00418	＋．0544	a $+\quad 37.28$ $+\quad 23.87$	+.02143 +.01875	1.0311 1.0271	r．0318 T． 0277	1.0325 1.0283	12 13
13	＋．004 18			＋．018 75				
14	＋．00358	＋． 0408	$\begin{array}{r}+23.87 \\ +\quad 20.46 \\ +\quad 17.05 \\ \hline\end{array}$	+.01807 $+\quad .01340$	1.0232 1.0102		1.0242 1.0200	
15 16	+.00299 $+\quad .00239$	$+\quad .0340$ $+\quad .0272$	＋$\quad 17.05$ $+\quad 13.64$ $+\quad 10.6$	+.01340 +.01072	1.0192 1.0153	1.0296 1.0156	1.0200 1.0160	15 16
				＋ 00804				
17 18	+.00179 +.80119	+.0204 +.0136	$\begin{array}{r}10.23 \\ +\quad 6.82 \\ \hline\end{array}$	$\begin{array}{r}+.00804 \\ +.00536 \\ \hline\end{array}$	1.0114 1.0076 1.0038	1．0078	1.0179 1.0079	18
19	＋．00060	＋． 0068	＋ 3.4 I	＋．002 68	1.0038	1．0039	1.0039	19
20	0	，	O	－ 00268	1.0000 0.0062	1．0000 0.0962	1.0000 0.0061	20 20
21 22	二． 000060	二．0068	－ 3.41 $-\quad 6.82$	二．．002 68	0.9962 .9925	0.9962 .9924	0.9961 .9922	21 22
23	－．001 79	－． 0204	－ 10.23	－． 00804	． 9888	． 9886	． 9883	23
24	． 00239	－． 02272	－ 13.64	－． 01072	．9851	． 98848	． 98845	24 25
25	－． 00299	－． 0340	－ 17.05	－． 01340	．9855			
26	－．．003 58	－． 0408	－ 20.46	－． 01607	． 9779	． 9774	． 9770	26
27	＝．004 18	－． 04.476	－ 23.86 $-\quad 27.28$	二．．018 02145	． 9743	． 97378	． 97329	27 28
28	－．．00478	－． 0544	－ 27.28	－． 02143	．9707		．9695	
29	－．005 37	－． 0.06 r 2	－ 30.69	－． 024 II	． 9672	． 9665	． 96658	29
30 35	－．005 97	二．．0682	－ $\begin{array}{r}34.10 \\ -\quad 51.15\end{array}$	二．．026 79	． 9636	． 96459	． 96442	30 35
35	－．．0896	－．102I	－ 51.15	－． 04018	．9464		．9443	
40	－．OII 94	－． 1361	－ 68.20	－． 05358	． 9298	． 9285	． 9271	40
45	－． 0101493	－	－ 88.25	二．066 98	． 81388	． 81896	． 89485	45 50
50	－． 01792	－． 2042	－102．30					
	－． 02000	－ .2382	－ 119.355 -136.40	$=.09376$	． 88833	． 88862	．8791	55
60 65	－． 02389	二．${ }^{\text {－} 30622}$	－ 136.40 -153.45					65
				－． 13395	．8413	． 8385	． 8358	70
70 75	$=.03285$	－． 3743	-187.55	－． 14734	．828r	． 8252	． 8223	75

Smithsonian Tables．

WIRE TABLE, STANDARD ANNEALED COPPER.
American Wire Gage (B. \& S.). Engish Onits.

GageNo.	Diameterin Mils.at $20^{\circ} \mathrm{C}$.	Cross-Section at $20^{\circ} \mathrm{C}$.		Ohms per 2000 Feet.*			
		Circular Mils.	Square Inches.	$\left(=_{32^{\circ} \mathrm{F}}^{0^{\circ} \mathrm{C}}\right.$	$\left(\begin{array}{c} 200 \\ =68^{\circ} \mathrm{F} \\ \mathrm{~F} \end{array}\right.$	$\left(={ }_{\left(122^{\circ} \mathrm{F}\right)}^{50^{\circ} \mathrm{C}}\right.$	$\left(={ }_{\left(5^{\circ} 7^{\circ} \mathrm{C}\right.}^{\mathrm{C}}\right)$
0000	460.0	211600.	0.1662	0.04516	0.04901	0.05479	0.05961
∞	409.6	167800.	. 1318	. 05695	.06180	. 06909	. 07516
∞	364.8	133100.	. 1045	.071 81	. 07793	. 08712	. 09478
\bigcirc	324.9	105500.	. 88289	. 09055	. 09827	. 1099	. 1195
1	289.3	83690.	. 06573	.1142	. 1239	.1385	. 1507
2	257.6	66370.	. 05213	. 1440	.1563	. 1747	. 1900
3	229.4	52640.	. 04134	. 1816	. 1970	. 2203	. 2396
4	204.3	41740.	. 03278	. 22889	.2485	. 2778	-3022
5	181.9	33100.	. 02600	. 2887	.3133	.3502	. 3810
6	162.0	26250.	. 02062	. 3640	. 3951	. 4416	
7	144.3 128.5	20820.	.016 35	. 45980	.4982 .6282	. 5.7569	. 60549
	114.4	13090.	. 01028	. 7299	.7921	. 8855	. 9633
10	ror. 9	10380.	. 008155	. 9203	. 9989	1.117	1.215
11	90.74	8234.	. 006467	1.161	1.260	1.408	1.532
12	80.81	6530.	. 005129	I. 463	ז. 588	1.775	1.93I
13	71.96	5178.	. 004067	I. 845	2.003	2.239	2.436
14	64.88	4107.	. 003225	2.327	2.525	2.823	3.071
15	57.07	3257.	. 002558	2.934	3.184		
16	50.82 45.26	2583. 2048.	.002028 .001609	3.700 4.666	4.016 5.064	4.489 5.660	4.884
18	40.30	1624.	. 001276	5.883	6.385	7.138	7.765
19	35.89	1288.	.001012	7.418	8.051	9.001	9.792
20	31.96	1022.	. 0008023	9.355	10.15	1 I .35	12.35
21	28.45	810.1	. 0006363	11.80	12.80	14.31	15.57
22	25.35 22.57	642.4	. 00055046	14.87 18.76	16.14	18.05	19.63
23	22.57	509.5	. 0004002	18.76	20.36	22.76	24.76
24	20.10	404.0	. 0003173	23.65	25.67	28.70	31.22
25	17.90	320.4	.000 2517	29.82	32.37	36.18	39.36
26	15.94	254.1	. 0001996	37.61	40.81	45.63	49.64
27 28	14.20 12.64	201.5	.0001583 .0001255	47.42 59.80	51.47 64.40	57.53	62.59
29	$\underline{11.26}$	126.7	. 00009953	59.80 75.40	64.90 81.83	72.55 9.48	78.93 99.52
30	${ }_{8}^{10.03}$	100.5	. 00007894	95.08	103.2	115.4	125.5
31 32 32	8.928 7.950	79.70 63.21	$\begin{array}{r}.00006260 \\ .000 \\ \hline\end{array}$	119.9 151.2	130.1	145.5	158.2
			. 00004964	151.2	164.1	183.4	199.5
33	7.080	50.13	. 00003937	190.6	206.9	231.3	251.6
34	6.305	39.75	.000 03122	240.4	260.9	291.7	317.3
35	5.615	31.52	. 00002476	303.1	329.0	367.8	400.1
36	5.000	25.00	. 00001964	382.2	414.8		
37 38	4.453 3.965	19.83 15.72	. 00001557	${ }^{482.0}$	523.1	584.8	636.2
38	3.965	15.72	. 00001235	607.8	659.6	737.4	802.2
39 40	3.53 I 3.145	12.47 9.888	$\begin{array}{r} .000009793 \\ .000007766 \end{array}$	$\begin{aligned} & 766.4 \\ & 966.5 \end{aligned}$	$\begin{aligned} & 831.8 \\ & 1049 . \end{aligned}$	$\begin{aligned} & 929.8 \\ & \mathrm{II73.} \end{aligned}$	$\begin{aligned} & \text { IOI2. } \\ & 1276 . \end{aligned}$

* Resistance at the stated temperatures of a wire whose length is sooo feet at $20^{\circ} \mathrm{C}$.

Smithsonian Tables.

WIRE TABLE, STANDARD ANNEALED COPPER (continused).
Amerioan Wire Gage (B. \& S.). English Unlte (continued).

$\begin{aligned} & \text { Gage } \\ & \text { No. } \end{aligned}$	Diameter in Mils. at $20^{\circ} \mathrm{C}$.	$\begin{aligned} & \text { Pounds } \\ & \text { per } \\ & \text { pooo Feet. } \end{aligned}$	Feet per Pound.	Feet per Ohm.*			
				$\stackrel{\circ^{\circ}}{\left.=32^{\circ} \mathrm{F}\right)}$	$\left(\stackrel{20^{\circ} \mathrm{C}}{\left.=68^{\circ} \mathrm{F}\right)}\right.$	$\left(=5^{0^{\circ}} \mathrm{C}\right.$	$\left(=150^{\circ}{ }^{\circ} \mathrm{C}\right)$
$\begin{array}{r} 0000 \\ 000 \\ 00 \end{array}$	460.0	640.5	1.561	22140.	20400.	18250.	16780.
	409.6	507.9	1.968	17560.	16180.	14470.	13300.
	364.8	402.8	2.482	13930.	12830.	II 480.	10 550.
112	324.9	319.5	3.130	118040.	Io 180.	9103.	8367.
	289.3	253.3	3.947	8758.	8070.	7219.	6636.
	257.6	200.9	4.977	6946.	6400.	5725.	5262.
345	229.4	I 59.3	6.276	5508.	5075.	4540.	4173.
	204.3	126.4	7.914	4368.	4025.	3600.	3309.
	181.9	100.2	9.980	3464.	3192.	2855.	
678	162.0	79.46	12.58	2747.	2531.	2264.	208 r.
	144.3	63.02	15.87	$2179{ }^{\circ}$	2007.	1796.	1651.
	128.5	49.98	20.01	1728.	1592.	1424.	1309.
9	114.4	39.63	25.23	1370.	1262.	1129.	1038.
10	101.9	31.43	3 I .82	1087.	1001	895.6	823.2
11	90.74	24.92	40.12	861.7	794.0	710.2	652.8
12	80.81	19.77	50.59	683.3	629.6	563.2	517.7
13	71.96	15.68	63.80	541.9	- 499.3	$44^{6.7}$	410.6
	64.08	12.43	80.44	429.8	396.0	354.2	325.6
15	57.07	9.858	101.4	340.8	314.0	280.9	258.2
	50.82	7.818	127.9	270.3 214.3	249.0 197.5	222.8 176.7	204.8 162.4
17	45.26	6.200	161.3	214.3	197.5	176.7	
18	40.30	4.917	203.4	170.0	156.6	140.1	128.8
19	40.30 35.89	3.899	256.5	134.8	124.2	111.1	102.1
	3 I .96	3.092	323.4	106.9	98.50	88.11	80.99
21	28.46	2.452	407.8	84.78	78.11	69.87	64.23
22	25.35	1.945	514.2	67.23	+ 61.95	55.41	50.94 40.39
	22.57	1.542	648.4	$53 \cdot 32$	49.13	43.94	40.39
24	20.10	1.223	817.7	42.28	38.96	34.85	32.03
25	17.90	0.9699	103 I.	33.53	30.90	27.64 21.92	25.40 20.15
	15.94	.7692	1300.	26.59	24.50	21.92	20.15
27	14.20	. 6100	1639.	21.09	19.43	17.38	15.98
29	12.64	. 4837	2067.	16.72	15.41	13.78 10.93	12.67 10.05
	11.26	.3836	2607.	13.26	12.22	10.93	10.05
			3287.	10.52	9.691	8.669	7.968
30 31	10.03 8.928	. 2413	4 4 45.	8.341	7.685	6.875	6.319
31 32	7.950	.1913	5227.	6.614	6.095	$5 \cdot 452$	5.011
33	7.080	.1517	6591.	5.245	4.833	4.323	3.974
34	7.080 6.305	.1203	8310.	4.160	3.833	3.429	3.152
	5.615	. 09542	10 480.	3.299	3.040	2.719	2.499
36			13210.	2.616	2.411	2.156	1.982
3638	5.000 4.453	.060 01	16 660.	2.075	1.912	1.710	1.572
	4.453 3.965	. 04759	21 O10.	1.645	1.516	1.356	1.247
3940					1.202	1.075	0.9886
	3.531 3.145	$\begin{array}{r} .03774 \\ .02993 \end{array}$	$33410 .$	1.035	0.9534	0.8529	. 7840

- Length at $20^{\circ} \mathrm{C}$. of a wire whose resistance is z ohm at the stated temperatures,

Smithsonian Tables.

Amerioan Wire Gage (B. \& S.). Englioh Onits (continued).

$\begin{aligned} & \text { Gage } \\ & \text { No. } \end{aligned}$	Diameter in Mils ${ }_{20}{ }^{\circ} \mathrm{C}$.	Ohms per Pound.			Pounds per Ohm.
		$\left(\stackrel{\circ}{0}_{=3^{\circ}}{ }^{\circ} .\right.$	$\left({ }^{20^{\circ} \mathrm{C}}=68^{\circ} \mathrm{F} .\right)$	$\left({ }_{\left(50^{\circ} \mathrm{C}\right.}^{122^{\circ}} \mathrm{F} .\right)$	$\left({ }^{20^{\circ} \mathrm{C}} \mathbf{= 6 8 ^ { \circ }} \mathbf{\mathrm { F }} .\right)$
0000	460.0	0.00007051	0.00007652	0.00008554	13070.
000	409.6	. 00011121	. 0001217	. 0001360	8219.
00	364.8	. 0001783	. 0001935	. 0002163	5169.
\bigcirc	324.9	. 0002835	. 0003076	. 0003433	3251.
1	289.3	. 0004507	.000 4891	. 0005468	2044.
2	257.6	.000 7166	.000 7778	.000 8695	
3	229.4	. 001140	. 001237	. 001383	808.6
4	204.3	. 001812	.001 966	. 002198	508.5
5	181.9	.002 881	.003 127	. 003495	319.8
6	162.0	.004581	. 004972	. 005558	201.1
8	144.3	. 007284	. 007905	. 008838	126.5
8	128.5	. 01158	.01257	. 01405	79.55
9	114.4	.01842	. 01999	. 02234	50.03
10	IOI. 9	. 02928	.03178	. 03553	31.47
11	90.74	. 04656	.05053	. 05649	19.79
12	80.81	. 07404	. 88035	.08983	12.45
13	71.96	. 1177	. 1278	. 1428	7.827
14	64.08	. 1872	.2032	. 2271	4.922
15	57.07	. 2976	. 3230	.3611	3.096
16	50.82	.4733	. 5136	. 5742	1. 947
17	.45.26	.7525	. 8167	.9130	1.224
18	40.30	1.197	1. 299	1.452	0.7700
19	35.89	1.903	2.065	2.308	. 4843
20	31.96	3.025	3.283	3.670	.3046
21	28.46	4.810	5.221	5.836	
22	25.35	7.649	8.301	9.280	. 1205
23	22.57	12.16	13.20	14.76	. 07576
24	20.10	19.34	20.99	23.46	. 04765
25 26	17.90	30.75	$33 \cdot 37$	37.31	. 02997
26	15.94	48.89	53.06	59.32	. 01885
27		77.74 123.6	84.37	94.32	. 11185
28	12.64 11.26	123.6 +96.6	134.2	150.0	. 007454
29	11.26	+96.6	$213 \cdot 3$	238.5	.004688
30	10.03	312.5	339.2	379.2	. 002948
31	8.928	497.0	539.3	602.9	. 001854
32	$7.95{ }^{\circ}$	790.2	857.6	958.7	.001 166
33	7.080	1256.	1364.	1524.	. 0007333
34	6.305	1998.	2168.	2424.	. 0004612
35	5.615	3177.	3448.	3854.	. 0002901
36	5.000	5051.	5482.	6128.	. 0001824
37	4.453 3.965	8032.	$\begin{array}{r}8717 . \\ \hline 3860 .\end{array}$	9744.	. 0001147
38	3.965	12770.	13860.	15490.	. 00007215
39	3.531	20310.	22040.	24640.	
40	3.145	32290.	35040.	39170.	$.00002854$

Smithsonian Tagles.

WIRE TABLE, STANDARD ANNEALED COPPER.
Amerloan Wire Gage (B. \& S.) Metric Untte.

$\begin{aligned} & \text { Gage } \\ & \text { No. } \end{aligned}$	Diameter in mm . at $20^{\circ} \mathrm{C}$.	Cross Section in $\mathrm{mm} .^{2}$ at $20^{\circ} \mathrm{C}$.	Ohms per Kilometer.*			
			$0^{\circ} \mathrm{C}$	$20^{\circ} \mathrm{C}$.	$50^{\circ} \mathrm{C}$.	$75^{\circ} \mathrm{C}$.
$\begin{array}{r} 0000 \\ 000 \\ 00 \end{array}$	11.68	107.2	0.1482	0.1608	0.1798	0.1956
	10.40	85.03	. 1868	. 2028	. 2267	. 2466
	9.266	67.43	.2356	. 2557	.2858	. 3 I 10
012	8.252	53.48	. 2971	. 3224	. 3604	. 3921
	7.348	42.41	$\cdot 3746$.4066	. 4545	. 4944
	6.544	33.63	. 4724	.5127	.5731	.6235
345	5.827	26.67	. 5956	. 6465	. 7227	.7862
	5.189	21.15	. 7511	.8152	.9113	.9914
	4.621	16.77	. 9471		1.149	1.250
678	4.115	13.30	I.I94	1.296	1.449	1.576
	3.665	10.55	1.506	1. 634	1.827	1.988
	3.264	8.366	1.899	2.061	2.304	. 506
91011	2.906	6.634	2.395	2.599	2.905	3.161
	2.588	5.261	3.020	3.277	3.663	3.985
	2.305	4.172	3.807	4.132	4.619	5.025
121314	2.053	3.309	4.801	5.211	5.825	6.337
	1.828	2.624	6.054	6.571	7.345	${ }^{7} \mathbf{7} 9.981$
	1.628	2.081	7.634	8.285	9.262	
151617	1.450	1.650	9.627	10.45	11.68	12.71
	1.291	1.309	12.14	13.17	14.73	16.02 20.20
	1.150	1.038	15.31	16.61	18.57	20.20
181919	1.024	0.8231	19.30	20.95	23.42	25.48
	0.9116	. 6527	24.34	26.42	29.53	32.12
	.8118	.5176	30.69	33.31	37.24	40.51
21		.4105	$3^{8.70}$	42.00	46.95	51.08
	. 6438	.3255	48.80	52.96	59.21 74.66	64.41 81.22
	. 5733	. 2588	61.54	66.79	74.66	
2425	. 5106	. 2047	77.60	84.21	94.14	102.4
	. 4547	. 1624	97.85	106.2	118.7	129.1
	. 4049	. 1288	123.4	133.9	149.7	162.9
272828	. 3606	. 1021	155.6	168.9	188.8	205.4
	$\cdot .3211$. 08088	196.2	212.9	238.0	258.9
	.2859	. 06422	247.4	268.5	300.1	326.5
30			311.9	338.6	$37^{8.5}$	411.7
	.2546 .2268	.05093 .04039	393.4	426.9	477.2	519.2 654.7
31 32	. 22619	.032 03	496.0	538.3	601.8	654.7
33					758.8	825.5
	.1798 .1601	.02540 .02014	788.5	856.0	956.9	104 I.
34 35	. 1601	.02014 .01597	784.5	1079.	1207.	1313.
35	. 142	. 015				
36	. 1270	. 01267	1254.	1361. 1716.	1522. 1919.	2087.
3738	. 1131	.010 007 067	1581. 1994.	2164.	2419.	2632.
	. 1007	. 007967	1994.			
3940				2729.	3051.	3319.
	.08969 .07987	7 .005 010	3171.	3441.	3847 -	4185.

Resistance at the stated temperatures of a wire whose length is r kilometer at $20^{\circ} \mathrm{C}$.

WIRE TABLE, STANDARD ANNEALED COPPER (continued).
Amertoan Wire Gage (B. \& \mathbf{S}.) Motric Units (continued).

Gage No.	Diameter in mm . at $20^{\circ} \mathrm{C}$.	Kilograms per Kilometer.	Meters per Gram.	Meters per Ohm.*			
				$0^{\circ} \mathrm{C}$.	${ }^{20}{ }^{\circ} \mathrm{C}$.	$50^{\circ} \mathrm{C}$.	$75^{\circ} \mathrm{C}$.
0000	I 1.68	953.2	0.001049	6749.	6219.	5563.	5113.
000	10.40	755.9	.001323	5352.	4932.	4412.	4055.
∞	9.266	599.5	.001 668	4245.	3911.	3499.	3216.
0	8.252	475.4	.002103	3366.	3102.	2774.	2550.
1	7.348	377.0	. 002652	2669.	2460.	2200.	2022.
2	6.544	299.0	. 003345	2117.	1951.	1745.	1604.
3	5.827	237.1	. 004217	1679.	1547.	1384.	1272.
4	5.189	188.0	.005318	1331.	1227.	1097.	1009.
5	4.621	149.1	. 006706	1056.	972.9	870.2	799.9
6	4.115	118.2	.008457	837.3	771.5	690.1	634.4
7	3.665	93.78	. 01066	664.0	611.8	$547 \cdot 3$	503.1
8	3.264	74.37	. 01345	526.6	485.2	434.0	399.0
9	2.906	58.98	. 01696	417.6	384.8	344.2	316.4
10	2.588	46.77	. 02138	331.2	305.1	273.0	250.9
11	2.305	37.09	. 02696	262.6	242.0	216.5	199.0
12	2.053	29.42	.03400	208.3	19 I .9	171.7	157.8
13	1. 828	23.33	. 04287	165.2	152.2	136.1	125.1
14	1.628	18.50	. 05406	131.0	120.7	108.0	99.24
15	1.450	14.67	.068 16	${ }^{103.9}$	95.71	85.62	78.70
16	1.291	11.63	. 08595	82.38	75.90	67.90	62.41
17	1.150	9.226	. 1084	65.33	60.20	53.85	49.50
18	1.024	7.317	.1367	51.81	47.74	42.70	39.25
19	0.9116	5.803	.1723	41.09	37.86	33.86	31.13
20	.8118	4.602	. 2173	32.58	30.02	26.86	24.69
21	.7230	3.649	.2740	25.84	23.81	21.30	19.58
22	. 643^{8}	2.894	. 3455	20.49	18.88	16.89	15.53
23	. 5733	2.295	-4357	16.25	14.97	13.39	12.31
24	. 5106	1.820		12.89	11.87	10.62	9.764
25	. 4547	I. 443	. 6928	10.22 8.105		8.424	
26	. 4049	I. 145	. 8736	8.105	7.468	6.680	6.141
27	. 3606	0.9078	1.102	6.428	$5 \cdot 922$	5.298	4.870
28	. 3211	. 7199	1.389	5.097	4.697	4.201	3.862
29	.2859	. 5709	1.752	4.042	3.725	$3 \cdot 332$	3.063
30	.2546	. 4527	2.209	3.206	2.954	2.642	2.429
31	. 2268	-3590	2.785	2.542	2.342	2.095	1.926
32	. 2019	. 2847	3.512	2.016	1.858	1.662	1.527
33	.1798	.2258	4.429	1.599	1.473	1.318	1.211
34	. 1601	.1791	5.584	1.268	1.168	1.045	0.9606
35	. 1426	.1420	7.042	1.006	0.9265	0.8288	.7618
36	.1270	.1126	8.879	0.7974	. 7347	.6572	.604I
37	.1131	. 08931	11.20	. 6324	. 5827	.5212	.4791
38	. 1007	. 07083	14.12	. 5015	.4621	.4133	-3799
39	. 08969	.05617	17.80	. 3977	. 3664	.3278	-3013
40	.07987	. 04454	22.45	. 3154	.2906	. 2600	. 2390

*Length at $20^{\circ} \mathrm{C}$. of a wire whose resistance is y ohm at the stated temperatures.
Smithsonian Tableg.

WIRE TABLE, STANDARD ANNEALED COPPER (continued).
American Wire Gage (B. \& S.). Motrio Units (continued).

Gage No.	Diameter in mm . at $20^{\circ} \mathrm{C}$.	Ohms per Kilogram.			Grams per Ohm.
		$0^{\circ} \mathrm{C}$.	$20^{\circ} \mathrm{C}$.	$50^{\circ} \mathrm{C}$.	$20^{\circ} \mathrm{C}$.
$\begin{array}{r} 0000 \\ 000 \\ 00 \end{array}$	11.68	0.0001554	0.0001687	0.0001886	5928000.
	10.40	.0002472	. 0002682	. 0002999	3728 000.
	9.266	.000 3930	. 0004265	. 0004768	2344000.
012	8.252	. 0006249	. 0006782	. 0007582	I 474000.
	7.348	.0009936	.001078	. 001206	927300.
	6.544	.001 580	.001715	.001 917	583200.
345	5.827	. 002512	. 002726	. 003048	366800.
	5.189	. 003995	. 004335	. 004846	230700.
	4.621	. 006352	. 006893	. 007706	145100.
678	4.115	.01010	. 01096	. 01225	91230.
	3.665	.01606	.01743	. 01948	57380.
	3.264	.02553	. 02771		36080.
91011	2.906	. 04060	. 04406	. 04926	22690.
	2.588	.06456	. 07007	. 07833	14270.
	2.305	. 1026	. 1114	. 1245	8976.
12	2.053	. 1632	.1771	. 1980	56.45
13	1.828	. 2595	.2817	. 3149	3550.
	1.628	.4127	. 4479	. 5007	2233.
15	1.450	. 6562	.7122	.7961	1404.
	1.291	1.043	1.132	I. 266	883.1
17	1.150	1.659	I. 801	2.013	555.4
181920	1.024	2.638	2.863	3.201	349.3
	0.9116	4.194	4.552	5.089	219.7 138.2
	.8118	6.670	7.238	8.092	138.2
21	. 7230	10.60	11.51	12.87	86.88
22	. 6438	16.86	18.30	20.46	54.64
23	. 5733	26.81	29.10	32.53	34.36
24	. 5106	42.63	46.27	51.73	21.61
25	. 4547	67.79	73.57	82.25	13.59 8.548
	-4049	107.8	117.0	130.8	8.548
272828	.3606	171.4	186.0	207.9	5.376
	. 3211	272.5	295.8	330.6	3.381
29	.2859	433.3	470.3	525.7	2.126
30	. 2546	689.0	747.8	836.0	1.337 0.8310
3132	. 2268	1096.	1189.	1329.	0.8410 .5289
	. 2019	1742.	1891.	2114.	. 5289
	. 1798	2770.	3006.	3361.	.3326
34	.1601	4404.	4780.	5344.	. 2092
35	. 1426	7003.	7601.	8497.	. 316
36		11140.	12090.	13510.	.08274
3738	.1270	17710.	19220.	21480.	. 05204
	.1007	28I50.	30560.	34160.	.032 73
39	$\begin{aligned} & .08969 \\ & .07987 \end{aligned}$	$\begin{aligned} & 44770 . \\ & 71180 . \end{aligned}$	48590. 77260.	54310. 86360.	$\begin{aligned} & .02058 \\ & .01294 \end{aligned}$

Smithsonian Tables.

Hard-Drawn Aluminum Wire at 20° C. (or, 68° F.).
American Wire Gage (B. \& S.). English Unite.

$\begin{aligned} & \text { Gage } \\ & \text { Nn. } \end{aligned}$	Diameter in Mils.	Crass Section.		$\begin{gathered} \text { Ohms } \\ \text { per } \\ 1000 \text { Feet. } \end{gathered}$	$\begin{gathered} \text { Pounds } \\ \text { per } \\ \text { yooo Feet. } \end{gathered}$	Pounds per Ohm.	$\begin{gathered} \text { Feel } \\ \text { per Ohm. } \end{gathered}$
		Circular Mils.	Square Inches.				
0000	460.	212000.	0.166	0.0804	195.	2420.	12400.
000	410.	168 000.	. 132	. IOI	154.	1520.	9860.
-	365.	133000.	. 105	. 128	122.	957.	7820.
\bigcirc	325.	106000.	. 0829	.161	97.0	602.	6200.
1	289.	83700.	. 0657	. 203	76.9		4920.
2	258.	66400.	. 0521			$238 .$	
3	229.	52600.	. 0413	. 323	48.4	150.	3090.
4	204.	41700.	. 0328	. 408	38.4	94.2	2450.
5	182.	33100.	. 0260	. 514	30.4	59.2	1950.
6	162.	26300.	. 0206	. 648	24.1	37.2	1540.
7	144.	20800.	. 0164	.817	19.1	23.4	1220.
8	128.	16500.	.0130	1.03	15.2	14.7	970.
9	114.	13100.	.0103	1.30	12.0	9.26	
10	102.	10400.	. 00815	1.64	9.55	5.83	610.
1 I	91.	8230.	. 00647	2.07	$7 \cdot 57$	3.66	484.
12	81.	6530.	. 00513	2.61	6.00	2.30	3^{88}.
13	72.	5180.	. 00407	3.29	4.76	1.45	304
14	64.	4110.	. 00323	4.14	3.78	0.911	241.
15	57.	3260.	. 00256	5.22	2.99	. 573	191.
16	51.	2580.	. 00203	6. 59	2.37	. 360	152.
17	45.	2050.	.001 6I	8.31	1.88	. 227	120.
18	40.	1620.	. 0128	10.5	1.49	. 143	95.5
19	36.	1290.	. 00101	13.2	1.18	. 0897	75.7
20	32.	1020.	.000 802	16.7	0.939	. 0564	60.0
21	28.5	810.	. 000636	21.0	. 745	. 0355	47.6
22	25.3	642.	. 0005505	26.5	-591	. 0223	37.8
23	22.6	509.	. 000400	33.4	. 468	. 0140	29.9
24	20.1	404.	. 000317	42.1	-371	. 00882	
25	17.9	320.	. 000252	53.1	. 295	. 00555	18.8
26	15.9	254.	. 000200	67.0	. 234	.003 49	14.9
27	14.2 12.6	202. 160.	.000158 .000126	84.4 106.	.185	. 00219	11.8
28	12.6	160. 127.	. 000126	106.	. 147	.001 38	9.39
29	11.3	127.	. 0000995	134.	. 17	. 000868	7.45
30	10.0	101.	. 0000789	169.	. 0924	. 000546	
31	8.9		. 0000626	213.	. 0733	. 000343	4.68
32	8.0	63.2	. 0000496	269.	.0581	. 000216	3.72
33	7.1	50.1	. 0000394	339.	.0461	. 000136	2.95
34 35	6.3	39.8	.0000312	428.	. 0365	. 0000054	2.34
35	5.6	31.5	. 0000248	540.	. 0290	.0000537	1.85
36	5.0	25.0	. 000 0196	681.	. 0230	.0000338	1.47
37 38	4.5	19.8	. 000 OI 56	858.	. 0182	. 0000212	1.17
3^{8}	4.0	15.7	. 0000123	1080.	. 0145	.000013 4	0.924
39	3.5	12.5	. 00000979	1360.	. 0115	. 00000840	
40	3.1	9.9	.00000777	1720.	.0091	.00000528	. 581

Smithsonian Tagles.

Hard-Drawn Aluminum Wire at $20^{\circ} 0$.
American Wire Gage (B. \& S.) Motrio Units.

$\begin{gathered} \text { Gage } \\ \text { No. } \end{gathered}$	Diameter in mm .	Cross Section in mm . ${ }^{\text {² }}$	Ohms per Kilometer.	Kilograms per Kilometer.	Grams per Ohm.	Ohms per Meter.
0000	11.7	107.	0.264	289.	1100000.	3790.
000	10.4	85.0	.333	230.	690000.	3010.
∞	9.3	67.4	.419	182.	434000.	2380.
\bigcirc	8.3	53.5	. 529	144.	273000.	1890.
1	7.3	42.4	. 667	114.	172 000.	1500.
2	6.5	33.6	. 841	90.8		1190.
3	5.8	26.7	1.06	72.0	67900.	943.
4	5.2	21.2	1.34	57.1	42700.	748.
5	4.6	16.8	1.69	$45 \cdot 3$	26900.	593.
6	4.1	13.3	2.13	35.9	16900.	470.
7 8	3.7 3.3	10.5 8.37	2.68	28.5 22.6	10600.	373.
	3.3	8.37	3.38			296.
9	2.91	6.63	4.26	17.9	4200.	235.
10	2.59	5.26	$5 \cdot 38$	14.2	2640.	186. 148.
11	2.30	4.17	6.78	11.3	1660.	148.
12	2.05	3.31	8.55	8.93	1050.	
13	1.83	2.62	10.8	7.08	657.	92.8 .
14	1.63	2.08	13.6	5.62	413.	73.6
15	1.45	1.65	17.1	4.46	260.	58.4
16	1.29	1.31	21.6	3.53	164.	46.3
17	1.15	1.04	27.3	2.80	103.	36.7
18	1.02	0.823	34.4	2.22	64.7	29.1
19	0.91	. 653	$43 \cdot 3$	1.76	40.7	23.1
20	. 81	.518	54.6	1.40	-25.6	18.3
21	. 72	.41	68.9	1.11	16.1	14.5
22	. 64	.326	86.9	0.879	10.1 6.36	11.5 9.13
23	. 57	.258	1 Io.	. 697	6.36	9.13
24	.51	.205	138.	. 553	4.00	7.24
25	. 45	. 162	174.	. 438	2.52 1.58	5.74 4.55
26	. 40	. 129	22.	-348	1.58	4.55
27	.36	. 102	$277 \cdot$. 276	0.995	3.6 I 2
28	.32	. 0810	349.	. 219	. 626	2.86 2.27
29	. 29	. 0642	440.	. 173	-394	2.27
30	. 25	. 0509	555.	. 138	. 248	1.80
31	. 227	. 0404	700.	. 109	.156	1.43
32	. 202	.0320	883.	. 0865	. 0979	1.13
	. 180	. 0254	1110.	. 0686	.0616	0.899
33 34	. 160	. 0201	1400.	. 0544	.0387	.712
35	. 143	. 0160	1770.	.043I	. 0244	. 565
					. 0153	. 448
36 37	.127 .113	. 0127	2820.	. 0271	. 00963	-355
38	.101	.0080	3550.	. 0215	. 00606	.2ヶ2
39 40	. 090	$.0063$	$\begin{aligned} & 4480 . \\ & 5640 . \end{aligned}$.0171 .0135	.0038 r .00240	.223 .177

Smithsonian Tables.

TABLE 323. - Steady Potential Differenoe in Voits required to prodnee a Spariz in Air with Ball Electrodes.

Spark length. cm.	$R=0$ Points.	$\begin{gathered} R=0.25 \\ \mathrm{~cm} . \end{gathered}$	$R=0.5$ cm.	$\boldsymbol{R}=1 \mathrm{~cm}$.	$R=2 \mathrm{~cm}$.	$R=3 \mathrm{~cm}$.	$\begin{aligned} & R=\infty . \\ & \text { Plates. } \end{aligned}$
0.02	-	-	1560	1530			
0.04	-	-	2460	2430	2340		
0.06	-	-	3300	3240	3060		
0.08	-	-	4050	3990	3810		
0.1	3720	5010	4740	4560	4560	4500	4350
0.2	4680	8610	8490	8490	8370	7770	7590
0.3	5310	11140	II460	11340	11190	10560	10650
0.4	5970	14040	14310	14340	14250	13140	13560
0.5	6300	15990	16950	17220	16650	16470	16320
0.6	6840	17130	19740	20070	20070	19380	19110
0.8	8070	18960	23790	24780	25830	26220	24960
1.0	8670	20670	26190	27810	29850	32760	30840
1.5	9960	22770	29970	37260			
2.0	10140	$2457{ }^{\circ}$	33060	45480			
3.0	I 1250	28380					
4.0	12210	29580					
5.0	13050						

Based on the results of Baille, Bichat-Blondot, Freyburg, Liebig, Macfarlane, Orgler, Paschen, Quincke, de la Rue, Wolff. For spark lengths from 1 to 200 wave-lengths of sodium light, see Earbart, Phys. Rev. 15, p. 163; Hobbs, Phil. Mag. 10, p. 607, 1905.

TABLE 324. - Alternating Ourrent Potentials required to prodnce a Spark in Air with various Ball Electrodes.
The potentials given are the maxima of the alternating waves used. Frequency, 33 cycles per second.

Spark length. cm .	$R=1 \mathrm{~cm}$.	$\boldsymbol{R}=1.92$	$R=5$	$R=7.5$	$R=10$	$R=15$
0.08	3770					
. 10	4400	4380	4330	4290	4245	4230
. 15	5990	5940	5830	5790	5800	5780
. 20	7510	7440	7340	7250	7320	7330
.25	9045	8970	8850	8710	8760	8760
0.30	10480	10400	10270	10130	10180	10150
- 35	11980	11890	11670	II 570	11610	11590
. 40	13360	13300	13100	12930	12980	12970
. 45	14770	14700	14400	14290	14330	14320
. 50	16140	16070	15890	15640	15690	15690
0.6	18700	18730	18550	18300	18350	18400
.7	21350	21380	21140	20980	20990	21000
. 8	23820	24070	23740	23490	23540	23550
0.9	26190	26640	26400	26130	26110	26090
1.0	28380	29170	28950	28770	28680	28610
1.2	32400	34100	33790	33660		
1.4	35850	38850	38850	38580	38620	38580
1.6 1.8	38750	43400	43570	43250	43520	
1.8 2.0	40900	-	48300	47900		
2.0	42950	-	-	52400		

Based upon the results of Kawalski, Phil. Mag. 18, p. 699, 1909.

Smithsonian Tables.

Tables 325; 326.
DIELECTRIC STRENGTH.
TABLE 325. - Pctentlal Neoespary to prodnce a Spark in Alr between more widely Separated Electrodee.

		Steady potentials. -						Steady potentials.	
		Ball electrodes.		Cup electrodes.				Ball electrodes.	
		$\mathrm{R}=1 \mathrm{~cm}$.	$\mathrm{R}=2.5 \mathrm{~cm}$.	Projectioo.				$\mathrm{R}=1 \mathrm{~cm}$.	$\mathrm{R}=2.5 \mathrm{~cm}$.
				4.5 mm .	1.5 mm .				
0.3	-	-	-	-	11280	6.0	61000		86830
0.5	-	17610	17620	-	17420	7.0	-	52000	-
0.7	2000	02	23050	-	22950	8.0	67000	52400	90200
1.0	12000	30240	31390	31400	31260	10.0	73000	74300	91930
1.2	-	33800	36810	3	36700	12.0	82600	-	93300
1.5	-	37930	44310	-	44510	14.0	92000	-	94400
2.0	29200	42320	56000	56500	56530	15.0	-	-	94700
2.5	-	45000	65180	-	68720 815	16.0	101000	-	101000
3.0	40000	46710	71200	80400	81140	20.0	119000		
3.5	-		75300		92400	25.0	140600		
4.0	48500	49100	78600	101700	103800	30.0	165700		
		-	81540	-	114600	35.0	190900		
5.0	56500	50310	83800	-	126500				
5.5	-	-	-	-	135700				

This table for longer spark lengths contains the results of Voege, Ann. der Phys. 14, 1904, using alternating current and "dull point" electrodes, and the results with steady potential found in the recent very careful work of C. Mür ler, Ana. d. Pbys. 28, p. 585, 1909.

> The specially constructed electrodes for the columns headed "cup electrodes, "had the form of a projecting knob 3 cm . in diameter and having a heighto 4.5 mm . ard I .5 mm. respectively, attached to the plane face of the electrodes. These electrades give a very satisfactory linear relation between the spark lengths and the voltage throughout the range studied.
rable 326. - Effeot of the Preszure of the Gas on the Dielectric Strength.
Voltages are given for different spark lengths l.

Pressure. $\mathrm{cm} . \mathrm{Hg}$.	$l=0.04$	$l=0.06$	$l=0.08$	$l=0.10$	$l=0.20$	$l=030$	$l=0.40$	$l=0.50$
2	-	-	-	-	744	939	1110	1266
4	-	483	567	648	1015	1350	1645	1915
6	-	582	690	795	1290	1740	2140	2505
10	-	771	933	1090	1840	2450	3015	3580
15	-	1060	1280	1490	2460	3300	4080	4850
25	1110	1420	1725	2040	3500	4800	6000	7120
35	1375	1820	2220	2615	4505	6270	7870	9340
45	1640	2150	2660	3120	5475	7650	9620	11420
55	1820	2420	3025	3610	6375	8950	11290	13455
65	2040	2720	3400	4060	7245	10210	12950	15470
75	2255	3035	3805	4565	8200	11570	14650	17450

This table is based upon the results of Orgler, $\mathbf{\text { z }} \mathrm{g9}$. See this paper for work on other gases (or Laodolt-BörnsteinMeyerhoffer).
For long spark lengths in various gases see Voege, Electrotechn. Z. 28, rgo7. For dielectric strength of air and CO_{2} in cylindrical air condensers, see Wien, Ano. d. Phys. 29, p. 679, 1909.

Smithsonian Tables.

DIELECTRIC STRENGTH.

TABLE 327. - Dlelectric Strength of Materials.

Potential necessary for puncture expressed in kilovolts per centimeter thickness of the dielectric.

TABLE 328. - Potentiale In Volts to Prodnce a Spariz in Kerosene.

Spark length. mm.	Electrodes Balls of Diam. d.			
	0.5 cm .	1 cm .	2 cm.	3 cm .
0.1	3800	3400	2750	2200
. 2	7500	6450	4800	3500
$\cdot 3$	10250	9450	7450	4600
-4	11750	10750	9100	5600
. 5	13050	12400	11000	6900
. 6	14000	13550	12250	8250
.8 1.	15500 16750	15100	13850	10450
1.0	16750	16400	15250	12350

Determinations of the dielectric strength of the same substance by different observers do not agree well. For a discussion of the sources of error see Moscicki, Electrotechn. Z. 25, 1904.
For more detailed information on the dependence of the sparking distance in oils as a function of the nature of the electrodes, see Edmondson, Phys. Review 6, p. 65, 1898.

Smithsonian Tables.

TABLE 329. - Eleotrioal Reslatance of Stralght Wires with Alternating Ourrents of Ditererent Frequencies.
This table gives the ratio of the resistance of straight copper wires with alternating currents of different frequencies to the value of the resistance with direct currents.

Diameter of wire in millimeters.	Frequency $n=$					
	60	100	1000	10000	100000	1000000
0.05	-	-	-	-	-	*I.OOI
0.1	-	-	-	-	* I .001	1.008
0.25	-	-	-	-	1.003	1.247
0.5	-	-	-	*i. 001	1.047	2.240
1.0	-	-	-	1.008	1.503	4.19
2	-	-	1.001	1.120	2.756	
3	-	-	1.006	1.437	4.00	
4	-	-	1.021	1.842		
5	-	*I.001	1.047	2.240		
$7 \cdot 5$	1.001	1.002	1.210	3.22		
10	1.003	1.008	1.503	4.19		
15	1.016	1.038	2.136			
20	1.044	I. 120	2.756			
25	1.105	I. 247	$3 \cdot 38$			
40	1.474	1.842				
100	3.31	4.19				

Values between 1.000 and 1.001 are indicated by $*_{\text {r. }}^{1}$.Oor.
The change of resistance of wires other than copper (iron wires excepted) may be calculated from the above table, making use of the fact that the change of resistance is a function of the argument $p=2 \pi r \sqrt{2 n \lambda}$ where $r=$ radius of cross-section, $n=$ frequency, $\lambda=$ conductivity.

If a given wire be wound into a solenoid, its resistance, at a given frequency, will be greater than the values in the table, which apply to straight wires only. The resistance in this case is a complicated function of the pitch and radius of the winding, the frequency, and the diameter of the wire, and is found by experiment to be sometimes as much as twice the value for a straight wire.

TABLE 330. - Eleotrical Rosistance for High Frsquencieo.
For which the high frequency resistance will be less than I per cent greater than direct current resistance.

Wave-length.	Constantan or Advance Wire.		Manganin Diameter.	Platinum Diameter.	Copper Diameter.
	Diameter.	Maximum Current.			
m.	$m m$.	$a m p$.	$m m$.	$m m$.	$m m$.
100	0.30	3.5	0.29	0.13	0.006
200	0.46	4.5	0.40	0.29	0.045
300	0.57	5.5	0.50	0.27	0.09
400	0.66	7.0	0.60	0.30	0.10
600	0.83	8.0	0.75	0.37	0.15
800	0.98	10.0	0.88	0.42	0.20
1000	1.10	11.5	0.99	0.50	0.21
1200	1.20	12.5	1.10	0.57	0.22
1500	1.30	14.0	1.21	0.63	0.26
2000	1.52	17.0	1.38	0.73	0.30
3000	1.80	24.0	1.62	0.80	0.33

Advance wire is practically identical electrically with constantan, while for high resistance German silver the values are nearly the same as for manganin. The column of the table under maximum current gives the approximate current which may be carried by the various sizes without undue heating. The current capacity of the manganin is very nearly the same.

From Austin, Jour. Wash. Acad. of Sci. 2, p. 190, 1911.

Table 331.
WIRELESS TELEGRAPHY.
Wave-Length in Metera, Freqnency in periods per eroond, and Oacillation Oonstant LC in Microhenties and Miorofarsds.

Meters.	n	LC	Meters.	n	LC	Meters.	n	L C
100	3,000,000	0.00282	600	500,000	0.101	1100	272,700	0.341
110	2,727,000	0.00341	610	491,800	0.105	1110	270,300	0.347
120	2,500,000	0.00405	620	485,500	0.108	1120	267,900	0.353
130	2,308,000	0.00476	630	476,200	0.111	1130	265,500	0.359
140	2,143,000	0.00552	640	468,700	0.115	II 40	263,100	0.366
150	2,000,000	0.00633	650	461,500	0.119	1150	260,900	0.372
160	1,875,000	0.0072 I	660	454,500	0.123	1160	258,600	0.379
170	1,765,000	0.00813	670	447,800	0.126	1170	256,400	0.385
180	1,667,000	0.00912	680	441,200	0.130	1180	254,200	0.392
190	1,579,000	0.01016	690	434,800	0.134	1190	252,100	0.399
200	1,500,000	0.0113	700	428,600	0.158	1200	250,000	0.405
21	1,429,000	0.0124	710	422,500	0.142	1210	247,900	0.412
220	1,364,000	0.0136	720	416,700	0.146	1220	245,900	0.419
230	1,304,000	0.0149	730	411,000	0.150	1230	243,900	0.426
240	1,250,000	0.0162	740	405,400	0.154	1240	241,900	0.433
250	1,200,000	0.0176	750	400,000	0.158	1250	240,000	0.440
260	1,1 54,000	0.0190	760	394,700	0.163	1260	238,100	0.447
270	1,1 I I,000	0.0205	770	389,600	0.167	1270	236,200	0.454
280	1,071,000	0.0221	780	384,600	0.171	1280	234,400	0.46 I
290	1,034,000	0.0237	790	379,800	0.176	1290	232,600	0.468
300	1,000,000	0.0253	800	375,000	0.180	1300	230,800	0.476
310	967,700	0.0270	810	370,400	0.185	1310	229,000	0.483
320	937,500	0.0288	820	365,900	0.189	1320	227,300	0.490
330	909,100	0.0307	830	361,400	0.194	1330	225,600	0.498
340	882,400	0.0326	840	357,100	0.199	1340	223,900	0.505
350	859,100	0.0345	850	352,900	0.203	1350	222,200	0.513
360	833,300	0.0365	860	348,800	0.208	1360	220,600	0.52 I
370	810,800	0.0385	870	344,800	0.213	1370	218,900	0.529
380	789,500	0.0406	880	340,900	0.218	1380	217,400	0.536
390	769,200	0.0428	890	337,100	0.223	1390	215,800	0.544
400	750,000	0.0450	900	333,300	0.228	1400	214,300	0. 552
410	731,700	0.0473	910	329,700	0.233	1410	212,800	0.559
420	714,300	0.0496	920	326,100	0.238	1420	211,300	0.567
430	697,700	0.0520	930	322,600	0.243	1430	209,800	0.576
440	681,800	0.0545	940	319,100	0.249	1440	208,300	0. 584
	666,700	0.0570	950	315,900	0.254	1450	206,900	0.592
460	652,200	0.0596	960	312,500	0.259	1460	205,500	0.600
470	638,300	0.0622	970	309,300	0.265	1470	204,100	0.608
480	625,000	0.0649	980	306,100	0.270	1480	202,700	0.617
490	612,200	0.0676	990	303,000	0.276	1490	201,300	0.625
500	600,000	0.0704	1000	300,000	0.281	1500	200,000	0.633
510	588,200	0.0732	1010	297,000	0.287	1510	198,700	0.642
520	576,900	0.0761	1020	294,100	0.293	1520	197,400	0.650
530	566,000	0.0791	1030	291,300	0.299	1530	196,100	
540	555,600	0.0821	1040	288,400	0.305	1540	194,800	0.668
550 560	545,500 535,700	0.0851 0.0883	1050	285,700	0.310	1550	193,600	0.676
560	535,700	0.0883	1060	283,600	0.316	1560	192,300	0.685
570	526,300	0.0915	1070	280,400	0.322	1570	191,100	0.694
580	517,200	0.0947	1080	277,800	0.328	1580	189,900	0.703
590	508,500	0.0981	1090	275,200	0.335	1590	188,700	0.712

[^53] basis of 300,000 kilometers per second for the velocity of propagation of electromagnetic waves.

[^54]WIRELESS TELEGRAPHY.
Wave-Length, Frequenoy and Osoillation Constant.

Meters.	n	L C	Meters.	n	L C	Meters.	n	L C
1600	187,500	0.721	2000	150,000	1.13	6000	50,000	10.1
1610	186,300	0.730	2100	142,900	1.24	6100	49,180	10.5
1620	185,200	0.739	2200	136,400	1.36	6200	48,550	10.8
1630	184,100	0.748	2300	130,400	1.49	6300	47,620	1 I .1
1640	182,900	0.757	2400	125,000	1.62	6400	46,870	11.5
1650	181,800	0.766	2500	120,000	1.76	6500	46,150	11.9
1660	180,700	0.776	2600	115,400	1.90	6600	45,450	12.3
1670	179,600	0.785	2700	111,100	2.05	6700	44,780	12.6
1680	178,600	0.794	2800	107,100	2.21	6800	44,120	13.0
1690	177,500	0.804°	2900	103,400	2.37	6900	43.480	13.4
1700	176,500	0.813	3000	100,000	2.53	7000	42,860	13.8
1710	175,400	0.823	3100	96,770	2.70	7100	42,250	14.2
1720	174,400	0.833	3200	93,750	2.88	7200	41,670	14.6
1730	173,400	0.842	3300	90,910	3.07	7300	41,100	15.0
1740	172,400	0.852	3400	88,240	3.26	7400	40,540	15.4
1750	171,400	0.862	3500	85,910	3.45	7500	40,000	15.8
1760	170,500	0.872	3600	83,330	3.65	7600	39,470	16.3
1770	169,400	0.882	3700	81,080	3.85 4.06	7700 7800	38,960 38,460	16.7 17.1
1780	168,500	0.892	3800	78,950	4.06 4.28	7800 7900	38,460 37,980	17.1 17.6
1790	167,600	0.902	3900	76,920	4.28	7900	37,980	17.6
1800	166,700	0.912	4000	75,000	4.50	8000	37,500	18.0
1810	165,700	0.923	4100	73,170	4.73	8100	37,040	18.5
1820	164,800	0.933	4200	71,430	4.96	8200	36,590	18.9
1830	163,900	0.943	4300	69,770	5.20	8300	36,140	19.4
18.40	163,000	0.953	4400	68,180	$5 \cdot 45$	8400	35,710	19.9
1850	162,200	0.963	4500	66,670	5.70	8500	35,290	20.3 20.8
1860	161,300	0.974	4600	65,220	5.96	8600 8700	34,880 34,480	20.8
1870	160,400	0.985	4700 4800	63,830 62,500	6.22 6.49	8800	34,480	21.8
1880 1890	159,600 158,700	0.995 1.006	4800 4900	62,500 61,220	6.49 6.76	8900	33,710	22.3
	157,900	1.016	5000	60,000	7.04	9000	33,330	22.8
1910	157,100	1.026	5100	58,820	7.32	9100	32,970	23.3
1920	156,300	1.037	5200	57,690	7.61	9200	32,610	23.8
1930	155,400	1.048	5300	56,600	7.91	9300	32,260	24.3
1940	154,600	1.059	5400	55,560	8.21	9400	31,910	24.9
1950	153,800	1.070	5500	54,550 53,570	8.51 8.83	9500 9600	31,250	25.9
1960	153,100 152,300	1.081	5700	53,630	9.15	9700	30,930	26.5
1970 1980	152,300 151,500	1.092 1.103	5700 5800	51,720	9.47	9800	30,610	27.0
1980	151,500 150,800	1.103 1.114	5900	50,850	9.81	9900 10000	30,310 30,000	27.6 28.1

GMITHSONIAN TABLES.

WIRELESS TELEGRAPHY.

Radiation Resistancee for Various Wave-Lengths and Antenna Heights.

The radiation theory of Hertz shows that the radiated energy of an oscillator may be represented by $E=$ constant $\left(h^{2} / \lambda^{2}\right) I^{2}$, where h is the length of the oscillator, λ, the wave-length and I the current at its center. For a flat-top antenna $E=1600\left(h^{2} / \lambda^{2}\right) I^{2}$ watts; $1600 h^{2} / \lambda^{2}$ is called the radiation resistance.
($\mathrm{h}=$ height to center of capacity of conducting system.)

Wave- ${ }^{\text {a }}$	40 Ft .	60 Ft .	80 Ft .	100 Ft .	120 Ft .	160 Ft .	200 Ft .	300 Ft .	450 Ft .	600 Ft .	s200 Ft.
m	ohm	ohm	ohm	ohm	ohm	ohm	ohm	ohm	ohm	ohm	ohm
200	6.0	13.4	24.0	37.0	54.0	95.0					
300	2.7	6.0	10.6	16.5	23.8	42.4					
400	1.5	3.4	6.0	$9 \cdot 3$	13.4	23.8					
600	0.66	1.5	2.7	4.1	6.0	10.6	16.4	37.4	84.0	149.0	
800	0.37	0.84	1.5	2.3	3.4	6.0	9.2	21.0	47.0	84.0	
1000	0.24	0.54	0.95	1.5	2.1	3.8	6.0	13.5	30.0	54.0	215.0
1200	0.17	0.37	0.66	1.03	1.5	2.6	4.1	9.3	21.0	37.0	149.0
1500	0.11	0.24	0.42	0.66	0.95	1.7	2.6	6.0	13.4	24.0	95.0
2000		0.13	0.24	0.37	0.54	0.95	1.5	3.4	7.5	13.4	54.0
2500			0.15	0.24	0.34	0.65	0.95	2.2	4.8	8.6	34.0
3000			0.11	0.17	0.24	0.42	0.66	1.5	3.4	6.0	24.0
4000			0.06	0.09	0.13	0.24	0.37	0.84	1.9	$3 \cdot 4$	13.4
5000							0.24	0.53	1.20	2.2	8.6
6000							0.16	0.37	0.84	1.5	6.0
7000							0.12	0.27	0.61	1.1	4.4

Austin, Jour. Wash. Acad. of Sci. 1, p. 190, 191 r.

Smithsonian Tables.

INTERNATIONAL ATOMIC WEICHTS. ELECTROCHEMICAL EQUIVALENTS.

The International Atomic Weights are quoted from the report of the International Committee on Atomic Weights (Journal American Chemical Society, 35, p. 1807, 1913).
The Electrochemical equivalent of Silver is 0.0011180 gram. sec. ${ }^{-1}$ amp. ${ }^{-1}$. (See definition of International Ampere, p. xxxiii.) The electrochemical equivalent for any other element is

$$
\frac{\text { atomic weight element }}{\text { atomic weight silver }} \times \frac{.0011180}{\text { valency }} \mathrm{gn} . \mathrm{sec}^{-1} \text { amp. } .^{-1} .
$$

The equivalent for iodine has been recently (1913) determined at the Bureau of Standards as r.31 50. The valencies given are only those commonly shown by the elements.

Substance.	Symbol.	$\begin{gathered} \text { Relative } \\ \text { atomic wt. } \\ \text { Oxygen }=x 6 . \end{gathered}$	Valency.	Substance.	Symbol.	$\begin{gathered} \text { Relative } \\ \text { atormic wt. } \\ \text { Oxygen }=\mathrm{xb} . \end{gathered}$	Valency.
Aluminum	Al	27.1	3.	Mercury	Hg	200.6	I, 2.
Antimony	Sb	120.2	3, 5.	Molybdenum	Mo	96.0	4,6.
Argon	A	39.88	0.	Neodymium	Nd	144.3	3.
Arsenic	As	74.96	3, 5.	Neon	Ne	20.2	
Barium	Ba	137.37	2.	Nickel	Ni	58.68	2,3.
Bismuth	Bi	208.0	3, 5.	Niton(Ra ${ }^{\text {Lationan- }}$	Nt.	222.4	
Boron	B	11.0	3.	Nitrogen	N	14.01	3, 5.
Bromine	Br	79.92	1.	Osmium	Os	190.9	6, 8.
Cadmium	Cd	112.40	2.	Oxygen	O	16.00	
Cæsium	Cs	132.81	I.	Palladium	Pd	106.7	2,4.
Calcium	Ca	40.07	2.	Phosphorus	P	31.04	3, 5.
Carbon	C	12.00	4.	Platinum	${ }_{\text {Pt }}$	195.2	2, 4.
Cerium	Ce	140.25	3, 4.	Potassium	K	39.10	
Chlorine	Cl	35.46	1.	Praseodymium	Pr	140.6	3.
Chromium	Cr	52.0	2, 3, 6.	Radium	Ra	226.4	2.
Cobalt	Co	58.97	2,3.	Rhodium	Rh	102.9	3.
Columbium	Cb	93.5	5.	Rubidium	Rb^{R}	85.45	
Copper	Cu	63.57	1, 2.	Ruthenium	Ru	101.7	6, 8.
Dysprosium	Dy	162.5	3.	Samarium	Sa	150.4	3.
Erbium	Er	167.7	3.	Scandium	Sc	44.1	3.
Europium	Eu	152.0	3.	Selenium	$\stackrel{\mathrm{Se}}{\text { Si }}$	79.2	2, 4, 6.
Fluorine	F	19.0	1.	Silicon	${ }_{\text {Sig }}$	28.3 10788	
Gadolinium	Gd	157.3	3.	Silver	Ag	107.88 23.00	
$\underset{\text { Germanium }}{\text { Gallium }}$	$\mathrm{Ga}_{\mathrm{Ge}}$	69.9 72.5	3.	Sodium	$\stackrel{\mathrm{Sa}}{\mathrm{Sr}}$	23.00 87.63	2.
Glucinum	Gl	9.1	2.	Sulphur	S	32.07	2, 4, 6 .
Gold	Au	197.2	1, 3.	Tantalum	Ta	181.5	
Helium	He	3.99	o.	Tellurium	Te	127.5	2, 4, 6 .
Holmium	Ho	163.5	3.	Terbium		159.2 204.0 204	
Hydrogen	H	1.008	1.	Thallium	Th	204.0 232.4	I, 3.
Indium	In	114.8	3.				
Iodine	Ir	126.92	1. 4.	Thulium	$\mathrm{Tm}_{\mathrm{Sn}}$	168.5 119.0	2, 4.
Iridium Iron	$\stackrel{\mathrm{Fr}}{\mathrm{Fe}}$	193.1 55.84	2, 3.	Titanium	$\mathrm{Ti}^{\text {T }}$	48.1	
Krypton	$\mathbf{K r}$	82.92	o.	Tungsten Uranium	W	$\begin{aligned} & 184.0 \\ & 238.5 \end{aligned}$	6. 6.
Lanthanum	$\mathrm{La}_{\mathrm{Pb}}$	139.0	3.		V		
Lead	$\stackrel{\mathrm{Pb}}{\mathrm{Li}}$	207.10 6.94	2, I. d	Xenon	Xe	130.2	0.
Lithium Lutecium	${ }_{\mathrm{Lu}}^{\mathrm{Li}}$	${ }_{174.9}{ }^{6.9}$	I.	Yetterbium	$\stackrel{\mathrm{Y}}{\mathrm{Y} b}$	173.0	3.
Magnesium	Mg	24.32	2.	Yttrium	Y_{t}	89.0	3.
Manganese	Mn	54.93	2, 3, 7 .	Zinc Zirconium	$\begin{aligned} & \mathrm{Zn} \\ & \mathrm{Zr} \end{aligned}$	$\begin{aligned} & 65 \cdot 37 \\ & 90.6 \end{aligned}$	2.

CONDUCTIVITY OF ELECTROLYTIC SOLUTIONS.

This subject has occupied the attention of a considerable number of eminent workers in molecular physics, and a few results are here tabulated. It has seemed better to confine the examples to the work of one experimenter, and the tables are quoted from a paper by F. Kohlrausch,* who has been one of the most reliable and successful workers in this field.

The study of electrolytic conductivity, especially in the case of very dilute solutions, has furnished material for generalizations, which may to some extent help in the formation of a sound theory of the mechanism of such conduction. If the solutions are made such that per unit volume of the solvent medium there are contained amounts of the salr proportional to its electrochemical equivalent, some simple relations become apparent. The solutions used by Kohlrausch were therefore made by taking numbers of grams of the pure salts proportional to their electrochemical equivalent, and using a liter of water as the standard of quantity of the solvent. Taking the electrochemical equivalent number as the chemical equivalent or atomic weight divided by the valence, and using this number of grams to the liter of water, we get what is called the normal or gram molecule per liter solution. In the table, m is used to represent the number of gram molecules to the liter of water in the solution for which the conductivities are tabulated. The conductivities were obtained by measuring the resistance of a cell filled with the solution by means of a Wheatstone bridge alternating current and telephone arrangement. The results are for $18^{\circ} \mathrm{C}$., and relative to mercury at $0^{\circ} \mathrm{C}$., the cell having been standardized by filling with mercury and measuring the resistance. They are supposed to be accurate to within one per cent of the true value.

The tabular numbers were obtained from the measurements in the following manner : -
Let $K_{18}=$ conductivity of the solution at $18^{\circ} \mathrm{C}$. relative to mercury at $0^{\circ} \mathrm{C}$.
$K_{18}^{1,}=$ conductivity of the solvent water at $18^{\circ} \mathrm{C}$. relative to mercury at $0^{\circ} \mathrm{C}$.
Then $K_{18}-K_{18}^{u g}=k_{18}=$ conductivity of the electrolyte in the solution measured.
$\frac{k_{1 \theta}}{m}=\mu=$ conductivity of the electrolyte in the solution per molecule, or the "specific molecular conductivity."

TABLE 334. - Value of \boldsymbol{k}_{18} for a few Electrolytea.
This short table illustrates the appareat law that the conductivity in very dilute solutions is proportional to the amount of salt dissolved.

m	KCl	NaCl	AgNO_{3}	$\mathrm{KC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$	$\mathrm{K}_{2} \mathrm{SO}_{4}$	MgSO ${ }_{\text {a }}$
0.000001	1.216	1.024	1.080	0.939	1.275	1.056
0.00002	2.434	2.056	2.146	1.886	2.532	2.104
0.00006	7.272	6.162	6.462	5.610	7.524	6.216
0.0001	12.09	10.29	10.78	9.34	12.49	10.34

TABLE 335. - Electro-Chemical Equivalents and Formal Solutions.
The following table of the electro-chemical equivalent numbers and tbe deosities of approximately normal solutions of the salts quoted in Table 27 may be convenient.' They represent grams per cubic centimeter of the solution at the temperature given.

Salt dissolved.	Grams per liter.	m	Temp.	Density.	Salt dissolved.	Grams per liter.	m	Temp. C.	Deasity.
KCl	74.59	1.0	15.2	1.0457	$\frac{1}{2} \mathrm{~K}_{2} \mathrm{SO}_{4}$	87.16	1.0	18.9	2.0658
$\mathrm{NH}_{4} \mathrm{Cl}$	53.55	1.0009	18.6	1.0152	$\frac{1}{2} \mathrm{Na}_{2} \mathrm{SO}_{4}$	71.09	1.0003	18.6	1.0602
NaCl .	58.50	1.0	18.4	1.0391	${ }_{2}^{1} \mathrm{Li}_{2} \mathrm{SO}_{4}$	55.09	1.0007	18.6	1.0445
LiCl	42.48	1.0	18.4	1.0227	${ }_{1}^{2} \mathrm{MgSO}_{4}$	60.17	1.0023	18.6	1.0573
${ }_{\frac{1}{2}}^{1} \mathrm{BaCl}_{2}$	104.0	1.0	18.6	1.0888	$\frac{1}{2} \mathrm{ZnSO}_{4}$	80.58	I. 0	5.3	1.0794
${ }_{2} \mathrm{ZnCl}_{2}$	68.0	1.012	15.0	1.0592	${ }^{2} \mathrm{CuSO}_{4}$	79.9	1.001	18.2	1.0776
KI.	165.9	1.0	18.6	1.1183	$\frac{1}{2} \mathrm{~K}_{2} \mathrm{CO}_{3}$	69.17	1.0006	18.3	1.0576
KNO_{8}	101.17	1.0	18.6	1.0601	$\frac{1}{2} \mathrm{Na}_{2} \mathrm{CO}_{8}$	53.04	1.0	17.9	1.0517
NaNO_{8}	85.08	1.0	18.7	1.0542	KOH	56.27	1.0025	18.8	1.0477
AgNO_{3} -	169.9	1.0	-		HCl	36.51	1.0041	18.6	1.0161
${ }_{\frac{1}{2} \mathrm{Ba}} \mathrm{Ha}^{\left(\mathrm{NO}_{3}\right)_{2}}$	65.28	0.5	$\overline{8}$	- 6	HNO_{8}.	63.13	1.0014	18.6	1.0318
$\underset{\mathrm{KClO}_{3} \mathrm{H}_{3} \mathrm{O}_{2}}{\mathrm{KClO}_{3}}$	61.29 08.18	0.5 I. 0005	18.3	1.0367	${ }_{\frac{1}{2} \mathrm{H}_{2} \mathrm{SO}_{4}}$	49.06	1.0006	18.9	1.0300
$\mathrm{KC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$	98.18	1.0005	18.6	1.0467					

Smithsonian Tableg.

SPECIFIC MOLECULAR CONDUCTIVITY μ : MERCURY $=10^{\circ}$.

Salt dissolved.	$m=10$	5	3	1	0.5	0.1	. 05	. 03	. 0 r
${ }_{\frac{1}{2} \mathrm{~K}_{2} \mathrm{SO}_{4}}$	-	-	-	-	672	736	897		1098
${ }_{\mathbf{K}}^{\mathbf{K} \mathrm{Cl}}$	-		827	919	958	704 104	1083 108	959 1107	1
${ }_{\text {KI }}{ }_{\text {N }}$		770	900	968	997	1069	1102	1123	1161
${ }_{\mathrm{KNO}}^{8}$		752	825	907	948	1035	1078	1101	1142
KNO_{8}	-		572	752	839	983	1037	1067	1122
${ }_{\frac{1}{2} \mathrm{BaCl}_{2}}$	-	-	487	658	725	861	904	939	1006
KClO_{3}	-				799	927	(976)	1006	1053
${ }_{1}^{1} \mathrm{Cu}_{2} \mathrm{CuSO}_{3}$		-	-	-	531	755	828	(870)	951
${ }_{\frac{1}{2} \mathrm{CuSO}_{4}}^{\mathrm{AgNO}_{8}}$			150	241	288	424	479	537	675
$\mathrm{AgNO}_{3} \cdot$	-	351	448	635	728	886	936	(966)	1017
${ }_{1}^{1} \mathrm{ZnSO}_{4}$	-	82	146	249	302	431	500	556	685
${ }_{2}^{\frac{1}{2} \mathrm{MgSO}_{4}}$		82	151	270	330	474	532	587	715
${ }_{2} \mathrm{Na}_{2} \mathrm{SO}_{4}$	6	-		475	559	734	784	828	906
$\frac{1}{2} \mathrm{ZnCl}_{2}$	60	180	280	514	601	768	817	851	915
NaCl	-	398	528	695	757	865	897	(920)	962
NaNO_{8}.	-	-	430	617	694	817	855	877	907
$\mathrm{KC}_{2} \mathrm{H}_{8} \mathrm{O}_{2}$	30	240	381	594	671	784	820	841	879
${ }_{2}^{1} \mathrm{Na}_{2} \mathrm{CO}_{3}$			254	427	510	682	751	799	899
$\frac{1}{2} \mathrm{H}_{2} \mathrm{SO}_{4}$.	660	1270	1560	1820	1899	2084	2343	2515	2855
$\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}$	0.5	2.6	5.2	12	19	43	62	79	132
HCl	600	1420	2010	2780	3017	3244	3330	3369	3416
HNO_{8}	610	1470	2070	2770	2991	3225	3289	3328	3395
${ }_{\frac{1}{3} \mathrm{H}_{3} \mathrm{PO}_{4}}$	148	160	170	200	250	430	540	620	790
KOH	423	990	1314	1718	1841	1986	2045	2078	2124
NH_{8}	0.5	2.4	$3 \cdot 3$	8.4	12	31	43	50	92
Salt dissolved.	. 006	. 002	. .01	. 0006	. 0002	. 0001	.00006	.00002	.00001
$\frac{1}{2} \mathrm{~K}_{2} \mathrm{SO}_{4}$	1130	1181	1207	1220	1241	1249	1254	1266	1275
KCl	1162	1185	1193	1199	1209	1209	1212	1217	1216
KI	1176	1197	1203	1209	1214	1216	1216	1216	1207
$\mathrm{NH}_{4} \mathrm{Cl}$	1157	1180	1190	1197	1204	1209	1215	$\underline{1209}$	1205
KNO_{3}	1140	1173	1180	1190	1199	1207	1220	1198	1215
$\frac{1}{2} \mathrm{BaCl}_{2}$	1037	1074	1092	1102	1118	1126	1133	1144	1142
KClO_{3} -	1068	1091	1101	1109	I 119	1122	1126	1135	1141
$\frac{1}{2} \mathrm{Ba}_{2} \mathrm{~N}_{2} \mathrm{O}_{8}$	982	1033	1054	1066	1084	1096	1100	1114	1114
$\frac{1}{2} \mathrm{CuSO}_{4}$.	740	873	950	987	1039	1062	1074	1084	1086
AgNO_{8}.	1033	1057	1068	1069	1077	1078	1077	1073	1080
$\frac{1}{2} \mathrm{ZnSO}_{4}$.	744	861	919	953	1001	1023	1032	1047	
$\frac{1}{2} \mathrm{MgSO}_{4}$.	773	881	935	967	1015	1034	1036	1052	1056
$\frac{1}{2} \mathrm{Na}_{2} \mathrm{SO}_{4}$	933	980	998	1009	1026	1034	1038	1056	1054
$\frac{1}{2} \mathrm{ZnCl}_{2}$.	939	979	994	1004	1020	1029	1031	1035	1036
NaCl	976	998	1008	1014	1018	1029	1027	1028	1024
$\mathrm{NaNO}_{3}{ }^{\text {- }}$		942	952	956	966	975	970	972	975
$\mathrm{KC}_{2} \mathrm{H}_{8} \mathrm{O}_{2}$	891 956	913 1010	919 1037	923 1046	963 988	934 874 8	935 790	943 715	639**
$\frac{1}{2} \mathrm{Na}_{2} \mathrm{CO}_{3}$ $\frac{1}{4} \mathrm{H}_{2} \mathrm{SO}_{4}$.	956 3001	1010	1037 3316	1046 3342	988 3280	874 3118	790 2927	715 2077	1413*
$\frac{1}{2} \mathrm{H}_{2} \mathrm{SO}_{4}$ $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}$.	3001 170	3240 283	3316 380	3342 470	3280 796	395	1133	1328	1304*
HCl	3438	3455	3455	3440	3340	3170	2968	2057	1254*
HNO_{8}	3421	3448	3427	3408	3285	3088	2863	1904	1144*
${ }_{\frac{1}{8} \mathrm{H}_{3} \mathrm{PO}_{4}}$.	858	945	968	977	920	837	746	497	402*
KOH	2141	2140	2110	2074	1892	1689 610	1474 690	845 700	747**
NH_{3}	116	190	260	33°	500	610	690	700	560

[^55]
LIMITING VALUES OF μ. TEMPERATURE COEFFICIENTS.

TABLE 337. - Limiting Values of μ.

This table shows limiting valnes of $\mu=\frac{k}{m}$, ro ${ }^{8}$ for infinite dilution for central salts, calculated from Table 27r.

Salt.	μ	Salt.	μ	Salt.	μ	Salt.	μ
$\frac{1}{2} \mathrm{~K}_{2} \mathrm{SO}_{4}$	1280	$\frac{1}{2} \mathrm{BaCl}_{2}$	1150	$\frac{1}{2} \mathrm{MgSO}_{4}$.	1080	$\frac{1}{2} \mathrm{H}_{2} \mathrm{SO}_{4}$.	3700
KCl . . .	1220	$\frac{1}{2} \mathrm{KClO}_{3}$	1150	$\frac{1}{2} \mathrm{Na}_{2} \mathrm{SO}_{4}$	1060	HCl	3500
KI	1220	$\frac{1}{2} \mathrm{BaN}_{2} \mathrm{O}_{8}$.	1120	$\frac{1}{2} \mathrm{ZnCl}$	1040	HNO_{3}.	3500
$\mathrm{NH}_{4} \mathrm{Cl}$. -	1210	$\frac{1}{2} \mathrm{CuSO}_{4}$.	1100	NaCl	1030	$\frac{1}{3} \mathrm{H}_{3} \mathrm{PO}_{4}$.	1100
KNO_{3}.	1210	AgNO_{3}	1090	NaNO_{8}	980	KOH	2200
-	-	$\frac{1}{2} \mathrm{ZnSO}_{4}$.	1080	$\mathrm{K}_{2} \mathrm{C}_{2} \mathrm{H}_{8} \mathrm{O}_{2}$	940	$\frac{1}{2} \mathrm{Na}_{2} \mathrm{CO}_{3}$.	1400

If the quantities in Table 336 be represented by curves, it appears that the values of the specific molecular conductivities tend toward a limiting value as the solution is made more and more dilute. Altbough these values are of the same order of magnitude, they are not equal, but depend on the nature of both the ions forming the electrolyte.
When the numbers in Table 337 are multiplied by Hittorf's constant, or o.00011, quantities ranging between 0.14 and 0.10 are obtained which represent the velocities in millimetres per second of the ions when the electromotive force gradient is one volt per millimetre.
Specific molecular conductivities in general become less as the concentration is increased, which may be due to mutual interference. The decrease is not the same for different salts, but becomes much more rapid in salts of high valence.

Salts having acid or alkaline reactions show marked differences. They have small specific molecular conductivity in very dilute solutions, but as the concentration is increased the conductivity rises, reaches a maximum and again falls off. Kohlrausch does not believe that this can be explained by impurities. $\mathrm{H}_{3} \mathrm{PO}_{4}$ in dilute solution seems to approach a monobasic acid, while $\mathrm{H}_{2} \mathrm{SO}_{4}$ shows two maxima, and like $\mathrm{H}_{8} \mathrm{PO}_{4}$ approaches in very weak solution to a monobasic acid.

Kohlrausch concludes that the law of independent migration of the ions in media like water is sustained.

TABLE 398. - Temperature Coettlolents.

The temperature coefficient in general diminishes with dilution, and for very dilute solutions appears to approacb a common value. The following table gives the temperature coefficient for solutions containing o.or gram molecule of the salt.

Salt.	Temp. Coeff.	Salt.	Temp. Coeff.	Salt.	Temp. Coeff.	Salt.	Temp. Coeff.
KCl . . . $\mathrm{NH}_{4} \mathrm{Cl} .$ NaCl . . LiCl . $\frac{1}{2} \mathrm{BaCl}_{2}$. . $\frac{1}{2} \mathrm{ZnCl}_{2}$. . $\frac{1}{2} \mathrm{MgCl}_{2}$	$\begin{aligned} & 0.0221 \\ & 0.0226 \\ & 0.0238 \end{aligned}$	$\mathrm{KI} \cdot$.KNO_{3}	$\begin{aligned} & 0.0219 \\ & 0.0216 \end{aligned}$	$\begin{array}{ll} \frac{1}{2} \mathrm{~K}_{2} \mathrm{SO}_{4} \\ \frac{1}{2} \mathrm{Na}_{2} \mathrm{SO}_{4} \end{array} .$	$\begin{aligned} & 0.0223 \\ & 0.0240 \end{aligned}$	$\begin{array}{llll} \frac{1}{2} \mathrm{~K}_{2} \mathrm{CO}_{3} & \cdot & \cdot \\ \frac{1}{2} \mathrm{Na}_{2} \mathrm{CO}_{3} & \cdot & \cdot \end{array}$	$\begin{aligned} & 0.0249 \\ & 0.0265 \end{aligned}$
		NaNO_{3}.	0.0226	$\frac{1}{2} \mathrm{Li}_{2} \mathrm{SO}_{4}$	0.0242		
	0.0232	AgNO_{3}. -	0.0221	$\frac{1}{2} \mathrm{MgSO}_{4}$	0.0236	$\underset{\mathrm{HCl}}{\mathrm{KOH}} \cdot . \quad$.	0.0194 0.0159
	0.0234	$\frac{1}{2} \mathrm{Ba}\left(\mathrm{NO}_{8}\right)_{2}$	0.0224	${ }_{2}^{1} \mathrm{ZnSO}_{3}$	0.0234	$\xrightarrow[\frac{1}{2} \mathrm{H}_{2} \mathrm{SO}_{4}]{\mathrm{HNO}_{4}}$	$\begin{aligned} & 0.0162 \\ & 0.0125 \end{aligned}$
	0.0239	KClO_{3}. .	0.0219	$\frac{1}{2} \mathrm{CuSO}_{4}$	0.0229		
	0.0241	$\mathrm{KC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$.	0.0229		-	$\left.\begin{array}{l} \frac{1}{2} \mathrm{H}_{2} \mathrm{SO}_{4} \\ \text { for } m=.00 \mathrm{I} \end{array}\right\}$	0.0159

Smithsonian Tables.

THE EQUIVALENT CONDUCTIVITY OF SALTS, ACIDS AND BASES IN AQUEOUS SOLUTIONS.

In the following table the equivalent conductance is expressed in reciprocal ohms. The concentration is expressed in milli-equivalents of solute per litre of solution at the temperature to which the conductance refers. (In the cases of potassium hydrogen sulphate and phosphoric acid the concentration is expressed in milli-formula-weights of solute, $\mathrm{K} \mathrm{HSO}_{4}$ or $\mathrm{H}_{8} \mathrm{PO}_{4}$, per liter of solution, and the values are correspondingly the modal, or "formal," conductances.) Except in the cases of the strong acids the conductance of the water was subtracted, and for sodium acetate, ammonium acetate and ammonium chloride the values have been corrected for the hydrolysis of the salts. The atomic weights used were those of the International Commission for 1905 , referred to oxygen as 16.00 . Temperatures are on the hydrogen gas scale.

$$
\begin{gathered}
\text { Concentration in } \frac{\text { gram equivalents. }}{\text { rooo liter }} \\
\text { Equivalent conductance in } \frac{\text { reciprocal ohms per centimeter cube }}{\text { gram equivalents per cubic centimeter }} .
\end{gathered}
$$

Substance.		Equivalent conductance at the following ${ }^{\circ} \mathrm{C}$ temperatures.									
		${ }^{18}{ }^{\circ}$	25°	50°	75°	100 ${ }^{\circ}$	${ }^{28} 8^{\circ}$	156°	$28^{\circ}{ }^{\circ}$	281°	$306{ }^{\circ}$
Potassium chloride .	\bigcirc	130.1	(152.1)	(232.5)	(321.5)	414	(519)	625	825	1005	
" "		126.3	146.4			399		588	779	$93{ }^{\circ}$	1008
" "	10	122.4	14 T .5	${ }^{21} 5.2$	${ }^{295} 2$	377	470	560 498	$\begin{aligned} & 741 \\ & 638 \end{aligned}$	874 723	910 720
" ${ }^{\text {" }}$	80	113.5 112.0	129.0		- 264	$\begin{aligned} & 322 \\ & 336 \\ & 3 \end{aligned}$	- 4	498	638	723	720
Sodium chloride .	roo	109.0		194.5	26.6	362	4 5	555	760	970	1080
" "	2	105.6	-	-	-	349	-	534	722	885	855
" " ${ }^{\text {" }}$	10 80 80	102.0 93.5	-	-	-	336 301	-	511	685 500	820 674	860
" "،	80 100	93.5	-	-	-	296	-	442			
Silver nitrate .		115.8	-	-	-	367	-	570	780	965	1065
" "		112.2 108.0 10.0		-		353	-	539 507	727 673	877	-935
"، "	10	108.0	-	-	-	326	-	488	639		
$"$	40	ror. 3	-	-	-	312	-	462	599	680	680
"	80	96.5	-	-	-	294	-	432	552	614	604
" " ${ }^{\text {" }}$	100	94.6	-			289 285					
Sodium acetate	\circ	78.1 74.5	-	-	-	285 268	-	450 421	578	-	88
" "	10	7 I .2	-	-	-	253	-	396	542	-	702
Magnesium sulphate	80	63.4 114.1	-		-						
Magnesium sulphate ${ }_{\text {a }}$.	2	114.1 94.3	$\underline{-}$	-	-	426	-	$\begin{aligned} & 690 \\ & 377 \end{aligned}$	180 260		
" "	10	76.1	-	-	-	234	-	241	143		
"	20	67.5	-	-	-	190 160	-	$\begin{array}{r}195 \\ 158 \\ \hline\end{array}$	110 88		
'	40 80	59.3 52.0	-		-	136 136		133	75		
,	too	49.8	-	-	-	± 30		126			
" "	200	43.1				(110		(628)	(84)		(1176)
Ammonium chloride ${ }^{\text {a }}$.	0	I 3 I. 126.5	152.0 146.5	-	-	(495 399 38	-	601	801	-	${ }^{1031}$
" "،	so	122.5 18.5	${ }^{141.7}$	-	-	${ }^{382}$		573	758		8828
	30	(99.8)	-	-	-	(338)	-	(523)			
" "	10	${ }^{98.7}$	-	-	-	$\begin{aligned} & 300 \\ & 286 \end{aligned}$	-	$\begin{aligned} & 456 \\ & 426 \end{aligned}$			
"	25	88.2									

From the investigations of Noyes, Melcher, Cooper, Eastman and Kato; Journal of the American Chemical Society,

Smithsonian Tableg.

THE EQUIVALENT CONDUCTIVITY OF SALTS, ACIDS AND BASES IN AQUEOUS SOLUTIONS.

Substance.	0	Equivalent conductance at the following ${ }^{\circ} \mathrm{C}$ temperatures.									
		${ }^{18}{ }^{\circ}$	25°	50°	75°	$100{ }^{\circ}$	1280	${ }^{156}{ }^{\circ}$	$278{ }^{\circ}$	288°	36°
Barium nitrate.		116.9				385		600	840	1120	1300
" " . . .	10	109.7	=		=	$\begin{aligned} & 352 \\ & 322 \\ & 322 \end{aligned}$		536 481 8	715	$\begin{aligned} & 828 \\ & 658 \end{aligned}$	824
"، "	80	88.7 81.6	-		-	280 258		412 372	507 449	503 430	448
	100	${ }_{79.1}$			-	249					
Potassium sulphate		132.8	-		-	455		715	1065	1460	1725
" "	10	${ }_{1}^{124.8}{ }_{15}$	=		-	365	-	605 537	${ }_{672}^{806}$	${ }^{883}$	$\begin{aligned} & 867 \\ & 637 \end{aligned}$
"، "	40	104.2			-	320		455	545	519	466
"، "	100	97.2	-		-	294 286		415	482		396
Hydrochloric acid		379.0			-	885		1085	1265	1380	1424
"	10	373.6	-		-	826	=	1048	${ }_{1217}^{121}$	${ }_{1226}^{1332}$	${ }_{1337}^{1362}$
"	80	${ }^{353.0}$	=		-	762		946	1044	1046	862
Nitric acia	100 0	350.6 377.0				754		(929			
"	22	371.2	4	559	690 676	886	-19	10	1166		${ }_{1156}$
" "	50	353.7	493.3	528	649		${ }_{845}$				
Sulphric	100	346.4	385.0	${ }^{516}$	632	728	817	880			454*
Sulphuric acid		383.0									$\begin{gathered} \binom{(2304}{637} \end{gathered}$
" " ${ }^{\text {c }}$,	10	309.0	337.0	406	435	446	460		533		
" "...	${ }_{100}^{50}$	253.5 233	273.0 251.2	323 300	${ }^{356}$	${ }_{369} 3$	4		502 483		474*
Potassium hydrogen	2	455.3	506.0		754	${ }_{784}$					474*
	50 100	29	${ }_{283.1}^{318.3}$	374.4	${ }_{3} 4$	422	446				
Phosphoric acid		338.3	376				${ }_{39}$				
"، "	${ }_{2}^{2}$	283.I	${ }_{221}^{31.9}$	${ }_{201}^{401}$	${ }^{464}$	498	508	489			
" "	50	122.7	${ }_{132.6}^{220}$	${ }_{157}{ }^{23} 8$	${ }_{168.6}$	168	${ }_{15}$	${ }_{142}$			
Acetic acid ."	100	96.5	104.0	122.7	129.9	128	120	108			
${ }^{\text {a }}$	10	14.50)	-		-	($\begin{gathered}77.3 \\ 25.1\end{gathered}$	こ				(1268)
"، "	30	8.50	-		-	14.7	-	13.0	8.65		
" " ${ }^{\text {a }}$.	100	5.22	-		-	8.95	-		5.34	-	
Sodium hydroxide		216.5	-	-	-		-		1060		
"، "	20		-		-	582 559	=	814 771			
" "		20.6							873		
Barium hydroxide		222	256	389	(520)	645	(760)	847			
" "	10	207		342	449						
"، "	5	191.1	${ }_{215.1}^{21}$	308	399	47^{8}		593			
		(238)	${ }^{2042}$ (271)	(404)	(526)		(764)	(908)			(1406)
Ammonium hydrox-	10	${ }_{5}^{9.66}$			-	23.2		${ }^{22.3}$	15.6		
	30 100	3.66	3.62	5.35	6.70	13.6	-	$1 \begin{aligned} & 13.0 \\ & 7.17\end{aligned}$	4.82		1.33

[^56]
Smithsonian Tables.

THE EQUIVALENT CONDUCTIVITY OF SOME ADDITIONAL SALTS IN AQUEOUS SOLUTION.
Conditions similar to those of the preceding table except that the atomic weights for 1908 were used.

Substance.	Concentration.	Equivalent conductance at the following ${ }^{\circ} \mathrm{C}$ temperature.							
		0°	18°	25°	50°	75°	$100{ }^{\circ}$	128°	8560
Potassium nitrate .	0	80.8	126.3	I 45.1	219	299	384	485	580
" ${ }^{6}$	-	78.6	122.5	140.7	212.7	289.9	370.3	460.7	551
"،	12.5	75.3	117.2	${ }^{1} 34.9$	202.9	276.4	351.5	435.4	520.4
"	50	70.7	109.7	126.3	189.5	257.4	326.1	402.9	476.I
	100	67.2	104.5	120.3	180.2	244.I	308.5	379.5	$447 \cdot 3$
Potassium oxalate.	\bigcirc	79.4	127.6	$147 \cdot 5$	230	322	419	538	653
	2	74.9	119.9	${ }^{1} 39.2$	215.9	300.2	389.3	489.1	587
" " 6 .	12.5	69.3	III.I	129.2	199.1	275.1	354.I	438.8	524.3
" ${ }^{\prime}$ " ${ }^{\text {a }}$.	50	63	101	116.5	178.6	244.9	312.2	383.8	449.5
6 "	100	59.3	94.6	109.5	167	227.5	288.9	353.2	409.7
Calcium nitrate	200	55.8	88.4	102.3	155	210.9	265.1	321.9	372.1
Calcium nitrate	\bigcirc	70.4	112.7	${ }_{1} 130.6$	202	282	369	474	
" ${ }^{\prime \prime}$	2	66.5	107.1	123.7	191.9	266.7	346.5	438.4	529.8
" ${ }^{\text {a }}$	12.5	61.6	98.6	114.5	176.2	244	314.6	394.5	473.7
" " . .	50	55.6	88.6	102.6	157.2	216.2	276.8	343	405.1
" " . .	100	51.9	82.6	95.8	146.1	199.9	255.5	315.1	369.1
- froct	200	48.3	76.7	88.8	135.4	184.7	234.4	288	334.7
Potassium ferrocyanide.	0	98.4	I 59.6	185.5	288	403	527		
	0.5	81.6		171.1					
" "	2.	84.8	137	158.9	243.8	335.2	427.6		
" "،	12.5	71	1 I 3.4	${ }^{1} 31.6$	200.3	27 I	340		
" "	50	58.2	93.7	108.6	163.3	219.5	272.4		
"	100	53.	84.9	98.4	148.1	198.1	245		
" "	200	48.8	77.8	90.1	135.7	180.6	222.3		
" "	400	45.4	72.1	83.3	124.8	165.7	203.1		
Barium ferrocyanide .	0	91	150	176	277	393			
	12.5	46.9 30.4	75 48.8	86.2 56.5	127.5 83.1		202.3 129.8		
Calcium ferrocyanide	\bigcirc	88	146	171	271	386	512		
" ${ }^{\text {a }}$	2	47.1	75.5	86.2	130				
"	12.5	31.2	49.9	57.4					
" "	50	24.1	38.5	44.4	64.6	81.9			
"	100	21.9	35. 1	40.2	58.4	73.7	84.3		
" " .	200	20.6	32.9	37.8	55	68.7	77.5		
" " .	400	20.2	32.2	37.1	54	67.5	76.2		
Potassium citrate	0	76.4	124.6	144.5	228	320	420		
*	0.5	-	120.1	139.4					
" ${ }^{\prime}$	2	71 67.6	115.4 109.9	134.5 128.2	210.1	293.8 276.5	381.2		
" ${ }^{\text {a }}$	12.5	62.9	101.8	118.7	183.6	254.2	326		
" ${ }^{\text {a }}$	50	54.4	87.8	102.1	157.5	215.5	273		
" ${ }^{\text {c }}$	100	50.2	80.8	93.9	143.7	196.5	$247 \cdot 5$		
" "	300	43.5	69.8	81	123.5	167	209.5		
Lanthanum nitrate	0	75.4	122.7	142.6	223	313	413	534	651
Lanthanum nit	2	68.9	110.8	128.9	200.5	279.8	363.5	457.5	549
"	12.5	6 I .4	98.5	114.4	176.7	243.4	311.2	383.4	447.8
" " . .	50	54	86.1	99.7	152.5	207.6	261.4	315.8	357.7
" "	100	49.9	79.4	9 g .8	${ }^{1} 39.5$	189.1	236.7	282.5	316.3
" "	200	46	72.1	83.5	126.4	170.2	210.8	249.6	276.2

From the investigations of Noyes and Johnston, Journal of the American Chemical Society, 31, p. 287, 1909.

CONDUCTANCE OF IONS. - HYDROLYSIS OF AMMONIUM ACETATE.
Table 341. - The Equivalent Conductance of the Separate Ions.

100.	0°	8°	25°	50°	75°	$100{ }^{\circ}$	128°	256°
K.	40.4	64.6	74.5	115	159	206	263	317
Na	26	$43 \cdot 5$	50.9	82	116	155	203	249
NH_{4}	40.2	64.5	74.5	115	159	207	264	319
Ag .	32.9	54.3	63.5	101	143	188	245	299
$\frac{1}{2} \mathrm{Ba} \cdot . \cdot$.	33	55^{2}	65	104	149	200	262	322
$\frac{1}{2} \mathrm{Ca}$.	30	51^{2}	60	98	142	191	252	312
备La.	35	61	72	119	173	235	312	388
Cl	41.1	65.5	75.5	116	160	207	264	318
$\mathrm{NO}_{3} \cdot \cdot .$.	40.4	61.7	70.6	104	140	178	222	263
$\mathrm{C}_{2} \mathrm{H}_{8} \mathrm{O}_{2}$ - . . .	20.3	34.6	40.8	67	96	130	171	211
$\frac{1}{2} \mathrm{SO}_{4}$.	41	$68{ }^{2}$	79	125	177	234	303	370
${ }^{\frac{1}{2}} \mathrm{C}_{2} \mathrm{O}_{4}$.	39	63^{2}	73	115	163	213	275	336
${ }_{3}^{5} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}_{7}$.	36	60	70	113	161	214		
${ }_{4}^{1} \mathrm{Fe}(\mathrm{CN})_{8} \cdot$. . .	58	95	111	173	244	321		
$\xrightarrow{\mathrm{H}}$.	240	314	350	465	565	644	722	777
OH . .	105	172	192	284	360	439	525	592

From Johnson, Journ. Amer. Chem. Soc., 3x, p. roro, 1909.

TABLE 342. - Yydrolyala of Ammoniom Aootate and Ionization of Water.

Temperature.	Percentage hydrolysis.	Ionization constant of water.	Hydrogen-ion concentration in pure water. Equivalents per liter.
t	100 n	$\mathrm{K}_{\mathrm{W}} \times \mathrm{ro}^{14}$	$\mathrm{C}_{\mathrm{H}} \times{ }_{10}{ }^{7}$
0	-	0.089	0.30
18	(0.35)	0.46	0.68
25	-	0.82	0.91
100	4.8	48.	6.9
156	18.6	223.	14.9
218	52.7	461.	21.5
306	91.5	168.	13.0

Noyes, Kato, Kanolt, Sosman, No. 63 Publ. Carnegie Inst., Washiogton.
Smithsonian Tables.

Tables 343, 344.

DIELECTRIC CONSTANTS.

TABLE 343. - Dielectric Oonstant (Speotfic Indnotive Oapacity) of Cases. Atmospherto Preasure.
Wave-lengths of the measuring current greater than 10000 cm .

Gas.	$\begin{aligned} & \text { Temp. } \\ & \mathrm{O} \\ & \hline \end{aligned}$	Dielectric constant referred to		Authority.
		Vacuum $=1$	Air $=1$	
Air	\bigcirc	$\begin{aligned} & \mathrm{I} .000590 \\ & \mathrm{I} .000586 \end{aligned}$	$\begin{aligned} & 1.000000 \\ & 1.000000 \end{aligned}$	Boltzmanu, 1875. Klementix, 1885.
Ammonia	20	1.00718	1.00659	Bädeker, igor.
Carbon bisulphide . . .	${ }_{10}^{0}$	$\begin{aligned} & \text { I.00290 } \\ & \text { 1.00239 } \end{aligned}$	1.00231 1.00180	Klementic. Bädeker.
$\underset{4}{\text { Carbon dioxide }} \underset{4}{ }$. . . .	-	1.000946 1.000985	$\begin{aligned} & 1.000356 \\ & 1.000399 \end{aligned}$	Boltzmann. Klementic.
Carbon monoxide.	0	$\begin{aligned} & 1.000690 \\ & 1.000695 \end{aligned}$	1.000100 1.000109	Boltzmann. Klemencic.
Ethylene	\bigcirc	$\begin{aligned} & 1.00131 \\ & 1.00146 \end{aligned}$	1.00072 1.00087	Boltzmann. Klemencic.
Hydrochloric acid . . .	100	1.00258	1.00199	Bädeker.
Hydrogen	$\begin{aligned} & \circ \\ & 0 \end{aligned}$	$\begin{aligned} & 1.000264 \\ & 1.000264 \end{aligned}$	$\begin{aligned} & 0.999674 \\ & 0.999678 \end{aligned}$	Boltzmann. Klemencic.
$\underset{\text { Methane . }}{\text { M }}$.	\bigcirc	$\begin{aligned} & 1.000944 \\ & 1.000953 \end{aligned}$	$\begin{aligned} & \text { I.000354 } \\ & \text { I.000367 } \end{aligned}$	Boltzmann. Klemencic.
Nitrous oxide ${ }_{4}^{\left(\mathrm{N}_{2} \mathrm{O}\right)}{ }_{4}$. . .	\bigcirc	$\begin{aligned} & 1.00116 \\ & 1.00099 \end{aligned}$	$\begin{aligned} & 1.00057 \\ & 1.00041 \end{aligned}$	Boltzmann. Klemencic.
Sulphur dioxide	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	1.00993 1.00905	1.00934 1.00846	Bädeker. Klemeňic.
Water vapor, 4 atmospheres	145	1.00705	1.00646	Bädeker.

TABLE 344. - Variation of the Dietectrio Constant with the Temperature.
For variation with the pressure see next table.
If $D_{\theta}=$ the dielectric constant at the temperature $\theta^{\circ} \mathrm{C} ., D_{t}$ at the temperature $t^{\circ} \mathrm{C}$., and α and β are quantities given in the following table, then

$$
D_{\theta}=D_{t}\left[\mathrm{I}-a(t-\theta)+\beta(t-\theta)^{2}\right] .
$$

The temperature coefficients are due to Bädeker.

Gas.	a	β	Range of temp. 0 C.
Ammonia \cdot	\cdot	5.45×10^{-6}	2.59×10^{-7}
Sulphur dioxide	6.19×10^{-6}	1.86×10^{-7}	$0-110$
Water vapor	1.4×10^{-4}	-	145

The dielectric constant of air at atmospheric pressure but with varying temperature may also be calculated from the fact that $D-I$ is approximately proportional to the density.

TABLE 345. - Onange of the Dielectrio Oonstant of Gasee with the Pressur.

Gas.	Temperature, ${ }^{\circ} \mathrm{C}$.	Pressure atmos.	Dielectric constant.	Authority.
Air .	19	20	1.0108	Tangl, 1907.
" . . .	-	40	1.0218	" "
"	-	60	1.033°	"
"	-	80	I. 0439	" "
"		100	1.0548	" "
"	II	20	1.0101	Occhialini, 1905.
"	-	40	1.0196	
"	-	60	1.0294	" "
"		80	1.0387	" "
"		100	1.0482	"
"	-	120	1.0579	"
" . . .	-	140	1.0674	" "
"	-	160	1.0760	" "
		180	1.0845	" "
Carbon dioxide.	15	10	1.008	Linde, 1895
" "	-	20	1.020	" "
" " ${ }^{\text {" }}$	-	40	1.060	" "
Nitrous oxide, $\mathrm{N}_{4} \mathrm{O}$	15	10	1.010	"
" ${ }^{\text {a }}$	-	20	1.025 1.070	\because

Table 346. - Diolectrio Constants of Liquids.
A wave-length greater than 10000 centimeters is denoted by ∞.

Relerences on page 31 r.

Smithsonian Tables.

TABLE 346 （continued）．
DIELECTRIC CONSTANTS OF LIQUIDS．
A wave－length greater than 10000 centimeters is desiguated by ∞ ．

Substance．	$\begin{aligned} & \text { Temp. } \\ & \text { oct } \end{aligned}$	Wave－ length cm．	Diel． const．	㕝:	Substance．	Temp．	Wave－ length cm．	Diel． const．	管家
Anilin Benzol（benzene）	18	∞	7.316	II	Nitrobenzol ．	（frozeri）	∞	9.942.0	
	18	＂	2.288	${ }^{17}$		－5	＂		＂
	19	73	2.26	2	＂	0	＂	41.0	＂
Bromine ． Carbon bisulphide	23	84	3.18	12		＋15	＂	37.8	＂
	20	∞	2.626	13	＂	＋	＂	35.136.45	11
	17	73	2.64		＂．．．				
Chloroform	18	∞	5.2		Otane ${ }^{\circ}$	17	73	34.0	2
	17	$\begin{gathered} 73 \\ \infty \\ \text { " } \end{gathered}$		2	Octane ．．．．	17	∞	1.949	16
Decane	14				Oils ： Almond				
Decylene ．．．	17		2.24	10		20	∞	2.83	18
Ethyl ether ．．	－80	$\stackrel{\infty}{0}$	7.05	5	Castor Colza	11	＂	4.67	19
	－40		5.67			20	＂	3．11	20
＂${ }^{\prime}$	0		4.68	，	Cottonseed ．．			3.10	21
$" 3$	18	＂	4.368	11	Lemon．	14 21	＂	2.25	22
＂ 6	20	＂	$4 \cdot 30$	13				3.35	21
＂＂．	60		3.65		Neatsfoot ．．．Olive ．．．			3.023.11	20
＂＂	100	＂	3.12	＂		2011.4	＂		
＂ 6	140	＂	2.66	＂،	Peanut．．．．		＂	3.03	23 21
＂＂	180		2.12		Petroleum ．${ }^{\text {a }}$		2000	2.13	21 24
	Crit．				Petroleum ether	20	∞	1.92	20
＂＂	temp．	＂	1.53	\％	Sesame ．．．	16	＂	2.85	21
＂＂	198 18	83	1.53 4.35			13.4		3.02	＂
Formic acid	＋2	73	19.0	14 2	$\underset{\text { Turpentine }}{ }$ ．．		＂	3.17	${ }^{20}$
＂＂	（frozen） 15	1200	62.0	6	Vaseline ．	8	＂	2.17	25
＂＂	16	1200 73	58.5	2	Phenol ．．．	48	73	9.68	2
ycerine	15	1200	56.2	6	Toluol ．．．．	－83	$\begin{aligned} & \infty \\ & \\ & \hline \end{aligned}$	2.51	${ }_{6}$
＂	15	200	39.1	2	＂．．．．．			2.33 2.31	2
＊	15	75	25.4	5	Meta－xyloi	18	73 ∞	2.31 2.37 6	11
		8.5 0.4	4.4 2.6	15	＂${ }^{\text {c }}$	17	73	2.37	2
$\left.\begin{array}{c} \text { Hexane } \\ \text { Hydrogen perox- } \\ \text { ide } 46 \% \text { in } \mathrm{H}_{2} \mathrm{O} \end{array}\right\}$	$\begin{aligned} & 17 \\ & 18 \end{aligned}$		$\begin{aligned} & 1.880 \\ & 84.7 \end{aligned}$	17					
					Water for temp．coeff． see Table 344.	18	2007438	81.07	
						17		80.6	$\begin{array}{r}11 \\ 2 \\ \hline\end{array}$
						17		81.7	
						17		83.6	
1 Abegg－Seitz， 1899. 2 Drude， 1896. 3 Marx， 1898. 4 Lampa， 1896. 5 Abegg， 1897. 6 Thwing， 1894. 7 Drude， 1898. 8 Francke， 1893. 9 Löwe， 1898.									

[^57]
DIELECTRIC CONSTANTS OF LIQUIDS (continued).

TABLE 347. - Temperature Coefficionts of the Formula :

$$
D_{\theta}=D_{t}\left[\mathrm{I}-\alpha(t-\theta)+\beta(t-\theta)^{2}\right] .
$$

Substance.	a	β	$\begin{aligned} & \text { Temps } \\ & \text { range, } \end{aligned}$	Autbority.
Amyl acetate.	0.0024	-	-	Löwe.
Aniline	0.00351	-	-	Katz.
Benzol	0.00106	0.0000087	10-40	Hasenöhrl.
Carbon bisulphide .	0.000966		-	Ratz.
	0.000922	0.00000060	20-181	Tangl.
Chloroform	0.00410	0.00001 5	22-181	
Ethyl ether	0.00459	-		Ratz.
Methyl alcohol	0.0057	-	-	Drucle.
Oils: Almond	0.00163	0.000026	-	Hasenöhrl.
Castor .	0.01067	-	-	Heinke, 1896.
Olive . ${ }_{\text {Paraffine }}$.	0.00364 0.000738	0.0000072	-	Hasenöhrl.
Toluol Paramne .	0.000738 0.000921	0.0000072	$0-13$	Ratz.
"	0.000977	0.00000046	20-181	Tangl.
Water	0.004474	0.00000.	5-20	Heerwagen.
" 4.	0.004583 0.00436	${ }_{0.0000117}$	$0-76$ $4-25$	Drude. Coolidge.
Meta-xylol ${ }^{\text {- }}$. .	0.00436 0.000817	-	$\begin{gathered} 4-25 \\ 20-181 \end{gathered}$	Coolidge. Tangl.

(See Table 344 for the signification of the letters.)

TABLE 348. - Dielectrio Donstants of Liquifisd Gase8.
A wave-length greater than 10000 centimeters is designated by ∞.

Gmithsonian Tasleg.

TABLE 349. - Standard Solutione for the Oalibration of Apparatus for the Meaenring of Dielectrio Constants.

Turner.		Drade.				Nernst.	
Substance.	Diel. const. at 8°. $\lambda=\infty$.	Acetone in beazol at $19^{\circ} . \lambda=75 \mathrm{~cm}$.				Ethyl alcohol in water at 19.5°. $\lambda=\infty$.	
		Per ceat		Dielectric	Temp.		
Benzol Meta-xylol Ethyl ether Aniline Ethyl chloride O-nitro toluol Nitrobenzol Water (conduct. 10^{-6})	2.288	by weight.			coeffi	Per cent	Dielectric
	2.376	0	0.885	2.26	0.1%		
	7.29^{8}	20	0.866	5.10	0.3		
	10.90	40	0.847	8.43	0.4	100	26.0
	27.71	60	0.830	12.1	0.5	80	29.3
	27.71 36.45	80	0.813	16.2	0.5	80	33.5
	81.07	100	0.797	20.5	0.6	70 60	38.0 43.1
		Water in acetone at $19^{\circ} . \lambda=75 \mathrm{~cm}$.					
		0	0.797	20.5	0.6\%		
		20	0.856	31.5	0.5		
		40	0.903	43.5	0.5		
		60	0.940	57.0	0.5		
		80	0.973	70.6	0.5		
		100	0.999	80.9	0.4		

TABLE 350. - Dielectrio Congtants of Sollds.

Substaace.	Condition.	Waveleagth, cm.	Dielectric coastant.	$\begin{array}{\|c\|} \hline \text { 喜. } \\ \hline \end{array}$	Substance.	Condition.	Waveleagth, cm.	Dielectric coostant.	
Asphalt	-	∞	2.68	1		Temp.			
$\underset{\text { phate }}{\text { Barium }}$.				2	Iodine (cryst.) . Lead chloride .	23	75	4.00	2
Caoutchonc .	-	75 ∞	$\begin{array}{r}10.2 \\ \\ \hline 1.22\end{array}$	3	Lead (powder)	-	"	42	2
Diamond .	_	*	16.5		" nitrate .	-	"	16	2
"	-	75	5.50	2	" sulphate .	-	"	28	2
Ebonite	-	∞	2.72	4	" molybde-		,		
${ }^{\prime}$	-	"	2.86	5	\qquad	-	"	24	2
Glass *		1000	2.55	6	Marble (Carrara)	-	"	8.3	2
Flint (extra	Deasit				Mica . . .	-	\cdots	5.66-5.97	5
heavy)	$4 \cdot 5$	∞	9.90	7	" ${ }^{\text {a }}$ -	-	"	5.80-6.62	15
Flint (very					Madras, brown		"	$2.5-3.4$ $3.9-5.5$	16
light) .	2.87	"	6.61 6.96	7	" green		"	$3.9-5.5$ 4.4	16
Hard crown	2.48	"	$\xrightarrow{6.96}$	7	Bengal, y yellow	-	"	2.8	16
Mirror ${ }_{\text {a }}$.	-	"	$6.44-7.46$ $5.37-5.90$	5	Bengal, yellow	-	"	4.2	16
"	-	600	5.42-6.20	8	" ruby .	-	"	4.2-4.7	I6
Lead (Pow-					Canadian am-		"		16
ell).	3.0-3.5	∞	5.4-8.0	9	South America	-	"	5.9	16
Jena Boron	-	"	5.5-8.1	10	Ozokerite (raw)	-	"	2.21	I
Barium .	-	"	7.8-8.5	10	Paper (tele-				
Borosili-					- phone)	-	"	2.0	17
cate .	-	*	6.4-7.7	I	" (cable)		"	2.0-2.5	${ }_{18}^{18}$
Gutta percha .		-	3.3-4.9	11	Paraffine .	Melting point.	"	2.46 2.32	19
		120	2.85	12	" \quad.	44-46	"	2.10	20
Ice .	-18	5000	3.16	13	" \cdot	54-56	"	2.14	20
"	-190	75	1.76-1.88	14	" . . .	74-76	"	2.16	20

* For the effect of temperature, see Gray-Dobbie, Pr. Ray. Soc. 63, 1898; 67, 1900.
" " "" wave-length, see K. F. Löwe, Wied. Aoo. 66, 1898.

TABLE 350. - Dioleotrio Constants of Solids (continued).

Substance.	Condition.	Wavelength, cm.	Diel. constant.		Substance.	Condition.	Wavelength, cm.	Diel. constant.		
Paraffine . .	47.06 $56 .{ }^{\circ} 2$	61 61	2.16	21	Sulphur Amorphous			3.98	1	
Phosphorus:			2.25			-	∞ 75	3.98 3.80	1	
Yellow .	-	75	3.60	2	Cast, fresh	-	∞	4.22	1	
Solid .		80	4.1	22		-	"	4.05	18	
Liquid .	-	80	3.85	22	" "	-	75	3.95	2	
Porcelain:					Cast, old	-	∞	3.60	18	
Hard					" ،	-	75	3.90	2	
(Royal B'l'n)	-	"	5.73	15						
Seger "، "	-	"	6.61	15	Liquid . $\{$	melting-	$\} \infty$	$3 \cdot 42$	1	
Figure" " .	-	"	6.84	15		point				
$\underset{\text { Selenium . }}{ }$	-	75	7.44 6.60	1	Strontium sulphate	-		11.3		
" .	-	75	6.13	23	Thallium		75	11.3	2	
"	-	1000	6.14	23	carbonate	-	75	17	2	
Shellac.	-	∞	3.10	4	" nitrate	-	75	16.5	2	
"	-	"	2.95-3.73	24	Wood			dried		
	-	"	3.67	25	Red beech .	\|	fibres	\cdots	4.83-2.51	-
					,	\perp "	"	7.73-3.63	-	
					"	$\perp{ }^{\prime}$	"	6.84-3.64	-	
1 v. Pirani,	903.		ı Löwe, 1898.			18 Fallinger, 1902.				
2 Schmidt,			$1)^{\text {I }}$ (submarine-data).			19 Boltzmann, 1875.				
3 Gordon, I	79.		12 Thwing, 1894.			20 Zietkowski, 1900.				
4 Winklem	nn, 188		13 Abegg, 1897.							
5 Elsas, 189			14 Behn-Kiebitz, 1904.			22 Schlundt, 1904.				
6 Ferry, 189			15 Starke, 1897.				onwille	Mason,		
7 Hopkinso	1891.		16 E . Wilson.			24 Wuillner, 1887. 25 Donle.				
8 Arons-Ru	ens, 18		17 Campbell, 1906.							
9 Gray-Dob	ie, 1898					25 Donle.				

TABLE 361. - Dielectric Conetants of Orystals.
Da, DA, $\mathrm{D} \boldsymbol{\gamma}$ are the dielectric constants along the brachy, macro and vertical axes respectively.

[^58]
PERMEABILITY OF IRON．

TABLE 352．－Permeability of Iron Rings and Wire．

This table gives，for a few specimens of iron，the magnetic induction B ，and permeability μ ，correspondiag to the magneto－motive forces H recorded in the first colinnn．The first specimen is taken from a paper by Rowland，＊ and refers to a welded and annealed ring of＂Burden＇s Best＂wrought iron．The ring was 6.77 cms ，in mean diameter，and the bar had a cross sectional area of 0.916 sq ．cms．Specimens $2-4$ are taken from a paper by Bosanquet，\dagger and also refers to soft iron rings．The mean diameters were 21．5，22．1，and 22.725 cms ．，and the thickness of the bars 2.535 ， $\mathbf{x} .295$ ，and .7544 cms ．respectively．These experiments were iotended to illustrate the effect of thickness of bar on the induction．Specimen 5 is from Ewing＇s book，\ddagger aad refers to one of his own experiments on a soft iron wire ． 077 cms ．diameter and 30.5 cms ．long．

H	Specimen 1		2		3		4		5		
	B	μ	B	${ }^{\mu}$	B	μ	B	${ }^{\mu}$	\mathcal{B}	${ }^{\mu}$	
0.2	80	400	126	630	65	325	85	425	22	110	
0.5	330	660	377	754	224	448	214	428	74	148	
1.0	1450	1450	1449	1449	840	840	885	885	246	246	
2.0	4840	2420	4564	2282	3533	1766	2417	1208	950	475	
5.0	9880	1976	9900	1980	8293	1659	${ }^{8884}$	1777	12430	2486	
10.0	12970	1297	13023	1302	12540	1254	11388	1139	15020	1502 789	
20.0	14740	737	149II	746	14710	735	13273	664	15790	789	
50.0	16390	328	16217	324	16062	321	13890 14837	278 148	－	－	

TABLE 353．－Permeablity of Transformer Iron．§

This table contains the results of some experiments on transformers of the Westinghouse and Thomson－Houston types．Keferring to the headings of the different columas，M is the total magneto－motive force applied to the iron； $j / l i$ the magneto－motive force per centimetre length of the iron circuit ；B the total induction through the mag－ netizing coil ；B / a the induction per square centimetre of the mean section of the iron core ；M / B the magnetic reluctance of the iron circuit；$B l / M a$ the permeability of the iron，a being taken as the mean crose section of the iron circuit as it exists in the traosformer，which is thus slightly greater than the actual cross section of the iron．

M	$\frac{M}{l}$	First specimen．				Second specimen．			
		B	$\frac{B}{a}$	$\frac{M}{B}$	$\frac{B l}{M a}$	B	$\frac{B}{a}$	$\frac{M}{B}$	$\frac{B l}{M a}$
20	0.597	218×10^{8}	1406	0.917×10^{-4}	2360	16×10^{4}	1032	1.25×10^{-4}	1730
40	I． 194	587	3790	0.681	3120	49 ＂	3140	0.82 ＂	2640
60	1．791	878 ＂	5660	0.683	3180	$\begin{array}{r}82 \\ 104 \\ \hline\end{array}$	5290 6710	0.73 ＂	2970 2820
80	2.338	1091 ＂	7040	0.734 0.85	2960 2640	104 ＂	6710 7610	$\begin{array}{ll} 0.77 & " \\ 0.85 & " \end{array}$	2820 2560
100	2.985	1219 ＂	7860 8880	0.819 0.903	2640	1184	88000	0.97 ＂	2250
120	3.582	1330 ＂	8580	0.903 0.994	2410	124 ＂	88850	$\begin{array}{ll} 0.97 \\ 1.07 & \text { " } \end{array}$	2036
140 160	4.179 4.776	1405 1475	9060	0.994 1.090	2000	135	8710	1.18 ＂	1830
160	4.776 5.373	1475 153	9880	1.180	1850	140	9030	1.29	1690
200	5.970	1581＂	10200	I． 270	1720	142	9160	1.41 ＂	${ }^{1} 540$
220	6.567	1618 ＂	10430	I． 360 ＂	1590	144＿＂	9290	1.53 ＂	1410
260	7．76I	1692	10910	1.540	1410	－	－		

[^59]
PERMEABILITY OF TRANSFORMER IRON.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{M} \& \multirow[t]{2}{*}{} \& \& \multicolumn{7}{|c|}{First specimen.} \& \multicolumn{4}{|c|}{Second specimen.}

\hline \& \& \bar{l} \& \& B \& $\frac{B}{a}$ \& \& $\frac{M}{B}$ \& \& \& B \& $\frac{B}{a}$ \& $\frac{M}{B}$ \& $\frac{B l}{M a}$

\hline 20 \& \& 0.62 \& \& $\times 10^{8}$ \& 1320 \& \& 6×10^{-4} \& \& \& 215×10^{8} \& 1940 \& 0.93×10^{-4} \& 3140

\hline 40 \& - \& 1.23 \& 442 \& " \& 3980 \& 0.91 \& \& \& \& 615 " \& 5540 \& 0.64 " \& 4490

\hline 80 \& \bigcirc \& 1.85
2.46 \& 697
862 \& " ${ }^{\prime}$ \& 6280
7770 \& 0.86
0.93 \& \& \& \& 826" \& 7440
8880 \& 0.72
0.81 \& 4030

\hline 100 \& \& 3.08 \& 949 \& " \& 8780 \& 0.93
1.05 \& " \& \& \& 1050 " \& 9460 \& -0.95 \& 3590
3060

\hline 120 \& \& 3.70 \& 1010 \& " \& 9106 \& 1.19 \& \& \& \& п100 " \& 9910 \& 1.09 \& 2670

\hline 140 \& \& 4.31 \& 1060 \& \& 9550 \& 1.33 \& \& \& \& 1140 \& 10300 \& 1.23 \& 2430

\hline 160 \& \& 4.93 \& 1090 \& " \& 9820 \& 1.47 \& \& \& \& 1170 \& 10500 \& I. 37 \& 2180

\hline 180 \& \& \& 1120 \& " \& 10100 \& 1. 61 \& \& \& \& 1190 \& 10700 \& 1.51 \& 1970

\hline 200 \& \& \& 1150 \& - \& 10400 \& 1.74 \& \& \& \& \& \& \& -

\hline \multicolumn{8}{|c|}{(c) Westinghouse No. 4 Trangformer (about 1200 Watts Capacity).} \& \multicolumn{6}{|l|}{(d) Thomson-Houston tgoo Watts Transformer.}

\hline M \& $$
\frac{M}{l}
$$ \& \& \& $\frac{B}{a}$ \& $\frac{M}{B}$ \& \& $$
\frac{B l}{M a}
$$ \& M \& $\frac{M}{l}$ \& B \& $\frac{B}{a}$ \& $\frac{M}{B}$ \& $\frac{B l}{M a}$

\hline \multirow[t]{11}{*}{} \& 0.69 \& \multicolumn{2}{|l|}{147×10^{8}} \& 1470 \& \multicolumn{2}{|l|}{1.36×10^{-4}} \& 2140 \& 20 \& 0.42 \& 70×10^{8} \& 1560 \& 2.86×10^{-4} \& 3730

\hline \& 1.38 \& \multicolumn{2}{|l|}{\multirow[t]{2}{*}{406 "}} \& 4066 \& \multirow[t]{2}{*}{0.98} \& \multirow[t]{2}{*}{"} \& \multirow[t]{2}{*}{2940} \& \multirow[t]{2}{*}{$$
\begin{aligned}
& 40 \\
& 60
\end{aligned}
$$} \& 0.84 \& \& 3160
4770 \& 2.81
281

2 \& 3780

\hline \& \& \& \& \& \& \& \& \& 1.68 \& \& 4770
5910 \& \& 3790
3520

\hline \& 2.07 \& \multicolumn{2}{|l|}{573 "} \& 5730 \& \multirow[t]{2}{*}{1.05} \& \multirow[t]{2}{*}{} \& \multirow[t]{2}{*}{2770} \& \multirow[t]{2}{*}{$$
100
$$} \& 2.10 \& 309 " \& 6890 \& 3.24 " \& 3280

\hline \& \& \multirow[t]{2}{*}{} \& \& \& \& \& \& \& 2.52 \& 348 " \& 7760 \& 3.45 " \& 3080

\hline \& 2.76 \& \& \& 6590 \& I.2I \& " \& 2390 \& 160 \& 3.36 \& 408 " \& 9100 \& 3.92 " \& 2710

\hline \& 3.45 \& 659 \& \& 7140 \& \multirow[t]{2}{*}{1.40} \& \& \multirow[t]{2}{*}{2070} \& 200 \& 4.20
5.04 \& 456
495 \& 10200 \& 4.39
4.87 \& 2430
2190

\hline \& \& 5714 \& \& \& \& \multirow[t]{2}{*}{} \& \& 280 \& 5.88 \& 524 " \& 11690 \& 5.35 " \& 1990

\hline \& 4.14 \& 478 \& \& 7490 \& 1.60 \& \& 1810 \& 320 \& 6.72 \& 550 " \& 12270 \& 5.82 " \& 1820

\hline \& \& \multirow[t]{2}{*}{} \& \& \& \multirow[b]{2}{*}{1.80} \& \multirow[t]{2}{*}{} \& \multirow[b]{2}{*}{1610} \& 360 \& 7.56 \& 573 " \& 12780 \& 6.29 " \& 1690

\hline \& 4.83 \& \& \& 7770 \& \& \& \& 4400 \& 8.40

9.24 \& $$
\begin{aligned}
& 59 \mathrm{~T} \\
& 504
\end{aligned}
$$ \& \[

$$
\begin{aligned}
& 13180 \\
& 13470
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 6.78 \text { " } \\
& 7.28
\end{aligned}
$$
\] \& 1570

1460

\hline
\end{tabular}

TABLE 364. - Magnetio Proporties of Iron and Steol.

	$\begin{gathered} \text { Electro- } \\ \text { lytic } \\ \text { Iroo. } \end{gathered}$	Good Cast Steel.	Poor Cast Steel.	Steel.	Cast Iron.	Electrical Sheets.	
						Ordinary	Silicon Steel.
C_{S}	0.024	0.044	0.56	0.99	3.11	0.036	0.036
Chemical composi- $\left\{\begin{array}{l}\mathrm{Si} \\ \mathrm{Mn}\end{array}\right.$	0.004	0.004	0.18	0.10	3.27	0.330	3.90
tion in per cent $\left\{\begin{array}{l}\text { Mn } \\ \mathrm{P}\end{array}\right.$	0.008	0.40	0.29	0.40	0.56	0.260	0.090
tion in per cent $\left\{\begin{array}{l}\text { P } \\ \mathrm{S}\end{array}\right.$	0.008	0.044	0.076	0.04	1.05	0.040	0.009
(S	0.001	0.027	0.035	0.07	0.06	0.068	0.006
Coercive force . . . $\{$	$\begin{gathered} 2.83 \\ {[0.36]} \end{gathered}$	$\begin{gathered} 1.51 \\ {[0.37]} \end{gathered}$	$\begin{gathered} 7.1 \\ (44 \cdot 3) \end{gathered}$	$\begin{gathered} 16.7 \\ (52.4) \end{gathered}$	$\begin{aligned} & 11.4 \\ & {[4.6]} \end{aligned}$	[1.30]	[0.77]
Residual B $\}$	11400 [10800]	10600 [11000]	$\begin{gathered} 10500 \\ \text { (10500) } \end{gathered}$	$\begin{array}{r} 13000 \\ (7500) \end{array}$	$\begin{array}{r} 5100 \\ {[5350]} \end{array}$	[9400]	[9850]
Maximum permeability $\{$	$\begin{gathered} 1850 \\ {[14400]} \end{gathered}$	$\begin{gathered} 3550 \\ {[14800]} \end{gathered}$	$\begin{gathered} 700 \\ (170) \end{gathered}$	$\begin{gathered} 375 \\ (110) \end{gathered}$	$\begin{gathered} 240 \\ {[600]} \end{gathered}$	[3270]	[6130]
B for $\mathrm{H}=150$. . . $\{$	$\begin{gathered} 19200 \\ {[18900]} \end{gathered}$	$\begin{gathered} 18800 \\ {[19100]} \end{gathered}$	$\begin{aligned} & 17400 \\ & (15400) \end{aligned}$	$\begin{gathered} 16700 \\ (11700) \end{gathered}$	$\begin{aligned} & 10400 \\ & {[1000]} \end{aligned}$	[18200]	[17550]
$4 \pi \mathrm{I}$ for saturation \quad \{	$\begin{gathered} 21620 \\ {[21630]} \end{gathered}$	$\begin{gathered} 21420 \\ {[21420]} \end{gathered}$	$\begin{gathered} 20600 \\ (20200) \end{gathered}$	$\begin{gathered} 19800 \\ (18000) \end{gathered}$	$\begin{gathered} 16400 \\ {[16800]} \end{gathered}$	[20500]	[19260]

E. Gumlicb, Zs. für Electrochemie, 15, p. 599; 1909.

Brackets indicate annealing at $800^{\circ} \mathrm{C}$ in vacuum. Parentheses indicate harden
TABLE 356. - Oast Iron In Intense Fieids.

Soft Cast Iron.				Hard Cast Iron.			
H	B	1	μ	H	B	I	μ
114	9950	782	87.3	142	7860	614	55.4
172	10800	846	62.8	254	9700	752	38.2
433	${ }^{1} 3900$	1070	32.1	339	10850	836	30.6
744	15750	1200	21.2	684	13050	983	19.1
1234	17300	1280	14.0	915	14050	1044	15.4
1820	18170	1300	10.0	1570	15900	1138	10.1
12700	31100	1465	2.5	2020	16800	1176	8.3
13550	32100	1475	2.4	10900	26540	1245	2.4
13800	32500	1488	2.4	13200	28600	1226	2.2
15100	33650	1472	2.2	14800	30200	1226	2.0

B. O. Peirce, Proc. Am. Acad. 44, 1909.

TABLE 358. - Correotione tor Ring Speoimens.

In the case of ring specimens, the average magnetizing force is not the value at the mean radins, the ratio of the two being given in the table. The flux density consequently is not uniform, and the measured hysteresis is less than it wonld be for a uniform distribution. This ratio is also given for the case of constant permeability, the values being applicable for magnetizations in the neighborhood of the maximum permeability. For higher magnetizations the flux density is more uniform, for lower it is less, and the correction greater.

Ratio of Radial Width to Diameter of Ring.	Ratio of Average \mathbf{H} to H at Mean Radius.		Ratio of Hysteresis for Uoiform Distribution to Actual Hysteresis.	
	Rectangular Cross-section.	Circular Cross-section.	Rectangular Cross-section	Circular Cross-section.
$1 / 2$	1.0986	1.0718	1.112	1.084
1/3	1.0397	1.0294	1.045	1.033
1/4	1.0216	1.0162	1.024	1.018
$1 / 5$	1.0137	1.0102	1.015	1.011
$1 / 6$	1.0094	1.0070	1.010	1.006
1/7	1.0069	1.0052 1.0040	1.008	1.004
I/8	1.0052 1.0033	1.0040 1.0025	1.003	1.002
1/19	1.0009	1.0007	1.001	1.001

M. G. Lloyd, Bull. Bur. Standards, 5, p. 435 ; 1908.

This table and Table 35^{8} below are takeo from a paper by Dr. Hopkinson ${ }^{*}$ on the magnetic properties of iroo and steel. which is stated in the paper to have been z_{4}. The maximum magnetization is not tabulated; but as stated in the by 4π. "Coercive force" is the maguetiziog force required to reduce the magnetization to zero. The "demagprevious magnetization in the opposite direction to the " maximum induction" stated in the table. The "energy which, however, was ooly found to agree roughly with the results of experiment.

$\begin{array}{\|c} \text { No. } \\ \text { of } \\ \text { Test. } \end{array}$	Description of specimed.	Temper.	Chemical analysis.					
			Carbon	$\begin{gathered} \text { Manga- } \\ \text { nese. } \end{gathered}$	Sulphur.	Silicoa.	Phosphorus	Other substances.
1	Wrought iron -	Annealed	-	-	-	-	-	-
2	Malleable cast iron .		-	-	-	-	-	-
3	Gray cast iron .	-	-	-	-	-	-	-
4	Bessemer steel .	- -	0.045	0.200	0.030	None.	0.040	-
5	Whitworth mild steel	Annealed	0.090	0.153	0.016	"	0.042	-
6			0.320	0.438	0.017	0.042	0.035	-
7	"	$\left\{\begin{array}{l} \text { Oil-hard- } \\ \text { ened } \end{array}\right.$	"	"	،	"	،	-
8	" ${ }^{\text {a }}$	Annealed	0.890	0.165	0.005	0.08I	0.019	-
9	" ${ }^{\text {a }}$	$\left\{\begin{array}{l} \text { Oil-hard- } \\ \text { ened } \end{array}\right.$	"	"	"	،	،	-
10	$\left.\begin{array}{l}\text { Hadfield's manganese } \\ \text { steel }\end{array}\right\}$	-	1.005	12.360	0.038	0.204	0.070	-
11	Manganese steel .	As forged	0.674	4.730	0.023	0.608	0.078	-
13	" "	$\left\{\begin{array}{c} \text { Oil-hard- } \\ \text { ened } \end{array}\right.$	16	،	"	،	"	-
14	" "	As forged	1. 298	8.740				-
15	" "	Annealed	"	${ }^{6}$. 6	${ }_{6} 6$	${ }_{6}{ }^{2}$	
16	" "	$\left\{\begin{array}{l}\text { Oil-hard- } \\ \text { ened }\end{array}\right.$	"	"	"	"	"	-
17	Silicon steel	As forged	0.685	0.694	"	3.438	0.123	-
18	" ${ }^{\text {a }}$	Annealed	"	"	"	343	${ }^{4}$	-
19	"	$\left\{\begin{array}{c}\text { Oil-hard- } \\ \text { ened }\end{array}\right.$	*	"	"	"	"	
20	Chrome steel	As forged	0.532	0.393	0.020	0.220	0.041	0.621 Cr .
21	"	Annealed	4		"	"	،	0.621
22	" "	$\left\{\begin{array}{c} \text { Oil-hard- } \\ \text { ened } \end{array}\right.$	"	"	"	"	"	"
23	" "	As forged	0.687	0.028	"	0.134	0.043	1.195 Cr.
24	" "	Annealed		4	"	"	"	1.10
25	" "	$\left\{\begin{array}{c}\text { Oil-hard- } \\ \text { ened }\end{array}\right.$	"	"	"	"	"	"
26	Tungsten steel .	As forged	1.357		None.			
27		Annealed	6	${ }_{6}$	"		0.04	4.649
28	" ،	$\left\{\begin{array}{l}\text { Hardened } \\ \text { in cold }\end{array}\right.$	"	"	"	"	،	"
		$\left\{\begin{array}{l}\text { water } \\ \text { Hardened }\end{array}\right.$						
29	" ${ }^{\text {a }}$	$\left\{\begin{array}{c}\text { Hardened } \\ \text { in tepid }\end{array}\right.$	c	"	"	"	"	"
		\} water						
30	" (French)	Oil-hard-	0.511	0.625	None.	0.021	0.028	3.444 W.
31	" ".	Very hard	0.855	0.312	-	0.151	0.089	
32	Gray cast iron .	-	3.455	0.173	0.042	2.044	0.151	2.064 C.t
33	Mottled cast iron	-	2.58 I	0.610	0.105	I.476	0.435	I. $477 \mathrm{C}. \dagger$
34	White " "	-	2.036	0.386	0.467	0.764	0.458	1.477 C.t
35	Spiegeleisen	-	$4 \cdot 510$	7.970	Trace.	0.502	0.128	-

8 mithsonian Tableb.

PROPERTIES OF IRON AND STEEL.

The numbers in the columns headed "magnetic properties" give the results for the highest magnetizing force used, paper, it may be obtained by subtracting the magnetizing force ($\mathbf{2 4 0}$) from the maximum induction and then dividing netizing force" is the magnetizing force which had to be applied in order to leave no residual magnetization after dissipated " was calculated from the formula $:-$ Energy dissipated $=$ coercive force \times maximum induction $\div \pi$

$\begin{gathered} \text { No. } \\ \text { of } \\ \text { Test. } \end{gathered}$	Description of specimen.	Temper.	Specific electri- cal resis tance. -	Magnetic properties.				Energy dissipated per cycle.
				Maximum induction	Residual induction.	$\begin{array}{c\|c} \text { Coer- } & \text { D } \\ \text { cive } & \text { ne } \\ \text { force. } \end{array}$	Demag netizive force.	
I	Wrought iron :	Annealed	. 01378	18251	7248	2.30	-	13356
2	Malleable cast iron .	"	. 03254	12408	7479	8.80	-	34742
3	Gray cast iron . .	- .	. 10560	10783	3928	3.80	-	13037
4	Bessemer steel.	-	. 01050	18196	7860	2.96	-	17137
5	Whitworth mild steel	Annealed	. 01080	19840	7080	1. 63	-	10289
6	" "	"	. 01446	18736	9840	6.73	-	40120
7	" "	$\left\{\begin{array}{c} \text { Oil-hard- } \\ \text { ened } \end{array}\right.$. 01390	18796	11040	11.00	-	65786
8	" ${ }^{\text {a }}$	Annealed	. OI 559	16120	10740	8.26	-	42366
9	" ${ }^{\text {a }}$	$\left\{\begin{array}{c} \text { Oil-hard- } \\ \text { ened } \end{array}\right.$. 01695	16120	8736	19.38	-	9940 I
10	$\left.\begin{array}{l} \text { Hadfield's manganese } \\ \text { steel } \end{array}\right\}$	f ened	. 06554	310	-	-		3457
II	Manganese steel . .	As forged	.05368	4623	2202	23.50	37.13	34567
12	" "	Annealed	$.03928$	10578	5848	33.86	46.10	113963
13	" ${ }^{\text {a }}$	$\left\{\begin{array}{c}\text { Oil-hard- } \\ \text { ened }\end{array}\right.$. 05556	4769	2158	27.64	40.29	41941
14	" "	As forged	. 06993	747	-	-	-	-
15	" ${ }^{\text {a }}$	Annealed	.06316	1985	540	24.50	50.39	I 5474
16	" ${ }^{\text {a }}$	$\left\{\begin{array}{l}\text { Oil-hard- } \\ \text { ened }\end{array}\right.$. 07066	733	-	-	-	-
	Silicon steel	As forged	. 06163	15148	11073	9.49	12.60	45740
18	Sincon stel	Annealed	.06185	14701	8149	7.80	10.74	36485
19	"	$\left\{\begin{array}{c}\text { Oil-hard- } \\ \text { ened }\end{array}\right.$.06195	14696	8084	12.75	17.14	59619
20	Chrome steel	As forged	. 02016	15778	9318	12.24	13.87	61439
21	Chrome stel	Annealed	. 01942	124848	7570	8.98	12.24	42425
22	" ،	$\left\{\begin{array}{l}\text { Oil-hard- } \\ \text { ened }\end{array}\right.$. 02708	13960	8595	38.15	48.45	169455
	" "	As forged	. 01791	14680	7568	18.40	22.03	85944
23 24	" "	Annealed	. 01849	13233	6489	15.40	19.79	64842
25		$\left\{\begin{array}{c}\text { Oil-hard- } \\ \text { ened }\end{array}\right.$. 03035	512868	7891	40.80	56.70	167050
		As forged	. 02249	I 5718	10144	15.71	17.75	78568
26	Tungsten stee	Annealed	. 022250	16498	11008	I 5.30	16.93	80315
28	" "	$\left\{\begin{array}{l}\text { Hardened } \\ \text { in cold } \\ \text { water }\end{array}\right.$. 02274	4	-	-	-	-
29	" "	$\left\{\begin{array}{c}\text { Hardened } \\ \text { in tepid } \\ \text { water }\end{array}\right.$. 02249	915610	9482	30.10	34.70	149500
	" " (French).	$\left\{\begin{array}{l}\text { water } \\ \text { Oil hard- }\end{array}\right.$. 03604	414480	8643	47.07	64.46	216864
30		\%ened	. 04427	712133	6818	51.20	70.69	197660
31			. 11400	- 9148	316ı	13.67	17.03	39789 41072
32 33	Mray castled cast iron		.06286	610546	5108	12.24	20.4	41072 36383
33 34	White " ${ }^{\text {a }}$	-	.05661	I 9342	- 5554	12.24	$\xrightarrow{20.40}$	30383
35	Spiegeleisen • -	-	. 10520		577			

Gmithsonian Tableg.

PERMEABILITY OF SOME OF THE SPECIMENS IN TABLE 357. TABLE 358.

This table gives the induction and the permeability for different values of the magnetizing force of some of the specimens in Table 357. The specimen numbers refer to the same table. The numbers in this table have been taken from the curves given by Dr. Hopkinson, aod may therefore be slightly in error; they are the mean values for rising aod falling magnetizations.

Magnetiziog force. H	Specimea 1 (iron) .		Specimen 8 (annealed steel).		Specimeo 9 (same as 8 tempered).		Specimen 3 (cast iron).	
	B	μ	B	μ	B	μ	B	μ
1	-	-	-	-		-	265	265
2	200	100	-	-	-	-	700	350
3	-	-	-	-		-	1625	542
5	10050	2010	1525	300	750	150	3000	600
ro	12550	1255	9000	900	1650	165	5000	500
20	14550	727	11500	575	5875	294	6000	300
30	15200	507	12650	422	9875	329	6500	217
40	15800	395	13300	332	11600	290	7100	177
50	16000	320	13800	276	12000	240	7350	149
70	16360	234	14350	205	13400	19 r	7900	113
100	16800	168	I 4900	149	14500	145	8500	85
150	17400	116	I 5700	105	15800	105	9500	63
200	17950	90	16100	80	16100	80	10190	51

Tables $359-363$ give the results of some experiments by Du Bois,* oo the magnetic properties of iron, aickel, and cobalt under strong magnetizing forces. The experiments were made on ovoids of the metals 18 centimeters long and o. 6 centimeters diameter. The specimens were as follows : (I) Soft Swedish iron carefully ancealed and having a density 7.82. (2) Hard English cast steel yellow tempered at $230^{\circ} \mathrm{C}$.; density 7.78. (3) Hard drawn best nickel containiog $99 \% \mathrm{Ni}$ with some SiO_{2} and traces of Fe and Cu ; density 8.82. (4) Cast cobalt giving the fullowing composition on analysis: $\mathrm{Co}=93 . \mathrm{I}, \mathrm{Ni}=5.8, \mathrm{Fe}=0.8, \mathrm{Cu}=0.2, \mathrm{Si}=0.1$, and $\mathrm{C}=0.3$. The specimen was yery brittle and broke in the lathe, and hence contaioed a surfaced joint held together by clamps duriog the experiment. Referring to the columns, H, B, and μ have the same meaning as in the other tables, S is the magnetic moment per gram, and $/$ the magnetic moment per cubic centimeter. H and S are takeo from the curves published by Du Bois; the others have been calculated using the densities given.

MAGNETIC PROPERTIES OF SOFT IRON AT 0° AND $100^{\circ} \mathrm{C}$. table 369.

Soft iroo at $\mathrm{o}^{\circ} \mathrm{C}$											
\boldsymbol{H}	S	I	B	μ	H	S	I	B	μ		
100	180.0	1408	17790	177.9	100	180.0	1402	17720	177.2		
200	194.5	1521	19310	96.5	200	194.0	1511	19190	96.0		
400	208.0	1627	20830	52.1	400	207.0	1613	20660	51.6		
700	215.5	1685	21870	31.2	700	213.4	1663	21590	29.8		
1000	218.0	1705	22420	22.4	1000	215.0	1674	22040	21.0		
1200	218.5	1709	22670	18.9	1200	215.5	1679	22300	18.6		

MACNETIC PROPERTIES OF STEEL AT 0° AND $100^{\circ} \mathrm{C}$.
TABLE 360.

Steel at $0^{\circ} \mathrm{C}$.					Steel at $100^{\circ} \mathrm{C}$.				
H	s	\boldsymbol{J}	B	μ	H	S	I	B	μ
100	165.0	1283	16240	162.4	100	165.0	1278	16170	161.7
200	18 r .0	1408	17900	8 g .5	200	180.0	1395	17730	88.6
400	193.0	1500	19250	48.1	400	191.0	1480	19000	47.5
700	199.5	1552	20210	28.9	700	197.0	1527	r9890	28.4
1000	203.5	1583	20900	20.9	1000	199.0	1543	20380	20.4
1200	205.0	r 595	21240	17.7	1500	203.0	1573	21270	14.2
$3750 \dagger$	212.0	1650	24470	6.5	3000	205.5	1593	23020	7.7
					5000	208.0	1612	25260	5.1

[^60]MAGNETIC PROPERTIES OF METALS.

TABLE 361. - Cobalt at $100^{\circ} 0$.

TABLE 362. - Nickel at $100^{\circ} 0$.

H	S	I	B	μ
100	35.0	309	3980	39.8
200	43.0	380	4966	24.8
300	46.0	406	5399	18.0
500	50.0	441	6043	12.1
700	51.5	454	6409	9.1
1000	53.0	468	6875	6.9
1500	56.0	494	7707	5.1
2500	58.4	515	8973	3.6
4000	59.0	520	10540	2.6
6000	59.2	522	12561	2.1
9000	59.4	524	15585	1.7
12000	59.6	526	18606	1.5
400				

At $o^{\circ} \mathrm{C}$. this specimen gave the following results :

$\mathbf{1} 2300$	67.5	595	19782	1.6

TABLE 363. - Magnetite.
The following results are given by Du Bois * for a specimen of magnetite.

H	I	B	μ
500	325	8361	16.7
1000	345	9041	9.0
2000	350	10084	5.0
12000	350	20084	1.7

Professor Ewing has investigated the effects of very intense fields on the induction in iron and other metals. \dagger The results show that the intensity of magnetization does not increase much in iron after the field has reached an intensity of 1000 c . g. s. units, the increase of induction above this being almost the same as if the iron were not there, that is to say, $d B / d H$ is practically unity. For hard steels, and particularly manganese steels, much higher forces are required to produce saturation. Hadfield's manganese steel seems to have nearly constant susceptibility up to a magnetizing force of ro,ooo. The following tables, taken from Ewing's papers, illustrate the effects of strong fields on iron and steel. The results for nickel and cobalt do not differ greatly from those given above.

TABLE 364. - Lowmoor Wrought Iron.

H	I	B	μ
3080	1680	24130	7.83
6450	1740	28300	4.39
10450	1730	32250	3.09
13600	1720	35200	2.59
16390	1630	36810	2.25
18760	1680	39900	2.13
18980	1730	40730	2.15

TABLE 365. - Ficker's
Tool Steel.

table 366. - Hadileld's Manganese Steel.

H	I	\mathcal{B}	μ
1930	55	2620	1.36
2380	84	3430	1.44
3350	84	4400	1.31
5920	111	7310	1.24
6620	187	8970	1.35
7890	191	10290	1.30
8390	263	11690	1.39
9810	396	14790	1.51

table 367. - Saturation Vaines for Steela of Different Kinds.

		H	I	B	μ
1	Bessemer steel containing about 0.4 per cent carbon .	17600	1770	39880	2.27
2	Siemens-Marten steel containing about 0.5 per cent carbon	18000	1660	38860	2.16
3	Crucible steel for making chisels, containing about 0.6 per cent carbon	19470	1480	38010	1.95
4	Finer quality of 3 containing about 0.8 per cent carbon.	18330	I 580	$3^{81} 190$	2.08
5	Crucible steel containing i per cent carbon .	19620	1440	37690	1.92
6	Whitworth's fluid-compressed steel . . .	18700	1590	38710	2.07

Table 368.-MAGNETIC PROPERTIES OF IRON IN VERY WEAK FIELDS.

The effect of very small magnetizing forces has been studied by C. Baur* and by Lord Rayleigb. \dagger The following short table is taken from Baur's paper, and is taken by him to iodicate that the susceptibility is finite for zero value of H and for a fioite range increases in simple proportion to H. He gives the formula $k=15+$ roo H, or $I=$ $15 H+100 H^{2}$. The experimeats were made on an annealed ring of raund bar $\mathbf{1 . 0 1 3} \mathrm{cms}$. radius, the riog having a radius of 9.432 cms . Lord Rayleigh's results for an iron wire not annealed give $k=6.4$ 十 $5.1 \mathrm{I} H$, or $1=6.4 A$ $+5.1 H^{2}$. The forces were reduced as low as 0.00004 c . g. s., the relation of k to H remainiog constant.

First experiment.			Second experiment.	
H	k	I	H	k
.01580	16.46	2.63	.0130	15.50
.03081	17.65	5.47	.0847	18.38
.07083	23.00	16.33	.946	20.49
.13188	28.90	38.15	.1864	25.07
.23011	39.81	91.56	.2903	32.40
.38422	58.56	224.87	.3397	35.20

Tables 369, 370.-DISSIPATION OF ENERGY IN CYCLIC MAGNETIZATION OF MAGNETIC SUBSTANCES.

When a piece of iron or other magnetic metal is made to pass through a closed cycle of magnetization dissipation of energy results. Let us suppose the iron to pass from zero magnetization to strong magnetization in one direction and then gradually back throngh zero to strong magnetization in the other direction and thence back to zero, and this operation to be repeated several times. The iron will be found to assume the same magnetization when the same magnetizing force is reached from the same direction of change, but not when it is reached from the ather direction. This has been long known, and is particularly well illustrated in the permanency of hard steel magnets. That this fact involves a dissipation of energy which can be calculated from the open loop formed by the curves giving the relation of magnetization to magnetizing force was pointed out by Warburg \ddagger in 188 r , reference being made to experiments of Thomson, § where such curves are illustrated for magnetism, and to E. Cohn, $\|$ where similar curves are given for thermoelectricity. The results of a number of experiments and calculations of the energy dissipated are given by Warburg. The subject was investigated about the same time by Ewing, who published results somewhat later. If Extensive investigations have since been made by a number of investigators.

TABLE 369. - Soft Iron Wire.

(From Ewiog's 1885 paper.)

$\begin{array}{\|c\|} \hline \text { Tatal } \\ \text { induction } \\ \text { per sq. } \mathrm{cm} . \\ B \end{array}$	Dissipation of energy in ergs per $\mathrm{cv} . \mathrm{cm}$.	Horsepower wasted per ton at 100 cycles per sec.
2000	420	0.74
3000	800	1.41
4000	1230	2.18
5000	1700	3.01
6000	2200	3.89
7000	2760	4.88
8000	3450	6.10
9000	4200	7.43
10000	5000	8.84
11000	5820	10.30
12000	6720	11.89
13000	7650	13.53
14000	8650	15.30
15000	9670	17.10

* "Wied. Ann."" vol. xi.
\ddagger "Wied. Ann." vol. xiii. p. 14r.
if "Wied. Ann." vol. 6.

TABLE 370. - Cable Transformers.
This table gives the results obtained by Alexander Siemens with one of Siemens' cable transformers. The transformer core consisted of 900 snft iron wires r mm . diameter and 6 meters long.** The dissipation of eaergy in watts is for 100 complete cycles per second.

Mean maximum induction density in core. B	Total abserved dissipation of energy in the core in watts per 112 lbs.	Calculated eddy current loss in watts per 112 lbs .	Hysteresis loss of energy in watts per 112 lbs.	Hysteresis loss of energy in ergs per cu. cm. per cycle.
1000	43.2	4	39.2	602
2000	96.2	16	80.2	1231
3000	158.0	36	122.0	1874
4000	231.2	64	167.2	2566
5000	309.5	100	209.5	3217
6000	390.1	144	246.1	3779

† "Phil. Mag." vol. xxiii.
8 "Phil. Trans. Roy. Soc." vol. 175
बा "Proc. Roy, Soc." 8882 , and "Trans. Roy. Soc." ${ }^{1885}$

Tasles 371-372.

TABLE 371.
$H=$ true intensity 0_{1} magnetizing field, $H^{\prime}=$ intensity of applied field, $I=$ intensity of magnetization, $H=H^{\prime}-N I$.

Shuddemagen says: The demagnetizing factor is not a constant, falling for highest values of I to about $I / 7$ the value when unsaturated; for values of B $(=H+4 \pi I)$ less than $10000, N$ is approximately constant; using a solenoid wound on an insulating tube, or a tube of split brass, the reversal method gives values for N which are considerably lower than those given by the step-by-step method; if the solenoid is wound on a thick brass tube, the two methods practically agree.

$\begin{gathered} \text { Ratio } \\ \text { of } \\ \text { Length } \\ \text { to } \\ \text { Dlamermer. } \end{gathered}$	Values of $N \times 104$.						
	Ellipsoid.	Cyliader.					
		Uniform Magnetizalion.	Magnetometric (Maza).	Ballistic Step Method.			
				Dubois.	Shuddem Pract	ageo for cal Const	ange of acy.
					Diamet		
				0.158 cm .	0.3175 cm .	1.111 cm.	1.905 cm.
5	7015	\square^{-}	6800				
10	2549	630	2550	2160	-	-	1960
15	1350	280	1400	1206	-		1075
20	848	160	898	775	$\bar{\square}$	-	671
30	432	70	460	393	388	350	343
40	266	39	274	238	234	212	209
50	181	25	182	162	160	145	149
60	132	18	131	118	116 88	106	106
70	101	13	99	89	88	66	63
80	80	9.8	78	69	69 56	66	63
90 100	65	7.8 6.3	63 51.8	55	56 46	4 I	41
100 150	54 26	6.3 2.8	51.8 25.1	20	23	21	21
150 200	16	1.57	15.2	11	12.5	11	11
300	7.5	0.70	7.5	5.8			
400	4.5	0.39	-	2.8			

C. R. Mann, Physical Review, 3, p. 359 ; 1896.
H. DuBois, Wied. Ano. 7, p. 942 ; 1902.
C. L. B. Shuddemagen, Proc. Am. Acad. Arts and Sci. 43, p. 185, 1907 (Bibliography).

TABLE 372.
Shuddemagen also gives the following, where B is determined by the step method and $H=H^{\prime}-K B$.

Ratio of Length to Diameter.	Values of $\mathrm{K} \times 10^{6}$.	
	Diameter 0.3175 cm .	$\begin{aligned} & \text { Diameter } \\ & \text { 1.1 to } 2.0 \mathrm{~cm} \text {. } \end{aligned}$
15	-	85.2
20	-	53.3
25	-	36.6
30	30.9 18.6	27.3 16.6
40	18.6 12.7	11.6
60	9.25	8.45
80	5.5	5.05
100	3.66	3.26 1.67
150	1.83	1.67

dISSIPATION OF ENERGY IN THE CYCLIC MAGNETIZATION OF VARIOUS SUBSTANCES.

C. P. Steinmetz concludes from his experiments* that the dissipation of energy due to hysteresis in magnetic metals can be expressed by the formula $e=a B^{1.6}$, where ε is the energy dissipated and a a constant. He also concludes that the dissipation is the same for the same range of induction, no matter what the absolute value of the terminal inductions may be. His experiments show this to be nearly true when the induction does not exceed $\pm 15000 \mathrm{c} . \mathrm{g}$. s. units per sq. cm . It is possible that, if metallic induction only be taken, this may be true up to saturation ; but it is not likely to be found to hold for total inductions much above the saturation value of the metal. The law of variation of dissipation with induction range in the cycle, stated in the above formula, is also subject to verification. \dagger

Values of Constant a.
The following table gives the values of the constant a as found by Steinmetz for a namber of different specimens. The data are taken from his second paper.

Number of specimen.	Kind of material.	Description of specimen.	$\underset{\substack{\text { Value of } \\ \text { a. }}}{ }$
I	$\begin{gathered} \text { Iron } \\ \text { " } \\ \text { " } \\ " \\ " \\ " \\ " \end{gathered}$	Norway iron Wrought bar Commercial ferrotype plate Annealed Thin tin plate Medium thickness tin plate	. 02227
3			
3 4			.00548
5			. 00286
6			. 00425
7	Steel.	Soft galvanized wire Annealed cast steel 00349
9		Soft annealed cast steel Very soft annealed cast steel Same as 8 tempered in cold water Tool steel glass hard tempered in water "" " tempered in oil " " annealed. (Same as $12, \mathrm{I}_{3}$, and 14 , after having been subjected)	. 00457
10			. 00318
11			. 02792
12			. 07476
13			. 026870
15			f.06130
16	" : . $\}$	to an alternating m. m. f. of from 4000 to 6000 ampere turns for demagnetization	$\left\{\begin{array}{l}.02700 \\ .01445\end{array}\right.$
18	Cast iron.	Gray cast iron . "،" "، containing $\frac{1}{\frac{1}{2} \%} \%$ aluminium	. 01300
19			.01365
21			. 01459
	Magnetite .	$\left\{\begin{array}{l}\text { A square rod } 6 \text { sq. } \mathrm{cms} \text {. section and } 6.5 \mathrm{cms} \text {. long, } \\ \text { from the Tilly Foster mines, Brewsters, Putnam } \\ \text { County, Nw York, stated to be a very pure sample }\end{array}\right\}$. 02348
22	$\begin{array}{cl} \text { Nickel } \\ \text { " } \end{array}$	Soft wire \{ Annealed wire, calculated by Steinmetz from \} Ewing's experiments	. 0122
23			. 0156
24	"	Hardened, also from Ewing's experiments $\{$ Rod containing about 2% of iron, also calculated $\}$. 0385
25	Cobalt	$\{$ from Ewing's experiments by Steinmetz . . Consisted of thin needle-like chips obtained by milling grooves about 8 mm . wide across a pile of thin sheets clamped together. About 30% by volume of the specimen was iron.	. 0120
26	Iron filings		
			. 0457
			. 0396
			. 0373

Smithsonian Tagles.

ENERGY LOSSES IN TRANSFORMER STEELS.

Determined by the wattmeter method.
Loss per cycle per $c c=A B^{x}+b n B^{y}$, where $B=$ flux density in gausses and $n=$ frequency in cycles per second. x shows the variation of hysteresis with B between 5000 and 10000 gausses, and y the same for eddy currents.

Desiguation.	Thickness. cm .	Ergs per Gramme per Cycle.				x	y	a	Watts per Pound at 60 Cy cles and 10000 Gausses.		
		10000 Gausses.		5000 Gausses.					苛䍖		
		Hysteresis.		Hysteresis.						Hysteresis.	Total.
$\begin{gathered} \text { Unannealed } \\ \text { A } \\ \text { B } \\ \text { C } \\ \text { D } \end{gathered}$											
	0.0399	1599	186	562	46	1.51	2.02	0.00490	0.41	4.35	4.76
	. 0326	II56	134	384	36	1.59	1.89	. 00358	0.44	3.14	3.58
	. 0422	1032	242	356	70	1.51	1.79	. 00319	0.47	2.81	3.28
	.0381	1009	I84	353	48	1.52	1.94	.00312	0.44	2.74	3.18
Annealed											
$\underset{\mathbf{F}}{\mathbf{E}}$.0476 .0280	735 666	236	246	58 27	1.58 1.60	2.02 1.88	. 002227	0.36 0.44	2.00 1.81	2.36 2.25
G	. 0394	563	210	193	54	1.54	1.96	.00174	0.47	1. 53	2.00
\mathbf{H}^{*}	. 0307	412	146	${ }_{1} 118.5$	39	1.58	1.90	.00127	0.54	1.12	1. 66
J	.0318	341	202	111.5	55	1.62	1.88	. 00105	0.70	0.93	1.63
K*	. 0282	394	124	130	32	1.61	1.90	. 00122	0.54	1.07	I.6ı
L	. 0346	38 I	184	125	50	1.61	1.88	. 00118	0.535	1.035	I. 57
B	. 0338	354	200	116	57	1.61	I.8ı	. 00110	0.61	0.96	I. 57
M	. 0335	372	178	127	46	1.55	1.95	. 0115	0.55	1.01	I. 56
N	. 0340	321	210	105	56	1. 62	1.90	. 00099	0.63	0.87	I. 50
P	. 0437	334	184	107	50	1.64	1.88	. 00103	0.34	0.91	I. 25
Silicon steels											0.965
R	.035	288	42	93	II	1. 64	-	. 00089	0.15	0.78	0.93
S	. 0452	278	72	90	18	1.63	-	. 00086	0.12	0.755	0.875
T	. 0338	250	60	78	18	1.68	-	. 00077	0.18	0.68	0.86 0.855
U ${ }_{\text {V }}$. 0346	270	42	86	12	1.66		. 00084	0.12 0.17	0.735 0.685	0.855 0.855
V**	.0310 .0305	251.5 197	47	79 62.3	13 12.4	1.68 1.67	-	.00078 .00061	0.17 0.16	0.685 0.535	0.855 0.695
\mathbf{X}	. 0430	200	65	64.2	16.6	1. 65	-	. 00062	0.12	0.545	0.665

*German.
\dagger English.
\ddagger In order to make a fair comparison, the eddy current loss has been computed for a thickness of 0.0357 cm . (Gsge No. 29), assuming the loss proportional to the thickness.

Lloyd and Fisher, Bull. Bur. Standards, 5, p. 453 ; 1909.
Note. - For formalm and tables for the caloulation of matual and solf induotanoe see Bulletin Burean of Standards, vol. 8, p. 1-237, 1912.

Smithsonian Tableg.

MAGNETO-OPTIC ROTATION.

Faraday discovered that, when a piece of heavy glass is placed in magnetic field and a beam of plane polarized light passed through it in a direction parallel to the lines of magnetic force, the plane of polarization of the beam is rotated. This was subsequently found to be the case with a large number of substances, but the amount of the rotation was found to depend on the kind of matter and its physical condition, and on the strength of the magnetic field and the wave-length of the polarized light. Verdet's experiments agree fairly well with the formula -

$$
\theta=c l H\left(r-\lambda \frac{d r}{d \lambda}\right) \frac{r^{2}}{\lambda^{2}}
$$

where c is a constant depending on the substance used, l the length of the path through the substance, H the intensity of the component of the magnetic field in the direction of the path of the beam, r the index of refraction, and λ the wave-length of the light in air. If H be different, at different parts of the path, $/ H$ is to be taken as the integral of the variation of magnetic potential between the two ends of the medium. Calling this difference of potential v, we may write $\theta=A v$, where A is constant for the same substance, kept under the same physical conditions, when the one kind of light is used. The constant A has been called "Verdet's constant," * and a number of values of it are given in Tables $376-380$. For variation with temperarure the following formula is given by Bichat : -

$$
R=R_{0}\left(\mathrm{I}-0.00104 t-0.000014 t^{2}\right)
$$

which has been used to reduce some of the results given in the table to the temperature corresponding to a given measured density. For change of wave-length the following approximate formula, given by Verdet and Becquerel, may be used :-

$$
\frac{\theta_{1}}{\theta_{2}}=\frac{\mu_{1}^{2}\left(\mu_{1}^{2}-1\right) \lambda_{2}^{2}}{\mu_{2}^{2}\left(\mu_{2}^{2}-1\right) \lambda_{1}^{2}}
$$

where μ is index of refraction and λ wave-length of light.
A large number of measurements of what has been called molecular rotation have been made, particularly for organic substances. These numbers are not given in the table, but numbers proportional to molecular rotation may be derived from Verdet's constant by multiplying in the ratio of the molecular weight to the density. The densities and chemical formulæ are given in the table. In the case of solutions, it has been usual to assume that the total rotation is simply the algebraic sum of the rotations which would be given by the solvent and dissolved substance, or substances, separately; and hence that determinations of the rotary power of the solvent medium and of the solution enable the rotary power of the dissolved substance to be calculated. Experiments by Quincke and others do not support this view, as very different results are obtained from different degrees of saturation and from different solvent media. No results thus calculated have been given in the table, but the qualitative result, as to the sign of the rotation produced by a salt, may be inferred from the table. For example, if a solution of a salt in water gives Verdet's constant less than 0.0130 at $20^{\circ} \mathrm{C}$., Verdet's constant for the salt is negative.

The table has been for the most part compiled from the experiments of Verdet, \dagger H. Becquerel, \ddagger Quincke, § Koepsel, \| Arons, \mathbb{T} Kundt,** Jahn, $\dagger \dagger$ Schönrock, $\ddagger \ddagger$ Gordon, $\S \S$ Rayleigh and Sidgewick, $|||\mid$ Perkin, TT Bichat.***

As a basis for calculation, Verdet's constant for carbon disulphide and the sodium line D has been taken as 0.0420 and for water as 0.0130 at $20^{\circ} \mathrm{C}$.

* The constancy of this quantity has been verified through a wide range of variation of magnetic field by H. E. J. G. Du Bois (Wied. Ano. vol. 35), p. 137, 1888.
\dagger ""Ann. de Chim. et de Phys." [3] vol. 52, p. r29, 1858.

"Wied. Ann.", vol. 24, p. 606, 1885 -
I "Wied. Ann." vol. 26, p. 456, 1885.
IT "Wied. Ann.", vol. 24, p. 161, 1885 .
" Wied. Ann." vols. 23, p. 228, 1884, and 27, p. 191, 8886.
"Wied. Ann." vol. 43, p. 280, 889 gr .
去 "Zeits. für Phys. Chem." vol. 11, p. 753, 1893.
\$8 " "Proc. Roy. Soc." 36, P. 4, ${ }^{1883}$.
IIIII "Phil. Trans. R. S." ${ }^{176, \text { p. 343, } 8885 .}$
TIT "Jour. Chem. Soc."
*** "Jour. de Phys." vols. 8, p. 204, 1879, and 9, p. 204 and p. 275, 1880.

Smithsonian Tables.

table 376.
MAGNETO-OPTIC ROTATION.
Sollds.

Substance.	Formula.	Wave- length.	Verdet's Mintates Minutes	Temp. C.	Authority.
Amber .		$\stackrel{\mu}{\mu}$	0.0095	18-20 ${ }^{\circ}$	Quincke.
${ }_{\text {Dlende }}$ Diamond -	ZnS		0.2234	15	Becquerel.
Liamond borate -	C	"	0.0127	15	
$\underset{\text { Selenium }}{\text { Lead }}$. . . .	$\mathrm{PbHe}_{2} \mathrm{O}_{4}$	0.687	0.0600	15	"
Sodium borate . . .	${ }_{\text {Nag }}^{\substack{\text { Se }}}$	0.687 0.589	0.4625 0.0170	15	"
Ziqueline . . .	$\underset{\mathrm{Cu}_{2} \mathrm{O}}{\mathrm{Na}_{3}}$	0.589 0.687	0.0170 0.5908	15 15	"
Fluorite	CaFl_{2}	0.2534	0.05989	20	Meyer, Ann. der
		. 3655	. 02526	"	Physik, 30, 1909.
		.4358 .4916	.01717 .01329	"	
		. 589	.00897	"	
		1.00	. 00300	"	
		2.50	. 00049	"	
		3.000.589	. 00030	"	
Glass, Jena: Medium phosphatecrn Heavy crown, Oil43			0.0161 0.0220	${ }^{18}$	DuBois, Wied. Ann. 5I, 1894.
Heavy crown, Oili43		\%	0.0220 0.0317	"	
$\begin{array}{ll}\text { Light flint, } & \mathrm{O}_{4} 45 \mathrm{I} \\ \text { Heavy flint } & \mathrm{O}_{500}\end{array}$		"	0.0608	"	
Zeiss, Ultraviolet . Si63.		"	0.0888	"	
			0.0674 .0369	16	Landau, Phys. ZS. 9, 1908.
"		0.305 0.436	. 0369	,	
Quartz, along axis, i.e., plate cut \perp to axis	SiO_{2}	0.2194	-0.1587	20	Borel, Arch. sc. phys. 16, 1903.
		. 2573	. 1079	"	
		.3609 .4800	.04617 .02574	"	
		. 4800	.02574 .01664	"	
		. 6439	.01664 .01368	"	
Rock salt	NaCl	0.2599	0.2708	20	Meyer, as above.
		. 3100	. 1561	"	
		. 4046	. 0775	"	
		. 4916	. 0483	"	
		. 6708	. 0245	"	
		1.00 2.00	.01050	"	
		2.00 4.00	. 00069	"	
Sugar, cane: along axis IIA	$\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}$	0.451	. 0122	20	Voigt, Phys. ZS. 9, 1908.
		. 540	. 0076	"	
		. 626	. 0066	"	
axis IIA ${ }^{\text {I }}$	-	0.451	0.0129	"	
		. .646	$.0084$	"	
Sylvine	KCl	0.435^{8}	0.0534	20	Meyer, as above.
		. 54461	. 0316	"	
		. 6708	. 02012	"	
		.90 , 20	. 0100608	"	
		1.20 2.00	. 00207	"	
		4.00	. 00054	"	

[^61]Table 377.
MAGNETO-OPTIC ROTATION.
Luquas: : Verdet's Oonstant for $\lambda=0.589 \mu$.

Substance.	Chemical fnrmula.	Density in grams per c. c.	Verdet's constant in minutes.	Temp. C.	Authnrity.
Acetone	$\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{O}$	0.7947	0.0113	20°	Jahn.
Acids : Acetic	$\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}$	1.0561	. 0105	21	Perkin.
" Butyric	$\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{2}$	0.9663	. 0116	15	"
" Formic	$\mathrm{CH}_{2} \mathrm{O}_{2}$	I. 2273	. 0105	"	"
" Hydrochloric	$\xrightarrow{\mathrm{HCl}}$	1.2072	. 0224	"	"
" Hydrobromic	HBr	1. 7859	. 0343	"	"
" Hydroiodic	HI	I. 9473	.0515	"	"
" Nitric	HNO_{8}	I. 5190	. 0070	13	"
* Sulphuric	$\mathrm{H}_{2} \mathrm{SO}_{4}$	-	. 0121	15	Becquerel.
Alcohols: Amyl	$\mathrm{C}_{5} \mathrm{H}_{\mathrm{II}} \mathrm{OH}$	0.8107	. 0128	20	Jahn.
" Butyl	$\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{OH}$	0.8021	. 0124	"	
* Ethyl	$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$	0.7900	. 0112	"	*
" Methyl	$\mathrm{CH}_{3} \mathrm{OH}$	0.7920	. 0093	"	"
" Propyl	$\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{OH}$	0.8042	. 0120	"	"
Benzol	$\mathrm{C}_{6} \mathrm{H}_{6}$	0.8786	. 0297	"	
Bromides : Bromoform	CHBr_{8}	2.9021	. 0317	${ }_{4} 15$	Perkin.
" Ethylene	$\mathrm{C}_{2} \mathrm{C}_{2} \mathrm{H}_{4} \mathrm{Br} \mathrm{Br}_{2}$	1.4486 2.1871	. 01868	,	d
" Methyl	$\mathrm{CH}_{8} \mathrm{Br}$	1.7331	. 0205	0	"
" Methylene	$\mathrm{CH}_{2} \mathrm{Br}_{2}$	2.497 I	. 0276	15	" ${ }^{\text {c }}$
Carbon bisulphide	$\mathrm{CS}_{\text {c }}$	-	.0433 .0420	18 18	Gordon. Rayleigh.
Chlorides: Amyl	CHCl	0.8740	. 0140	20	Jahn.
" Arsenic	AsCl_{3}	-	. 0422	15	Becquerel.
" Carbon	CCl_{4}	-	. 0321	"	
* Chloroform	CHCl_{8}	1.4823	. 0164	20	
" Ethyl	$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Cl}$	0.9169	0.0138	6	Perkin.
" Ethylene	$\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{Cl}_{2}$	I. 2589	.0166	15	${ }^{\text {s }}$
" Methyl	$\mathrm{CH}_{8} \mathrm{Cl}$	-	. 0170	"	Becquerel.
" Methylene	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	I.336I	. 0162	"	Perkin.
" Sulphur bi-	$\mathrm{S}_{2} \mathrm{Cl}_{2}$	-	. 0393	"	Becquerel.
" Tin tetra	SnCl_{4}	-	. 0151	"	
- Zinc bi-	ZnCl_{2}	-	. 0437	"	"
Iodides : Ethyl	$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{I}$	1.9417	. 0296	"	Perkin.
" Methyl	$\mathrm{CH}_{3} \mathrm{I}$	2.2832	. 0336	"	"
" Propyl	$\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{I}$	1.7658	. 0271	"	"
Nitrates : Ethyl	$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{O} . \mathrm{NO}_{2}$	1.1149	. 0091	"	"
" Methyl	$\mathrm{CH}_{3} \mathrm{O} . \mathrm{NO}_{2}$	1.2157	. 0078	"	"
" Propyl	$\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{O} . \mathrm{NO}_{2}$	1.0622	. 0100	"	"
Paraffins: Heptane	$\mathrm{C}_{7} \mathrm{H}_{16}$	0.6880	. 0125	"	
". Hexane	$\mathrm{C}_{6} \mathrm{H}_{14}$	0.6743	.0125	"	"
" Pentane	$\mathrm{C}_{5} \mathrm{H}_{12}$	0.6332	. 0118	"	"
Phosphorus, melted	P	-	. 1316	33	Becquerel.
Sulphur, melted	S	-	. 0803	114	"
Toluene	$\mathrm{C}_{7} \mathrm{H}_{8}$	0.8581	. 0269	28	Schönrock.
Water, $\lambda=0.2496 \mu$	$\mathrm{H}_{2} \mathrm{O}$. 1042		See Meyer,
0.275			. 0776		Ann. der
0.3609			.0384		Physik, 30,
0.4046			. 0293		1909. Meas-
0.500			. 0184		ures by
0.589			.0131		Landau,
0.700			. 0091		Siertsema,
1.000			. 00410		Ingersoll.
Xylene ${ }^{\text {I }} 300$	$\mathrm{C}_{8} \mathrm{H}_{10}$	0.8746	. .02264	27	Schönrock.

Smithsonian Tables.

MACNETO-OPTIC ROTATION.
Solutions of acide and salts in watar. Verdet's oonstant for $\lambda=0.689 \mu$.

${ }_{\text {Chemical }}^{\text {Cormula. }}$	Density, grams per c. c	Verdet's constant in minutes.	Temp.	*	Chemical formula.	Density, $\underset{\text { per c. } \mathrm{c} \text {. }}{\substack{\text { grams } \\ \hline}}$	Verdet's constant in minutes.	Temp.	*
$\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{O}$	0.9715	0.0129	20°	J	LiCl	1.0619	0.0145	20°	${ }^{\text {J }}$
$\underset{\text { H }}{\text { Hr }}$	I. 3775	0.0244	"	$\stackrel{\text { P }}{ }$		1.0316	0.0143		
HCl	I.1163 I. 1573	0.0168 0.0204	"	"	MnCl_{2}	I.1966 1.0876	0.0167 0.0150	1.5	$\stackrel{\text { B }}{ }$
He	1.0762	0.0204 0.0168	"	"	HgCl_{2}	I.038ı	0.015 0.0137	16	S
"	I. 0158	0.0140	"	J		I. 0349	0.0137		
HI	I. 9057	0.0499	"	$\stackrel{\mathrm{P}}{\mathbf{\prime}}$	$\stackrel{\mathrm{NiCl}_{2}}{ }$	I. 4685	0.0270	${ }^{15}$	B
"	1.4495 1. 1760	0.0323 0.0205	"	"	"،	1.2432 1.1233	0.0196 0.0162	"	"
HNO_{3}	I. 3560	0.0105	"	"	KCl	1.6000	0.0163	"	*
NH_{8}	0.8918	0.0153	15	"		1.0732	0.0148	20	d
$\mathrm{NH}_{4} \mathrm{Br}$	1.2805	0.0226		"	NaCl	I. 2051	0.0180	$\stackrel{15}{6}$	$\stackrel{\text { B }}{ }$
	I. 1576	0.0186				1. 0546	0.0144		
${ }_{\text {C/ }} \mathrm{BaBr}_{2}$	1.5399	0.0215	$\stackrel{20}{\prime \prime}$	J	SrCl_{2}	1.0418	0.0144 0.0162	"	"
CdBr_{2}	I. 2855	0.0176 0.0192	,	"	SrCl_{2}	1.1087 1.087	0.0146	"	,
CaBr_{2}	I. 1608	0.0162	"	"	SnCl_{2}	1.3280	0.0266	15	V
CaBr_{2}	I.2491	0.0189	"	"		I.1112 I. 2851	0.0175 0.0196	"	"
KBr	I.1337 1.1424 1.1581	0.0164 0.0163	"	"	ZnCl_{2}	1.2851 1.1595	-0.016	"	"
Sr	1.0876	0.0151	"	"	$\mathrm{K}_{2} \mathrm{CrO}_{4}$	I. 3598	0.0098	"	"
${ }_{\text {NaBr }}$	1.1351	0.0165	"	"	$\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$	1.0786	0.0126		
	1.0824	0.0152 0.0186	"	"	$\mathrm{Hg}_{3} \mathrm{CN}^{(}$	1.0638 1.0605	0.0136 0.0135	16	"
${ }^{\text {S }}{ }^{\text {a }}$	1.8201 1.1416	0.0159	"	"	$\mathrm{NH}_{4} \mathrm{I}$	I. 5948	0.0396	15	$\stackrel{\text { P }}{ }$
$\mathrm{K}_{2} \mathrm{CO}_{8}$	1.1906	0.0140	${ }^{20}$	"	"	1.5109 r.2341	${ }_{0}^{0.0358}$	"	"
$\mathrm{Na}_{2} \mathrm{CO}_{3}$	I. 1006 I. 0564	0.0140 0.0137	"	"	CdI	I. 2341 I. 5156	0.0235 0.0291	20	J
$\mathrm{NH}_{4} \mathrm{Cl}$		0.0137 0.0178	15	V	Cd	1.548 1.1521 1.548	${ }^{0.0291}$	،	"
BaCl_{2}	1. 2897	0.0168	20	${ }^{\prime}$	KI	1.6743	0.0338	${ }_{4}^{15}$	${ }_{4}$
	I. 1338	0.0149	"	"		1.3398 1.1705	0.0237 0.0182	"	"
CdCl_{2}	I. 3179 $\mathbf{1 . 2 7 5 5}$	0.0185	"	"	NaI	I. 1939	0.0200	"	J
"	1.1753 1.1731	0.0160 0.00	"	"	"	1.1191	0.0175		P
CaCl_{2}	1.1531	0.0157	"		${ }_{\mathrm{KNO}}^{4}$	1. 2803	0.0121 0.0130	20	$\stackrel{\mathrm{P}}{ }$
CaCl_{4}	1.1504 1.0832	0.0165 0.0152	"	"	$\mathrm{KNO}_{8} \mathrm{NaNO}_{8}$	1.0634	$\stackrel{+}{0.0131}$	"	"
CuCl_{2}	1.0832 1.5158	-0.022	15	B	$\mathrm{U}_{2} \mathrm{O}_{8} \mathrm{~N}_{2} \mathrm{O}_{5}$	2.0267	0.0053	"	$\stackrel{\text { B }}{ }$
${ }^{\prime}$	ז.1330	0.0156				I. 1963 I. 2286	0.0115 0.0140		P
FeCl_{2}	I. 433 I	0.0025	${ }_{6}^{15}$	"	$\left.{ }_{\text {N }} \mathrm{NH}_{4} \mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$	1.2286 1.447	0.0140 0.0085	${ }^{1}$	${ }^{\text {a }}$
"	1.2141 1.1093	0.0099 0.0118	"	"	BaSO_{4}	I. 1788	-0.0134	$\stackrel{20}{ }$	${ }^{\mathrm{J}}$
$\mathrm{Fe}_{2} \mathrm{Cl}_{6}$	I. 6933	-0.2026	"	"		1.0938	${ }^{0.0133}$	"	"
"	1. 53315	-0.1140	"	"	CdSO_{4}	1.1782 1.0890	- $\begin{aligned} & 0.0139 \\ & 0.0136\end{aligned}$	"	"
"	1.326 I. 1681	-0.0348	"	"	$\mathrm{Li}_{2} \mathrm{SO}_{4}$	$1.17{ }^{62}$	20.0137	"	"
"	1. 0864	0.0081	"	"	MnSO_{4}	1.2441 1.0475 1.065	$\underline{(1)} \begin{aligned} & 0.0138 \\ & 0.013\end{aligned}$	"	"
"	1.0445 1.0232	0.0113 0.0122	"	"	NaSO_{4}	1.0661	- 0.0135		"

* J, Jahn, P, Perkin, V, Verdet, B, Becquerel, S, Schöprock ; see p. 326 for references.

Smithsonian Tasles.

Casos,

See also Siertsema, Ziting. Kon. Akad. Watt., Amsterdam, 7, 1899; 8, 1900.

Du Bois shows that in the case of substances like iron, nickel, and cobalt which have a variable magnetic susceptibility the expression in Verdet's equation, which is constant for substances of constant susceptibility, requires to be divided by the susceptibility to obtain a constant. For this expression he proposes the name "Kundt's constant." These experiments of Kundt and Du Bois show that it is not the difference of magnetic potential between the two ends of the medium, but the product of the length of the medium and the induction per unit area, which controls the amount of rotation of the beam.

TABLE 380. - Ferdet'e and Enndt'0 Oonstants.
The following short table is quoted from Du Bois' paper. The quantities are stated in c. g. s. measure, circular measure (radians) being used in the expression of "Verdet's constant" and "Kundt's constant."

Name of substance.	Magnetic susceptibility.	Verdet's constant.		Wave-length of light in cms.	Kundt's constant.
		Number.	Authority.		
Cobalt	-	-	-	6.44×10^{-5}	3.99
Nickel . .	-	-	-		3.15
Iron . .		-	-	6.56 '	2.63
Oxygen : I atmo.	$+0.0126 \times 10^{-5}$	0.000179×10^{-5}	Becquerel.	5.89	0.014
Sulphur dioxide	$\text { - } 0.0751$			" ${ }^{\text {" }}$	-4.00
Water . .	-0.0694 "	0.377	Arons	"	-5.4
Nitric acid -	-0.0633 "	0.356	Becquerel.	"	-5.6
Alcohol.	-0.0566 "	0.330	De la Rive.	"	-5.8
Ether . ${ }^{\text {a }}$,	-0.0541 ${ }^{6}$	0.315	"	"	-5.8
Arsenic chloride	-0.0876	1.222 "	Becquerel.	"	-14.9
Carbon disulphide	-0.0716	$\text { I. } 222$	Rayleigh.	"	-17.1
Faraday's glass	-0.0982 "	1.738 *	Becquerel.	"	-17.7

[^62]TABLE 381. - Valnes of Eerr's Oonatant.*
Du Bois has shown that the rotation of the major axis of vibration of radiations normally reflected from a magnet is algebraically equal to the normal component of magnetization multiplied into a constant K. He calls this constant K, Kerr's constant for the magnetized substance forming the magnet.

Color of light.	Spectrum line.	Wavelength $\times{ }^{10}{ }^{6}$	Kerr's constant in minutes per c. g. s. unit of magnetization.			
			Cobalt.	Nickel.	Iroa.	Magnetite.
Red	Li $\boldsymbol{\alpha}$	67.7	-0.0208	-0.0173	-0.01 54	+0.0096
Red	-	62.0	-0.0198	-0.0160	-0.0138	+0.0120
Yellow.	D	58.9	-0.0193	-0.0154	-0.01 30	+0.0133
Green .	6	51.7	-0.0179	-0.0159	-0.0ril	+0.0072
Blue .	F	48.6	-0.0180	-0.0163	-0.0101	+0.0026
Violet	G	43.1	-0.0182	-0.0175	-0.0089	-

* H. E. J. G. Da Bois, "Phil. Mag." vol. 29.

TABLE 382.-Dispersion of Kerr Effect.

Wave-leagth.	0.5μ	1.0μ	1.5μ	2.0μ	2.5μ
Steel . . .	-11^{\prime}.	-16^{\prime}.	-14^{\prime}.	-11^{\prime}.	$-9^{\prime} .0$
Cobalt . . .	-9.5	-11.5	-9.5	-11.	-6.5
Nickel . . .	-5.5	-4.0	0	+1.75	+3.0

Field Intensity $=10,000$ C. G.S. units. (Intensity of Magaetization $=$ about 800 in steel, 700 to 800 in cobalt, about 400 in aickel). Ingersoll, Phil. Mag. II, p. 4I, 1906.

TABLE 383. - Dispersion of Kert Effeot.

Mirror.	$\begin{aligned} & \text { Field } \\ & \text { (C. G.S.) } \end{aligned}$. 45μ	.44 μ	. $4^{8 \mu}$. 52μ	. 56μ	. 60μ	. 64μ	. 66μ
Iron	21,500	-. 25	-. 26	-. 28	一.31	$-.36$	-. 42	-. 44	-. 45
Cobalt .	20,000	-. 3^{6}	-. 35	-. 34	-. 35	-. 35	-. 35	-. 35	$-.36$
Nickel .	19,000	-. 16	-. 15	-. 13	-. 13	-. 14	-. 14	-. 14	-. 14
Steel	19,200	-. 27	$-.28$	-.31	-. 35	$-.38$	$-.40$	-. 44	-. 45
Invar .	19,800	-. 22	-. 23	-. 24	-. 23	$-.23$	-. 22	-. 23	-. 23
Magnetite	16,400	-. 07	-. 02	$+.04$	+.06	$+.08$	+.06	$+.04$	+.03

Foote, Phys. Rev. 34, p. 96, 1912.
See also Ingersoll, Phys. Rev. 35, p. 3 r2, 1912, for "The Kerr Rotation for Transverse Magnetic Fields," and Snow, 1. c. 2, p. 29, 1913, "Magnetooptical Parameters of Iron and Nickel."
Smithsonian Tables.

MACNETIC SUSCEPTIBILITY．

If git in 2 the intensity of magnetization produced in a substance by a field strength 据，then the magnetic susceptibility $\mathrm{H}=\mathrm{T} / \mathrm{A}$ ．This is generally referred to the unit mass；italicized figures refer to the unit volume．The susceptibility depends greatly upon the purity of the substance，es－ pecially its freedom from iron．The mass susceptibility of a solution containing per cent by weight of a water－free substance is，if H_{0} is the susceptibility of water，$(\mathrm{p} / 100) \mathrm{H}+(1-\mathrm{p} / 100) \mathrm{H}_{0}$ ．

Substaoce．	Suscep－ tibility．	菷	Remarks	Substance．	Suscep－ tibility．	寘	Remarks
	$\underline{-0.19}$	18°		$\underset{\mathrm{Li}}{\mathrm{K}_{2} \mathrm{CO}_{3} \cdot} \cdot . \quad . \quad . \quad$.	-0.50 +0.38	20°	Sol＇n
$\underset{\text { Air，} 1 \mathrm{Atm}}{\mathrm{AgCl}}$ ．．．．	${ }_{+}^{+0.28}$	15			+0.38 +0.04	18	
Al	＋0．65	18		$\mathrm{Mg} . . .$.	＋0．55	18	
$\mathrm{Al}_{2} \mathrm{~K}_{2}\left(\mathrm{SO}_{4}\right)_{4} 24 \mathrm{H}_{2} \mathrm{O}$	－1．0		Crys．	MgSO4．．．．	－0．40		
A，I Atm ．．．．	－0．10	－		Mn ．	＋ri．	18	
As．	－0．3	18		MnCl_{2} ．．．．	＋122．	18	Sol＇n
Au ．	－0．15	18		MnSO_{4} ．．．	$+100$.	18	${ }^{4}$
B ．	－0．71	18		$\mathrm{N}_{2}, 1$ Atm．	0.001	16	
BaCl_{2}	-0.36	20		NH_{8}－	－1．1		
Be ．	＋0．79	15	Powd．	Na ．	＋0．51	18	
Bi	－1．4	18		$\mathrm{NaCl} \cdot{ }^{\text {－}}$ ．	－0．50	20	
$\mathrm{Br}^{\mathrm{Br}} \cdot$	－0．38	18		NaCO_{8}.	－0．19	17	Powd．
C，arc－carbon	－2．0	18		NaCO_{8} ． $10 \mathrm{H}_{2} \mathrm{O}$	－0．46	17	
C，diamond ．	－0．49	18		Nb	＋1．3	18	
CH_{4} ，I Atm．．	＋0．00\％	16		$\mathrm{NiCl}_{2} \cdot$－	＋40．	18	Sol＇n
CO_{2} ，I Atm．．	＋0．002	16		$\mathrm{NiSO}_{4} \cdot . \cdot$－	＋ 30.	20	＂
CS_{2} ．	－0．77	18		O_{2} ，I Atm．．	＋0．120	20	
CaO.	－0．27	16	Powd．	Os	＋0．04	20	
CaCl_{2} ．${ }^{\text {c }}$	－0．40	19		P，white－．－	－0．90	20	
CaCO_{8} ，marble．	－0．7			P，red ．．．．	－0．50	20	
${ }_{\text {CeBra }}$	＋0．	18		${ }_{\mathrm{PbCl}}^{8}$	－0．12	20	Powd
Cl_{2} ，I Atm．	－0．59	16		Pd ．	-0.25 +5.8	18	
CoCl_{2}	＋90．	18	Sol＇n	PrCl_{8} ．．	＋13．	18	Sol＇n
CoBr_{2}	＋47．	18	＂	Pt ．	＋1．1	18	
CoI_{2} ．	＋33．	18	＂	PtCl_{4}	0.0	22	Sol＇n
$\mathrm{CoSO}_{4} \cdot$	$+57$.	19	＂	Rh ．	＋1．1	18	
$\mathrm{Co}\left(\mathrm{NO}_{8}\right)_{2} \cdot \cdot$	＋57．	18	＂	S ${ }_{\text {S }}$	－0．48	18	
$\mathrm{CrSCl}^{\mathrm{Cr}}$	+3.7 +0.28	18	Powd．	Sb_{2} ， 1 Atm．	一0．30	16 18	
Cu ．	－0．09	18		Se	\cdots	18	
CuCl_{2}	＋12．	20	Sol＇n	Si．．	－0．12	18	Crys．
CuSO_{4}－	$+10$.	20	Sol＇n	SiO_{2} ，Quartz ．．	－0．44	20	
CuS	＋0．16	17	Powd．	－Glass．	－0．5土		
FeCl_{8}	＋90．	18	Sol＇n	Sn ．	＋0．03	20	
FeCl_{2}	＋90．	18	＂	SrCl_{2} ．．．．	-0.42	20	Sol＇n
FeSO_{4} ．	＋82．	20	＂	Ta ．．．．．	＋0．93	18	
$\mathrm{Fe}_{2}\left(\mathrm{NO}_{8}\right)_{\mathrm{B}}$ ．	＋ 50.	18	＂	Te ．．．．．	-0.32	20	
$\mathrm{FeCn}_{6} \mathrm{~K}_{4}$ ．	－0．44		Powd．	Th ．．．．．	＋0．18	18	
$\mathrm{FeCn}_{6} \mathrm{~K}_{8}$ ．	＋9．1			Ti ．．．．．	＋3．1	18	
He，I Atm．	－0．002	－		Va ．．．．	＋1．5	18	
$\mathrm{H}_{2}, 1$ Atm．	0.000	16		Wo ．．．．．	＋0．33	20	
$\mathrm{H}_{2}, 40$ Atm．．．．	0.000	16		Zn ．．．．．	－0．15	18	
$\mathrm{H}_{2} \mathrm{O} . ~ . ~-~ . ~$	－0．79	20		$\mathrm{ZnSO}_{4} \cdot$ ．．．	－0．40		
$\mathrm{HCl}_{\mathrm{H}_{2} \mathrm{SO}_{4}} \cdot$ ．	－0．80	20		$\mathrm{Cr}_{\mathrm{Cr}}^{\mathrm{O}} \mathrm{H}^{-}$	－0．45	I8	
$\xrightarrow[\mathrm{H}_{2} \mathrm{SO}_{4}]{\mathrm{HNO}_{8} \text { ．．}}$	＋0．78	20		$\mathrm{CH}_{8} \mathrm{OH}$－．．	－0．73		
Hg_{8} ．	－0．70	20 20		$\mathrm{C}_{2} \mathrm{C}_{5} \mathrm{OH} \cdot . .$.	－0．80		
I．．	－0．4	20		$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OC}_{2} \mathrm{H}_{5}$ ．	－0．60	20	
In ．	$0.1 \pm$	18		CHCl_{8} ．．．．	－0．58		
Ir ．．．．．	＋0．15	18		$\mathrm{C}_{6} \mathrm{H}_{6}$ ．	－0．78		
$\underset{\mathrm{K}}{\mathrm{C} \boldsymbol{l}}$ ．${ }^{\text {－}}$	＋0．40	20		Ebonite ．．．	＋r．I		
$\underset{\mathrm{KBr}}{\mathrm{KCl}}$ ．	－0．50	20		Glycerine ．．．	－0．64	22	
$\underset{\mathrm{K} \mathrm{I}}{\mathrm{K}}$ ．	－0．40	20		Sugar ．．－	－0．57		
KOH ．	-0.38 -0.35	20	Sol＇n	$\underset{\text { Petroleum．}}{\text { Paratin }}$ ．	－0．58		
$\mathrm{K}_{2} \mathrm{SO}_{4}$ ．	－0．42	20		Toluene ．	－0．97		
KMnO_{4}	＋2．0			Wood ．	－0．2－5		
KNO_{3} ．	-0.33	20		Xylene ．	－0．81 ${ }^{5}$		

Values are mostly means taken of values given in Laodolt－Börnstein＇s Physikalisch－chemische Tabellen．See espe－ cially Hooda，Annalen der Physik（4），32， 1910.
Smithsomian Tables．

Tables 385-387. RESISTANCE OF METALS. MAGNETIC EFFECTS. 333
TABLE 385. - Varistion of Resistanoe of Bismuth, with Temporature, in a Transvorse Magnetio Field.

Proportional Values of Resistance.									
H	$-192{ }^{\circ}$	$-135{ }^{\circ}$	-100°	-37°	0°	+188	$+60^{\circ}$	+ $200{ }^{\circ}$	+183 ${ }^{\circ}$
0	0.40	0.60	0.70	0.88	1.00	1.08	1.25	I. 42	1.79
2000	1.16	0.87	0.86	0.96	1.08	I. I I	1.26	I. 43	1.80
4000	2.32	I. 35	1.20	I.IO	I.I8	I. 21	I. 3 I	I. 46	1.82
6000	4.00	2.06	1.60	1. 29	I. 30	1.32	1.39	I. 51	1.85
8000	5.90	2.88	2.00	I. 50	1.43	1.42	1.46	I. 57	1. 87
10000	8.60	3.80	2.43	1.72	1.57	I.54	1.54	1.62	1.89
12000	10.8	4.76	2.93	1.94	1.71	1.67	1.62	1.67	1.92
14000	12.9	5.82	3.50	2.16	1.87	1.80	1.70	1.73	1.94
16000	I5.2	6.95	4.II	2.38	2.02	1.93	1. 79	1.80	1.96
18000	I7.5	8.15	4.76	2.60	2.18	2.06	1.88	1.87	1.99
20000	I9.8	9.50	5.40	2.81	2.33	2.20	1.97	1.95	2.03
25000	25.5	13.3	7.30	3.50	2.73	2.52	2.22	2.10	2.09
30000	30.7	18.2	9.8	4.20	3.17	2.86	2.46	2.28	2.17
35000	35.5	20.35	I2.2	4.95	3.62	3.25	2.69	2.45	2.25

TABLE 386. - Increase of Resietance of Nickel due to a Trameverse Magnetio Field, expressed as $\%$ of Resistance at 0° and $H=0$.

H	-190°	-75°	0°	+180	+100 ${ }^{\circ}$	+182 ${ }^{\circ}$
0	+o	0	0	\bigcirc	\bigcirc	${ }^{0}$
1000	$+0.20$	$+0.23$	$+0.07$	+0.07	+0.96	\pm
2000	+0.17	$\underline{+0.16}$	$\underline{+0.03}$	$\underline{+0.03}$	\pm	-0.07
3000 4000	- $\begin{array}{r}0.00 \\ -0.17\end{array}$	-0.05	-0.34	-0.36 -0.72	-0.14	-0.60
6000	-0.17	-0.15	-0.00	-0.72 -0.83	-1.02	-I. 53
8000	-0.19	-0.23	-0.76	-0.90	-1.15	-I. 66
10000	-0.18	-0.27	-0.82	-0.95	-1.23	- 1.76
12000	-0.18	-0.30	-0.87	-I. 00	-1.30	-I.85
14000	-0.18	-0.32	-0.91	-I. 04	-r. 37	-1.95
16000	0.17	-0.35	-0.94	-I. 09	-I. 44	$\square_{-2.15}^{-2.05}$
18000	-0.17	-0.38	-0.98	-1.13	-I.51	-2.15
20000	-0.16	-0.41	$-\mathrm{I} .03$	-I. 17	-I. 59	-2.25
25000	-0.14	-0.49	-I.12	- -1.29	-	-2.50
30000 35000	-0.12	-0.56 -0.63	${ }_{-1.32}^{-1.22}$	- $\begin{array}{r}-1.40 \\ -1.50\end{array}$	-1.95	-2.73

F. C. Blake, Ann. der Physik, 28, p. 449; 1909.

TABLE 387. - Ohange of Resistance of Various Metals in a Transvaree Magnetio Field. Room Temperature.

TABLE 388. - Transverse Galvanomegnetio and Thermomagnetio Effects.

Effects are considered positive when, the magnetic field being directed away from the observer, and the primary current of heat or electricity directed from left to right, the upper edge of the specimen has the higher potential or higher temperature.
$E=$ difference of potential produced; $T=$ difference of temperature produced ; $I=$ primary current ; $\frac{d t}{d x}=$ primary temperature gradient; $B=$ breadth, and $D=$ thickness, of specimen; $H=$ intensity of field. C. G. S. units.

Hall effect (Galvanomagnetic difference of Potential), $E=R \frac{H I}{D}$
$\begin{array}{lll}\text { Ettingshausen effect (" } & \text { " } & \text { Temperature), } T=P \frac{H T}{D} \\ \text { Nernst effect (Thermomagnetic } & \text {.. } & \text { " Potential), } E=Q H B \frac{d t}{d x} \\ \text { Leduc effect (} \quad \text { " } & \text { " } & \text { "Temperature), } T=S H B \frac{d t}{d x}\end{array}$

Substance.	Values of R.	$P \times 1{ }^{10} 0$	$Q \times$ тоб.	$s \times \mathrm{ro}^{8}$.
Tellurium	+400 to 800	+200	+360000	+400
Antimony	+0.9"0.22	+2	+9000 to 18000	+200
Steel . ${ }^{\text {- }}$	+.012"0.033	-0.07	-700" 1700	+69
Heusler alloy	+.010" 0.026		+1600" 7000	
Iron	+.007"0.011	-0.06	-1000 " I 500	+39
Cobalt	+.0016"0.0046	+0.01	+1800" ${ }^{\text {\% } 2240}$	+13
Zinc -	- -	-	-54 " 240	+13
Cadmium	+.00055			
Iridium •	+.00040	-	up to -5.0	$+5$
Lead - -	+.00009	-	-5.0 (?)	
Tin. -	$-.00003$	-	-4.0 (?)	
Platinum . - . . -	-. 0002	-		-2
Copper German silver . . .	-.00052	-	-90 to 270	-18
Gold	-.00057 to .00071			
Constantine.	-. 0009			
Manganese . .	-.00093			
Palladium	-. 0007 to . 0012	-	+50 to 130	-3
Silver .	-.0008 ".0015	-	-46"430	-41
Sadium	--.0023			
$\underset{\text { Magnesium }}{\text { Aluminuin }}$	一.00094 to .0035			
Nickel	-.0045 ".024	+0.04 to 0.19	+2000"9000	-45
Carbon	-. 017	+5.	+100	
Bismuth	- up to 16.	+3 to 40	+ up to 132000	-200

TABLE 389. - Variation of Hell Conetant with the Temperature.

1 Barlow, Ann. der Phys. 12, 1903.
${ }^{8}$ Traubenberg, Ann. der Phys. 17, 1905.
2 Everdingen, Comm. Phys. Lab. Leiden, 58.

* Melting-point.

Both tables taken from Jahn, Jahrbuch der Radioactivität und Electronik, 5, p. 166; 1908, who has collected data of all observers and gives extensive bibliography.

Smithsonian Tables.

RÖNTGEN (X-RAYS) RAYS.

Röntgen rays are produced whenever an electric discharge passes through a highly exhausted tube. The disturbance is propagated in straight lines probably with the velocity of light, affects photographic plates, excites phosphorescence, ionizes gases and suffers neither deviation by magnetic forces nor measurable refraction in passing through media of different densities. With extreme exhaustion in the tube they have an appreciable effect after passing through several millimeters of brass or iron. The quality by which it is best to classify the rays is their hardness which is the greater the greater the exhaustion. It is conveniently measured by the amount of absorption which they suffer in passing through a layer of aluminum or tin foil of standard thickness. The number of ions which the rays produce in I sec. in passing through $1 \mathrm{cu} . \mathrm{cm}$. of a gas depends upon its nature and pressure. The absorption of any substance is equal to the sum of the absorption of the individual molecules and the absorption due to any molecule is independent of the nature of the chemical compound of which it forms a part, of its physical state, and probably of its temperature.

Table 390. - Ionization due to Röntgan Raya in Varions Gasaa.

Gas.	Relative ionization.		Deasity.
	Soft rays, Strutt.	Hard rays, Eve.	
Hydrogen	.11	42	0.069
Air	1.00	1.00	1.00
Oxygen	1.39	-	I.ri
Carbon dioxide	1.60	二	1.53 1
Cyanogen	1.05		1.86
Sulphur dioxide	7.97	2.3	2.19
Methyl iodide	31.9 72.0	4.6 13.5	4.32 5.05
Carbon tetrachloride	$45 \cdot 3$	4.9	5.38
Hydrogen sulphide		. 9	1.18

Strutt, Proc. Roy. Soc. 22, p. 209, 1903; Eve, Phil. Mag. 8, p. 6ro, r904.
When Röntgen rays pass through matter they produce secondary Röntgen rays as well as cathodic rays. The former are of two types : the first is like the original rays and may be regarded as scattered primary rays; the second type varies with the nature of the material struck and is independent of the primary rays. If the atomic weight of the material struck is less than that of Calcium then the first type alone is present. The higher the atomic weight of the material struck the more penetrating is the secondary radiation given out. This is shown in the following table where λ is the reciprocal of the distance (cm.) in Al. through which the rays must pass in order that their intensity is reduced to $\mathbf{x} \mathbf{2} \mathbf{2 . 7}$ of its original intensity.

Table 391. - Röntgan Secozdary Raya.

Elemeat.	Cr.	Fe.	Co.	Ni.	Cu.	Zn .	As.	Se.	Sr.	Ag.	So.
${ }_{\lambda}^{\text {Atomic weight }}$	52. 367.	$\begin{gathered} 55.8 \\ 239 . \end{gathered}$	59.0 $\times 93$.	58.7 r60.	$\begin{gathered} 63.6 \\ \times 29 . \end{gathered}$	65.4 ro6.	75.0	79.2 51.	87.6 35.2	$\begin{aligned} & \text { ro8. } \\ & 6.75 \end{aligned}$	119. 4.33

The secondary cathodic rays seem to be independent of the material struck and of the intensity of the original rays. The velocity of these secondary rays depends upon the hardness of the original rays. The following table gives the thickness in cm . of the gas at $760 \mathrm{~mm} . \mathrm{o}^{\circ} \mathrm{C}$. necessary to reduce the energy of the cathodic rays to one half (t) as well as λ as above defined.

TABLE 392. - Röntgen Secondary Cathodio Raya.

Element.	t		λ	
	Air.	Hydrogen.	Air.	Hydrogen
Fe	. 0080	.041	87.2	17.0
Cu	. 0135	. 073	51.9	$9 \cdot 5$
Zn	. 0164	. 09 I	42.7	7.7
As	. 0255		27.4	
Sn	. 176	1.37	3.97	$\cdot{ }^{1}$

Beatty, Phil. Mag. 20, p. 320, 1910.

TABLE 393. - Mean Absorption Coefficients, $\frac{\lambda}{\mathrm{d}}$.

If I_{o} be the intensity of a parallel beam of homogeneous radiation incident normally on a plate of absorbing material of thickness t, then $I=I_{0} e-\lambda x$ gives the intensity I at the depth x. Because of the greater homogeneity of the secondary X-rays they were used in the determination of the following coefficients. The coefficients λ have been divided by the density d .

Radiator.	Absorber.										
	C.	Mg.	Al.	Fe .	Ni.	Cu .	Zn .	Ag.	Sa.	Pt.	Au.
Cr.	15.3	126.	136.	104.	129.	143.	170.	580.	714.	(517.)	(507.)
Fe .	10.1	80.	88.	66.	84.	95.	112.	3^{81} r.	472.	340.	367.
Co.	8.0	64.	72.	67.	67.	75.	92.	314.	392.	281.	306.
${ }_{\mathrm{Ni}} \mathrm{i}$.	6.6	52.	59.	314.	56.	62.	74.	262.	328.	236.	253.
Co.	5.2	41.	48.	268.	63.	53.	61.	214.	272.	194.	210.
Zn .	4.3	35.	39.	221.	265.	56.	50.	175.	225.	162.	178.
As.	2.5	19.	22.	I 34.	166.	176.	204.	105.	132.	106.	106.
Se.	2.0	16.	19.	116.	141.	150.	175.	88.	112.	93.	100.
Ag.	. 4	2.2	2.5	17.	23.	24.	27.	13.	16.	56.	61.

Barkla, Sadia, Phil. Mag. 17, p. 739, 1909.

TABLE 394. - X-Ray Spectra and Atomic Numbers.

Kaye has shown that an element excited by sufficiently rapid cathode rays emits characteristic Röntgen radiations. These have been analyzed and the wave-lengths obtained by Moseley (Phil. Mag. 27, P. 703, 1914) using a crystal of potassium ferrocyanide as a grating. The " K " series of elements shows 2 lines, a and β, the " L " series several. The wave-lengths of the a and β lines of each series are given in the following table. $Q_{K}=\left(v / \frac{3}{4} v_{0}\right)^{\frac{1}{2}} ; Q_{L}=\left(v / \frac{5}{36} v_{0}\right)^{\frac{1}{2}}$ where v is the frequency of the a line and vo the fundamental Rydberg frequency. The atomic number for the K series $=\mathrm{Q}_{\mathrm{K}}+\mathrm{I}$; for the L series $=\mathrm{Q}_{\mathrm{L}}+7.4$ approximately. $\mathrm{v}_{\mathrm{o}}=3.29 \times 10^{15}$.

Element.	a line $\lambda \times 10^{8} \mathrm{~cm}$.	Q_{K}	$\underset{N}{\text { Atomic }} \underset{\substack{\text { Number }}}{\text { nen }}$	$\underset{\substack{\beta \\ \\ \hline \text { line } 0^{8} \mathrm{~cm}}}{ }$	Element.	a line $\lambda \times 10^{8} \mathrm{~cm}$.	Q_{L}	Atomic Number N	$\left.\begin{array}{\|c} \beta \text { line } \\ \lambda \times 10^{8} \mathrm{~cm} . \end{array} \right\rvert\,$
Al	8.364	12.0	13	7.912	Zr	6.091	32.8	40	
Si	7.142	13.0	14	6.729	Cb	5.749	33.8	4 I	$5 \cdot 507$
Cl	4.750	16.0	17		Mo	$5-423$	34.8	42	5.187
K	3.759	18.0	19	3.463	Ru	4.861	36.7	44	4.660
Ca	3.368	19.0	20	3.094	Rh	4.622	37.7	45	
Ti	2.758	21.0	22	2.524	Pd	4.385	38.7	46	4.168
V	2.519	22.0	23	2.297	Ag	4.170	39.6	47	
Cr	2.301	23.0	24	2.093	${ }_{\text {Sn }}$	3.619	42.6	50	
Mn	2.111	24.0	25	1.818	Sb	3.458	43.6	51	3.245
Fe	1.946	25.0	26	1.765	La	2.676	49.5	57	2.47 I
Co	1.798	26.0	27	I. 629	Ce	2.567	50.6	58	2.360
Ni	1.662	27.0	28	1.506	Pr	(2.471)	51.5	59	2.265
Cu	1.549	28.0	29	1.402	Nd	2.382	52.5	60	2.175
Zn	I. 445	29.0	30	1.306	Sa	2.208	54.5	62	2.008
Yt	0.838	38.1	39		Eu	2.130	55.5	63	1.925
Zr	0.794	39.1	40		Gd	2.057	56.5	64	1.853
Cb	0.750	40.2	41		Ho	1.914	58.6	66	1.711
Mo	0.721	41.2	42		Er	1.790	60.6	68	1.591
Ru	0.638	43.6	44		Ta	1.525	65.6	73	1.330
Pd	0.584	45.6	46		W	1.486	66.5	74	
Ag	0.560	46.6	47		Os	I. 397	68.5	76	1.201
					Ir	1.354	69.6	77	1.155
					Pt	1.356	70.6	78	1.121
					Aı	1.287	71.4	79	1.092

Moseley's summary condensed is as follows: Every element from Al to An is characterized by an integer N which determines its X-ray spectrom ; N is identified with the number of positive units of electricity in its atomic nucleus. The order of these atomic numbers (N) is that of the atomic weights except where the latter disagrees with the order of the chemical properties. Known elements correspond with all the numbers between 13 and 79 except 3 . There are here 3 possible elements still undiscovered. The frequency of any line in the X-ray spectrom is approximately proportional to $A(N-b)^{2}$, where A and b are constants. All X-ray spectra of each series are similar in structure differing only in wave-lengths.

Smithsonian Tables.

Radioactivity is a property of certain elements of high atomic weight. It is an additive property of the atom, dependent only on it and not on the chemical compound formed nor affected by physical conditions controlling ordinary reactions, viz : temperature, whether solid or liquid or gaseous, etc.

With the exception of actinium, radioactive bodies emit a, β, or γ rays. α rays are easily absorbed by thin metal foil or a few cms. of air and are positively charged atoms of helium emitted with about $1 / 15$ the velocity of light. They are deflected but very slightly by intense electric or nagnetic fields. The $\boldsymbol{\beta}$ rays are on the average more penetrating, are negatively charged particles projected with nearly the velocity of light, easily deflected by electric or magnetic fields and identical in type with the cathode rays of a vacuum tube. The γ rays are extremely penetrating and non-deviable, analogous in many respects to the very penetrating Röntgen rays. These rays produce ionization of gases, act on the photographic plate, excite phosphorescence, produce certain chemical reactions such as the formation of ozone or the decomposition of water. All radioactive compounds are luminous even at the temperature of liquid air.

Table 398 is based very greatly on Rutherford's Radioactive Substances and their radiations (Oct. 1912). To this and to Landolt-Börnstein Physikalisch-chemische Tabellen the reader is referred for references. In the three radioactive series each successive product (except Ur. Y, and $\mathrm{Ra} . \mathrm{C}_{2}$) results from the transformation of the preceding product and in turn produces the following. When the change is accompanied by the ejection of an α particle (helium, atomic weight $=4.0$) the atomic weight decreases by 4 . The italicized atomic weights are thus computed. Each product with its radiation decays by an exponential law; the product and its radiation consequently depend on the same law. $I=I_{0} e^{-\lambda t}$ where $I_{0}=$ radioactivity when $t=O$, I that at the time t, and λ the transformation constant. Radioactive equilibrium of a body with its products exists when that body is of such long period that its radiation may be considered constant and the decay and growth of its products are balanced.

International radium standard: As many radioactivity measures depend upon the purity of the radium used, in 1912 a committee appointed by the Congress of Radioactivity and Electricity, Brussels, 1910 , compared a standard of 21.99 mg . of pure Ra. chloride sealed in a thin glass tube and prepared by Mme. Curie with similar standards by Hönigschmid and belonging to The Academy of Sciences of Vienna. The comparison showed an agreement of in 300 . Mme. Curie's standard was accepted and is preserved in the Bureau international des poids et mesures at Sèvres, near Paris. Arrangements have been made for the preparation of duplicate standards for governments requiring them.

TABLE 395. - Relative Phosphorescence Ezetted by Radtum.
(Becquerel, C. R. 129, p. 9 12, 1899.)

The screen of black paper absorbed most of the a rays to which the phosphorescence was greatly due. For the last column the iutensity without screen was taken as unity. The γ rays have very little effect.

TABLE 396. - The Production of a Partictes (Helinm), (Geiger and Rutherford, Philosophical Magazine, 20, p. 69r, 1910.)

| Radioactive substance (1 gram.) | | | a particles
 per sec. | Helium per year. |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

TABLE 397. - Heating Effeot of Radium and Ito Emanation.
(Rutherford and Robinson, Philosophical Magazine, 25, p. 312, 1913.)

Heating effect in gram-calories per hour per gram radium.				
	a rays.	β rays.	γ rays.	Total.
Radium -	25.1			25.1
Emanation - .	28.6		-	28.6 30.5
Radium ${ }^{\text {A }}+\dot{\mathrm{C}}$: \quad.	30.5 39.4	4.7	6.4	30.5 50.5
Totals . - .	123.6	$4 \cdot 7$	6.4	134.7

Other determinations: Hess, Wien. Ber. 12x, p. 1, 1912, Radium (alone) 25.2 cal. per hour per gram. Meyer and Hess, Wien. Ber. 121, p. 603, 1912, Radium in equilibrium, 132.3 gram. cal. per hour per gram. See also, Callendar, Phys. Soc. Proceed. 23, p. z, 19ro; Schweidler and Hess, Ion. I, p. x61, 1909; Ångström, Phys. ZS. 6, 685, 1905, etc.
Smithsonian Tables.

RADIOACTIVITY.

$\mathrm{P}=\mathrm{I} / 2$ period $=$ time when body is one-half transformed. $\lambda=$ transformation constant (see previous page). The initial velocity of the a particle is deduced from the formula of Geiger $\mathrm{V}^{3}=\mathrm{aR}$ where $\mathrm{R}=$ range and assuming the velocity for RaC of range 7.06 cm . at 20° is $2.06 \times 10^{9} \mathrm{~cm}$. per sec., i.e. $\mathrm{v}=1.07 \mathrm{r}^{1 / \mathrm{s}}$.

URANIUM-RADIUM GROUP.								
	Atomic Weights.	$\underset{\mathbf{P}}{1 / 2}$	Transformation Constants.$\lambda=\frac{.6931}{P}$	Rays.	a rays.			
					Range. 760^{mm}, $15^{\circ} \mathrm{C}$.	Initial Velocity.	Kinetic Energy	Whole no of ions produced.
					c.m.	c.m. per s.	Ergs.	By an a particle.
Uranium 1	238.5	${ }_{5} \times 10^{6} y$	${ }^{1.4} \times{ }^{10-10} 9$	a	2.50	1.45×10^{60}	$._{65} \times 10^{-5}$	2.26×10^{5}
${ }_{\text {Uranium }}{ }^{\text {Uranium }} \mathbf{X}$	234.5 230.5	$10^{8} \mathrm{yrs}$ 24.6 d	$7 \times 100^{-7}{ }^{7}$.0282 d	$\stackrel{a}{\beta+\gamma}$	2.90	$1.53{ }^{4}$	$.72 \quad 1$	1.37 "
Ur. Y	230.5 \%	24.6 d $\times 1.5 \mathrm{~d}$. 46.8 d	$\stackrel{\beta}{\boldsymbol{\beta}}$				
Ionium	230.5	$2 \times 10^{5} \mathrm{yr}$?	$3.5 \times 1{ }^{-5}{ }^{-5}$	${ }^{\boldsymbol{a}}$	3.00	1.56	.75	
Radium	226.4	2000 y	.000346 y	$a+\beta$	3.30	1.61	.79	1.50 "
Ra Emanation	222	3.85 d	. 180 d	-	4.16	1.73 "	.92 4	1.74 "
Radium A	218	3.0 mm	. 231 m	$\stackrel{a}{\square}$	4.75	1.82 "	m.01 4	$1.88{ }^{\prime \prime}$
Radium B	214	26.8 m	. 0258 m					
$\begin{array}{r} \text { Radium } C \\ \operatorname{RaC}_{2} \end{array}$	214 2109	$\begin{gathered} 19.5 \mathrm{~m} \\ 1.4 \mathrm{~m} \end{gathered}$	$\begin{array}{r} .0355 \mathrm{~m} \\ .405 \mathrm{~m} \end{array}$	$a+\underset{\beta}{\beta}+\gamma$	6.94	2.06 "	1.3I "	2.37 "
Ra O , radio-lead	2107 200	$\begin{aligned} & 1.4 \mathrm{~m} \\ & 16.5 \% \end{aligned}$	$\begin{aligned} & .495 \mathrm{~m} \\ & .042 \mathrm{y} \end{aligned}$	$\begin{gathered} \beta \\ \operatorname{slow} \beta \end{gathered}$				
Ra E.	210	$5.0 \mathrm{~d}$	$. \times 39 \mathrm{~d}$	$\beta+\gamma$				
Ra F. Polooium	270	I36 d	.005 rod	a	3.77	$1.68 \quad 4$. 87 "	1.63 "

ACTINIUM GROUP.

Actinium	A	?		none				
Radio-Act.	A	19.5 d	. 0355 d	$\alpha+\beta$	4.80	1.83×10^{6}	7.02 $\times 10^{-5}$	1.89 $\times 10^{5}$
Actinium X	A-4	10.2 d	. 068 d	a	4.40	1.76	. 94 "	1.79
Act. Emanation	A-8	3.95	. 178 s	a	5.70	1.94 "	1. 15 "	$2.10{ }^{16}$
Actinium A	$A-12$. 002 s	350 s	${ }^{\text {a }}$	6.50	$2.02 \quad 1$	1.25 ${ }^{\text {4 }}$	2.27 "
Actinium B	A-16	36 m	.0193 m	slow β		2.02	4	2.27
Actinjum C	$A-16$ $A-20$	2.1 m 4.7 m	.33 m .147 m	a	$5 \cdot 40$	1.89 ${ }^{6}$	1.10 "	2.02 "

THORIUM GROUP.

Thorium Mesothorium 1 Mesothorium 2 Radiothorium Thorium X Th. Emanation Thorium A Thorium B Thorium C_{1} Thorium C_{2} Th. D	232 228 228 228 224 220 226 212 212 212 208	$\begin{gathered} 1.3 \times 10^{10} \mathrm{y} \\ 5.5 \mathrm{y} \\ 6.2 \mathrm{hr} \\ 2 \mathrm{yrs} \\ 3.65 \mathrm{~d} \\ 54 \mathrm{sec} \\ 0.14 \mathrm{sec} \\ 10.6 \mathrm{~h} \\ 60 \mathrm{~mm} \\ \text { very short } \\ 3.1 \mathrm{~m} \end{gathered}$	$\begin{gathered} 5.3 \times 10^{-11} \\ .126 \mathrm{yr} \\ .112 \mathrm{~h} \\ .347 \mathrm{y} \\ .190 \mathrm{~d} \\ .0128 \mathrm{~s} \\ 4.95 \mathrm{~s} \\ .0654 \mathrm{~h} \\ .0118 \mathrm{~m} \\ - \\ .224 \mathrm{~m} \end{gathered}$	$\begin{gathered} a \\ \text { none } \\ \beta+\gamma \\ a \\ a+\beta \\ a \\ a \\ \beta+\gamma \\ a+\beta \\ a \\ \beta+\gamma \end{gathered}$	$\begin{aligned} & 2.72 \\ & \\ & 3.87 \\ & 5.7 \\ & 5.5 \\ & 5.9 \\ & 5.0 \\ & 8.6 \end{aligned}$	1.50×10^{9}		. $69 \times 10-5$		1.32×10^{8}	
						1.70	"	. 89	${ }^{\prime}$	1.66	،
						$\underline{1.94}$		1.15	"		
						1.94 1.90	"	1.15 1.10	،		"
						1.97		J. 19	"	2.2	
						1. 85	${ }^{\prime}$	1.05	4		${ }^{11}$
						2.22		1.53	"		
Potassium	39.1	?	?								
Rubidium	85.5	?	$?$	$\boldsymbol{\beta}$							

Smithsonian Tables.

$\mu=$ coefficient of absorption for β rays in terms of cms．of aluminum，μ_{1} ，of the γ rays in cms ．of lead so that if J_{0} is the incident intensity， J that after passage through d cms ．， $\mathrm{J}=\mathrm{J}_{0} e^{-\mathrm{d}} \mu$ ．

URANIUM－RADIUM GROUP．				
	β rays．		γ rays．	Remarks．
	Absorption Coefficient $=\mu$	Velocity Light $=$	Absorption Co－ef．$=\mu_{1}$	
	c．m．${ }^{-1}$		c．m．${ }^{-1}$	
Uri	－	－	－	1 gram U emits $2.37 \times 10^{4} a$ particles per
Ur 2				sec．
Ur X	15，510	Wide range	． 72	N rays show no groups of definite veloc－
Ur Y	－	－	－	ities．Chemically allied to Th． Probably branch product．Exists in small
				quantity．
10	－	－	－	Chemically properties of and non－separ－ able from Thorium．
Ra	312	．52， 65	－	Chemically properties of $\mathrm{Ba}{ }^{1} \mathrm{gr}$ ．emits
RaEm	－	－	－	pert gas，density 11 il H，boils $-65^{\circ} \mathrm{C}$ ，
				density solid ${ }^{5-6}$ ，condenses low pres－ sure $-150^{\circ} \mathrm{C}$ ．
Ra A	－	－	－	Like solid，has＋charge，volatile in H ， 400° ，in O about 55° ．
Ra B	13，80， 890	． 36 to 74	4 to 6	Volatile about $400^{\circ} \mathrm{C}$ ．in H．Separated
$\underset{\mathrm{RaC}}{\mathrm{C}}$	13， 53	． 80 to .98	． 50	Volatile in H about 430° ，in O about 1000° ．
RaC_{2}				Probably branch product．Separated by recoil from RaC ．
Ra D	－33， 39	．33， 39	－	Separated with Pb ．not yet separable from it．Volatile below 1000° ．
RaE	43	Wide range	Easy abs．	
Ra F	$\underline{1}$			Separated with Bi．Probably changes to Pb ．Volatile about 1000° ．
actinium group．				
Act	－	－	－	Probably branch product Ur．series． Chemically allied to Lanthanum．
Rad．Act	140	－	－	
Act X ${ }^{\text {Ac．Em．}}$	－	二	二	Chemical properties analogous to Ra ． Inert gas，
				$\begin{aligned} & \text { nert gas, } \\ & -150^{\circ} . \end{aligned}$
Act A	－	－	－	Analogous to Ra A．Volatile above 400° ．
Act B	Very soft	二	－	$" \quad$＂RaB．＂ $"$ RaC．
Act Act D	28.5	二	．217（Al）	（Obtained by recoil）．
THORIUM GROUP．				
Th．	－	－	－	Volatile in electric arc．Colorless salts not
Mes．Th． I	－	． 37 to ． 66	－	spontaneously phosphorescent． Chemical property analogous to Ra from
				which non－separable．
Mes．Th， 2 Rad．Th．	20 to 38.5	二	$\cdot 53$	Chemically allied to Th．，non－separable
				from it．
Th． X Th．	About 330	.$^{47} \ldots .5$	二	
Th．Em．		－	－	Inert gas，condenses at low pressure between -120° and -150° ．
Th．A	IT．		－	＋charged，collected on－electrode． Chemically analogous to Ra B．Volatile
Th．B	IIO．	． $63 \quad .72$		Chemically analogous to Ra B．Volatile above $63^{\circ} \mathrm{C}$ ．
Th． C_{1}	15.6	－	Weak	Chemically analogous to RaC．Volatile above 730° ．
Tb． C_{2}	－	－	－	Th． C_{2} and $\mathrm{Th} . \mathrm{D}$ are probably respectively β and α ray products from Th． C_{1} ．
Th．D	24.8	．3，4，．93－5	． 46	Got by recoil from Th．C．Probably transforms to Bi ．
			－	Activity $=1 / 1000$ of Ur．
Rb．	380，1020	－	－	$\ldots=1 / 500$ of Ur．

Tables 399-401.
RADIOACTIVITY.
TABLE 399.-Stopping Powsis of Various Sabatances for a Raya.
s, the stopping power of a substance for the α rays is approximately proportional to the square root of the atomic weight, w.

Substance s \quad. $\sqrt{\text { w. }}$.	$\begin{gathered} \mathrm{H}_{2} \\ .24 \\ .26 \end{gathered}$	$\begin{array}{r} \text { Air } \\ \text { I. } \\ \text { I. } \end{array}$	$\begin{gathered} \mathrm{O}_{2} \\ \mathrm{I} .05 \\ \mathrm{I} .05 \end{gathered}$	$\mathrm{C}_{2} \mathrm{H}_{2}$ 1.11 1.17	$\mathrm{C}_{2} \mathrm{H}_{4}$ I .35 I .44	$\begin{gathered} \text { AI } \\ \text { I. } 45 \\ \text { I. } 37 \end{gathered}$	$\begin{array}{r} \mathrm{N}_{2} \mathrm{O} \\ \mathrm{I} .46 \\ 1.52 \end{array}$	$\begin{array}{r} \mathrm{CO}_{2} \\ \mathrm{I} .47 \\ \mathrm{I} .5 \mathrm{I} \end{array}$	$\mathrm{CH}_{5} \mathrm{Br}$ 2.09 2.03	$\begin{gathered} \mathrm{CS}_{2} \\ 2.18 \\ 1.95 \end{gathered}$	Fe 2.26 1.97
Substance	Cu	Ni	Ag	Sn	$\mathrm{C}_{5} \mathrm{H}_{5}$	$\mathrm{C}_{5} \mathrm{H}_{12}$	$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{I}$	CCl_{4}	Pt	Au	Pb
s .	2.43	2.46	3.17	$3 \cdot 37$	3.37	3.59	3.13	4.02	4.16	4.45	4.27
$\sqrt{ }$ w.	2.10	2.20	2.74	2.88	3.53	3.86	3.06	3.59	3.68	3.70	3.78

Bragg, Philosophical Magazine, 11, p. 617, 1906.
TABLE 400. - Absorption of β Rays by Various Substancsa.
μ, the coefficient of absorption for β rays is approximately proportional to the density, D. See Table 398 for μ for Al.

For the above data the β rays from Uranium were used.
Crowther, Philosophical Magazine, 12, p. 379, 1906.

TABLE 401. - Absorption of $\boldsymbol{\gamma}$ Rays by Various Substances.

Substance.	Density.	Radium rays.		Uranium rays.		$\underset{\mu(\mathrm{cm})^{\mathrm{T}} \mathrm{Th} . \mathrm{D}}{1.1}$	$\underset{\mu(\mathrm{cm})^{-1}}{\mathrm{Meses}_{2}}$	Range of thickuess cm .
		$\mu(\mathrm{cm})^{-1}$	100\%/D	$\mu(\mathrm{cm})^{-1}$	x 0 / / D			
Hg	13.59	. 642	4.72	. 832	6.12			.3 to 3.5
	11.40	. 495	4.34	. 725	6.36	.462	. 620	. 0 " 7.9
Cu .	8.81	. 351	3.98	. 416	4.72	. 294	. 373	.0" ${ }^{\text {c }} 7.6$
Brass	8.35	. 325	3.89	- 392	4.70	. 271	. 355	.0" 5.86
$\stackrel{\mathrm{Fe}}{\mathrm{Sn}}$	7.62 7.24	. 304	3.99 3.88	- 360 .34	4.72 4.70	.250 .236	. 305	
${ }_{\text {Ln }}$	7.24 7.07	. 2288	3.88 3.93	. 341 I	4.70 4.65	. 233	.305 .300	.0 .0 0 5.5 .0
Slate.	2.85	.118	4.14	. 134	4.69	. 096	. 30	. 0 " 9.4
Al	2.77	.111	4.06	. 130	4.69	. 092	. 119	.0 " 11.2
Glass	2.52	. 105	4.16	. 122	4.84	. 089		
${ }_{\text {S }}$. ${ }^{\text {d }}$	1.79	. 078	4.38	. 092	5.16	. 066	. 083	.0 "11.6
Parafin.	. 86	. 042	4.64	. 043	5.02	.031	. 050	.0 " 11.4

In determining the above values the rays were first passed through one cm . of lead.
Russell and Soddy, Philosophical Magazine, 21, p. r30, 191 r.

Smithsonian Tablee.

RADIOACTIVITY.

TABLE 402. - Total Number of Ions producad by the a, β, and γ Rays.

The total number of ions per second due to the complete absorption in air of the β rays due to I gram of radium is 9×10^{14}, to the γ rays, 13×10^{14}.

The total number of ions due to the α rays from 1 gram of radium in equilibrium is 2.56×10^{18}. If it be assumed that the ionization is proportional to the energy of the radiation, then the total energy emitted by radium in equilibrium is divided as follows : 92.1 parts to the $\alpha, 3.2$ to the $\beta, 47$ to the γ rays. (Rutherford, Moseley, Robinson.)

TABLE 403. - Amount of Radium Emanation. Curie.

At the Radiology Congress in Brussels in 1910, it was decided to call the amount of emanation in equilibrium with 1 gram of pure radium one Curie. [More convenient units are the millicurie ($10^{-8} \mathrm{Curie}$) and the microcurie ($10^{-6} \mathrm{Curie}$)]. The rate of production of this emanation is 1.24×10^{-9} $\mathrm{cu} . \mathrm{cm}$. per second. The volume in equilibrium is $0.59 \mathrm{cu} . \mathrm{mm} .\left(760 \mathrm{~cm} ., \mathrm{O}^{\circ} \mathrm{C}\right.$.) assuming the emanation mon-atomic.

The Mache unit is the quantity of Radium emanation without disintegration products which produces a saturation current of 10^{-8} unit in a chamber of large dimensions. I curie $=2.5 \times 10^{9}$ Mache units.

The amount of the radium emanation in the air varies from place to place; the amount per cubic centimeter of air expressed in terms of the number of grams of radium with which it would be in equilibrium varies from 24×10^{-12} to 350×10^{-12}.

TABLE 405. - Refarancas to Spactra of Radioaotiva Subatanoaa.

Radium spectrum :
Radium emanation spectrum :
Polonium spectrum :

Demarçay, C. R. 131, p. 258, 1900.
Rutherford and Royds, Phil. Mag. 16, p. 313, 1908; Watson, Proc. Roy. Soc. A 83, p. 50, 1909.
Curie and Debierne, Rad. 7, p. 38, igıo, C. R. i 50, p. 386, 1910.

Elementary electrical charge, charge on electron, $1 / 2$ charge $\left\{^{e=4.774 \times 10^{-10} \text { e.s. u. (M) }}\right.$
on a particle,
Mass of an electron,
Radius of an electron,
Number of molecules per gram molecule,
Number of gas molecules per cc., $760^{\mathrm{mm}}, 0^{\circ} \mathrm{C}$,
Kinetic energy of a molecule at $0^{\circ} \mathrm{C}$,
Constant of molecular energy, $\mathrm{E}_{0} / \mathrm{T}$,
Constant of entropy equation (Boltzmann), $=R / N$ (
$=p_{0} V_{0} / T N=(2 / 3) \epsilon$,
Elementary " Wirkungsquantum,"
Mass of hydrogen atom,
Radius of an atom,
Gas constant, $R=22.412 / 273$. 1 for 1 gram molecule of an ideal gas. Pressure in atmospheres, $g=980.6$, vol. in liters, $R=.08207$ liter. Atm/grm.

	H_{2}	He	N_{2}	O_{2}	Xe	CO_{2}	$\mathrm{H}_{2} \mathrm{O}$
Sq. rt. of mean sq. molec. veloc., cm. $/ \mathrm{sec}$. at $0^{\circ} \mathrm{C} . \times 10^{-4}$	18.4	13.1	4.93	4.61	2.28	3.92	7.08
Mean free path cm. $\times 10^{6}$	18.	28.	9.4	9.9	5.6	6.4	7.2
Molecular diameter $\mathrm{cm} . \times 10^{8}$	2.2	2.2	$3 \cdot 3$	3.0	3.4	4.2	3.8

(M) Millikan, Phys. Rev. 2, p. 109, 1913. The other values are mostly means.

Smithsonian Tables.

PERIODIC SYSTEM OF THE ELEMENTS.

o	1	II	III	IV	v	vi	VII	
	$\mathrm{R}_{2} \mathrm{O}$	RO	$\mathrm{R}_{2} \mathrm{O}_{3}$	RO_{2}	$\mathrm{R}_{2} \mathrm{O}_{5}$	RO_{3}	$\mathrm{R}_{2} \mathrm{O}_{7}$	
				RH_{4}	RH_{3}	RH_{2}	RH	- 20 Hydrides
He	Li	G1	B	C	N	0	F	-
4	7	9	II	12	14	16	19	-
Ne	Na	Mg	Al	Si	P	S	Cl	-
20	23	24	27	28	31	32	35	-
A	K	Ca	Sc	Ti	v	Cr	Mn	Fe Ni Co
40	39	40	44	48	51	52	55	$\begin{array}{llll}56 & 59 & 59\end{array}$
-	Cu 64	Zn 65	Ga	Ge	As	Se	Br 80	-
Kr	Rb	Sr	Yt	Zr	Cb	Mo	-	Ru Rh Pd
82	85	88	89	91	94	96	-	102103107
-		Cd	In	Sn	Sb	Te	I	-
-	108	112	115	119	120	128	127	-
X	Cs	Ba	La	Ce	-	-	-	-
128	133	${ }^{1} 37$	${ }^{1} 39$	140		-	-	-
-	-	-	-			-	-	-
		-		-	Ta	W	-	Os $\quad \mathrm{Ir} \quad \mathrm{Pt}$
-	-	-	173	-	185	184	-	191 193195
-	Au 197	$\underset{201}{\mathrm{Hg}}$	T1 204	$\underset{207}{\text { Pb }}$	Bi 208	-	-	-
-	-	Ra 226	-	Th 232	-	${ }_{238}^{\text {U }}$	-	-

Smithsonian Tables.

APPENDIX.

DEFINITIONS OF UNITS.

ACTIVITY. Power or rate of doing work; unit, the watt.
AMPERE. Unit of electrical current. The international ampere, "which is one tenth of the unit of current of the C. G. S. system of electro-magnetic units, and which is represented sufficiently well for practical use by the unvarying current which, when passed through a solution of nitrate of silver in water, and in accordance with accompanying specifications"," (see pages xxxvi, 26I), "deposits silver at the rate of 0.001 II 8 of a gram per second."
The ampere $=\mathrm{I}$ coulomb per second $=\mathrm{I}$ volt through I ohm $=10^{-1}$ E. M. U. $=3 \times$ 10^{9} E.S. U. ${ }^{*}$
$\xrightarrow[\text { Amperes }]{\text { IO }}=$ volts $/ \mathrm{ohms}=$ watts $/$ volts $=(\text { watts } / \mathrm{ohms})^{\frac{1}{t}}$.
Amperes \times volts $=$ amperes $^{2} \times$ ohms $=$ watts.
ANGSTROM. Unit of wave-length $=10^{-10}$ meter.
ATMOSPHERE. Unit of pressure.
English normal $=14.7$ pounds per sq. in $=29.929 \mathrm{in} .=760.18 \mathrm{~mm} . \mathrm{Hg} .32^{\circ} \mathrm{F}$.

- French $"=760 \mathrm{~mm}$. of Hg. $0^{\circ} \mathrm{C} .=29.922 \mathrm{in} .=14.70 \mathrm{lbs}$. per sq. in.

BOUGIE DECIMALE. Photometric standard; see page 178.
BRITISH THERMAL UNIT. Heat required to raise one pound of water at its temperature of maximum density, $I^{0} \mathrm{~F} .=\mathbf{2 5 2}$ gram-calories.
CALORY. Small calory $=$ gram-calory $=$ therm $=$ quantity of heat required to raise one gram of water at its maximum density, one degree Centigrade.
Large calory $=$ kilogram-calory $=$ rooo small calories $=$ one kilogram of water raised one degree Centigrade at the temperature of maximum density.
For conversion factors see page 237.
CANDLE. Photometric standard, see page 178.
CARAT. The diamond carat standard in U. S. $=200$ milligrams. Old standard $=205.3$ milligrams $=3.168$ grains.
The gold carat: pure gold is 24 carats; a carat is $1 / 24$ part.
CARCEL. Photometric standard; see page 178 .
CIRCULAR AREA. The square of the diameter $=1.2733 \times$ true area.
True area $=0.785398 \times$ circular area.
COULOMB. Unit of quantity. The international coulomb is the quantity of electricity transferred by a current of one international ampere in one second. $=10^{-1} \mathrm{E} . \mathrm{M}$. U. $=3 \times 10^{9} \mathrm{E} . \mathrm{S} . \mathrm{U}$.
Coulombs $=$ (volts-seconds)/ohms $=$ amperes X seconds.
CUBIT $=18$ inches.
DAY. Mean solar day. $=1440$ minutes $=86400$ seconds $=1.0027379$ sidereal day .
Sidereal day $=86164.10$ mean solar seconds.
DIGIT. $3 / 4$ inch; $I / 12$ the apparent diameter of the sun or moon.
DIOPTER. Unit of "power" of a lens. The number of diopters $=$ the reciprocal of the focal length in meters.
DYNE. C. G. S. unit of force $=$ that force which acting for one second on one gram produces a velocity of one centimeter per second.
$=$ weight in grams divided by the acceleration of gravity in cm . per sec.
ELECTROCHEMICAL EQUIVALENT is the ratio of the mass in grams deposited in an electrolytic cell by an electrical current to the quantity of electricity.
ENERGY. See Erg.
ERG. C. G. S. unit of work and energy = one dyne acting through one centimeter.
For conversion factors see page 237.
FARAD. Unit of electrical capacity. The international farad is the capacity of a condenser charged to a potential of one international volt by one international coulomb of electricity. $=10^{-9}$ E. M. U. $=9 \times 10^{12} \mathrm{E} . \mathrm{S} . \mathrm{U}$.
The one-millionth part of a farad (microfarad) is more commonly used.
Farads $=$ coulombs $/$ volts.

[^63]FOOT-POUND. The work which will raise one pound one foot high.
For conversion factors see page 237.
FOOT-POUNDALS. The English unit of work $=$ foot-pounds $/ \mathrm{g}$.
For conversion factors see page 237.
g. The acceleration produced by gravity.

GAUSS. A unit of intensity of magnetic field $=1$ E. M. U. $=\frac{1}{3} \times 10^{-10}$ E. S. U.
GRAM. See page 6.
GRAM-CENTIMETER. The gravitation unit of work = g. ergs.
GRAM-MOLECULE, $=x$ grams where $x=$ molecular weight of substance.
GRAVITATION CONSTANT $=G$ in formula $G \frac{m_{1} m_{2}}{\mathrm{r}_{2}}=666.07 \times 10^{-10} \mathrm{~cm} .{ }^{3} / \mathrm{gr} . \mathrm{sec}^{2}{ }^{2}$
For further conversion factors see page 237.
HEAT OF THE ELECTRIC CURRENT generated in a metallic circuit without selfinduction is proportional to the quantity of electricity which has passed in coulombs multiplied by the fall of potential in volts, or is equal to (coulombs X volts) $/ 4 \cdot \mathrm{I} 8 \mathrm{I}$ in small calories.
The heat in small or gram-calories per second $=\left(\right.$ amperes $^{2} \times$ ohms $) / 4.18 \mathrm{I}=$ volts $^{2} /$ (ohms $\times 4.18 \mathrm{I})=($ volts \times amperes $) / 4.18 \mathrm{I}=$ watts $/ 4.18 \mathrm{I}$.
HEAT. Absolute zero of heat $=-273.13^{\circ} \mathrm{C},-459.6^{\circ}$ Fahrenheit, -218.5° Reaumur.
HEFNER UNIT. Photometric standard; see page 178.
HENRY. Unit of induction. It is "the induction in a circuit when the electromotive force induced in this circuit is one international volt, while the inducing current varies at the rate of one ampere per second. ${ }^{\prime \prime}=10^{8} \mathrm{E} . \mathrm{M} . \mathrm{U} .=\frac{1}{8} \times 10^{-11} \mathrm{E} . \mathrm{S} . \mathrm{U}$.
HORSE-POWER. The practical unit of power $=33,000$ pounds raised one foot per minute. $=550 \mathrm{ft} . \mathrm{pds}$. per sec. $=0.746$ kilowatt $=746 \mathrm{watts}$.
JOULE. Unit of work $=10^{7}$ ergs.
Joules $=$ (volts ${ }^{2} \times$ seconds) $/$ ohms $=$ watts \times seconds $=$ amperes ${ }^{2} \times$ ohms \times sec.
For conversion factors see page 237.
JOULE'S EQUIVALENT. The mechanical equivalent of heat $=4.185 \times 10^{7}$ ergs. See page 227.
KILODYNE. 1000 dynes. About I gram.
L1TER. See page 6.
LUMEN. Unit of flux of light-candles divided by solid angles.
MEGABAR. Unit of pressure $=0.987$ atmospheres.
MEGADYNE. One million dynes. About one kilogram.
METER. See page 6.
METER CANDLE. The intensity lumination due to standard candle distant one meter.
MHO. The unit of electrical conductivity. It is the reciprocal of the ohm.
MICRO. A prefix indicating the millionth part.
MICROFARAD. One millionth of a farad, the ordinary measure of electrostatic capacity.
MICRON. $(\mu)=$ one millionth of a meter.
MIL. One thousandth of an inch.
MILE. See pages 5, 6.
MILE, NAUTICAL or GEOGRAPHICAL $=6080.204$ feet.
MILLI-: A prefix denoting the thousandth part.
MONTH. The anomalistic month $=$ time of revolution of the moon from one perigee to another $=27.55460$ days.
The nodical month = draconitic month $=$ time of revolution from a node to the same node again $=27.21222$ days.
The sidereal month $=$ the time of revolution referred to the stars $=27.32166$ days (mean value), but varies by about three hours on account of the eccentricity of the orbit and "perturbations."
The synodic month $=$ the revolution from one new moon to another $=29.5306$ days (mean value) $=$ the ordinary month. It varies by about i3 hours.
OHM. Unit of electrical resistance. The international ohm is based upon the ohm equal to 10^{9} units of resistance of the C. G. S. system of electromagnetic units, and "is represented by the resistance offered to an unvarying electric current by a column of mercury, at the temperature of melting ice, $\mathbf{1 4 . 4 5 2 , 1 \text { grams in mass, of a constant cross }}$ section and of the length of 106.3 centimeters." $=10^{2} \mathrm{E} . \mathrm{M} . \mathrm{U} .=1{ }_{9} \times 10^{-11} \mathrm{E} . \mathrm{S} . \mathrm{U}$.
International ohm $=1.01367$ B. A. ohms $=1.06292$ Siemens' ohms.
B. A. ohm $=0.9865$ I international ohms.

Siemens' ohm $=0.94080$ international ohms. See page 272.
PENTANE CANDLE. Photometric standard. See page 178.
$\mathrm{PI}=\pi=$ ratio of the circumference of a circle to the diameter $=3.14159265359$.
POUNDAL. The British unit of force. The force which will in one second impart a velocity of one foot per second to a mass of one pound.
RADIAN $=180^{\circ} / \pi=57.2957^{\circ}=57^{\circ} 17^{\prime} 45^{\prime \prime}=206625^{\prime \prime}$.
SECOHM. A unit of self-induction $=1$ second $\times 1$ ohm.

THERM $=$ small calory $=$ quantity of heat required to warm one gram of water at its temperature of maximum density one degree Centigrade.
THERMAL UNIT, BRITISH = the quantity of heat required to warm one pound of water at its temperature of maximum density one degree Fahrenheit $=25^{2}$ gram-calories.
VOLT. The unit of electromotive force (E. M. F.). The international volt is "the electromotive force that, steadily applied to a conductor whose resistance is one international ohm, will produce a current of one international ampere, and which is represented sufficiently well for practical use by iooo/ 1434 of the electromotive force between the poles or electrodes of the voltaic cell known as Clark's cell, at a temperature of $15^{\circ} \mathrm{C}$ and prepared in the manner described in the accompanying specification." $=10^{8} \mathrm{E}$. M. U. $=1 / 300$ E. S. U. See pages xxxiv and 261 .
VOLT-AMPERE. Equivalent to Watt/Power factor.
WATT. The unit of electrical power $=10^{7}$ units of power in the C. G. S. system. It is represented sufficiently well for practical use by the work done at the rate of one Joule per second.
Watts $=$ volts \times amperes $=$ amperes $^{2} \times$ ohms $=$ volts $^{2} /$ ohms (direct current or alternating current with no phase difference).
For conversion factors see page 237.
Watts \times seconds $=$ Joules.
WEBER. A name formerly given to the coulomb.
YEAR. See page iog.
Anomalistic year $=365$ days, 6 hours, 13 minutes, 48 seconds.
Sidereal "" = 365 " $\quad 6 \quad$ " $\quad 9 \quad " \quad 9.314$ seconds.
Ordinary " $=365$ " 5 "" 48 " $46+$
Tropical " same as the ordinary year.

INDEX.

For the definition of units, see Appendix.

a rays, absorptive powers for definition and properties $\quad \begin{array}{r}\text { PAGE. } \\ 340\end{array}$	Boiling-point, raising of, by salts ln solution . 219 of water and barometric pressure . 170
Aberration constant 109	Brick, crushing strength of 68
nt: air 181, 182	Brightness of various lights 178
$\underset{\beta \text {-rays }}{\substack{\text { aray }}}: \quad: \quad: \quad: 340$	British weights and measures 7-10
-r-rays 340	χ rays, absorption coefficients for 340
Absorpton of pases by X-rays 335, 336	Cadmium line, wave-length of red ${ }^{\text {c }} 72$
Absorpton of gases by liquids 144	Candle, energy from 178
Absorption of light: atmospheric $\begin{gathered}\text { color screens }\end{gathered} . . .188 \mathrm{r}, 182$	Candle power, standard 178
$\begin{aligned} & \text { color screens } \\ & \text { Jena glasses }\end{aligned} \quad . \quad . \quad . \quad .2019$	Calibration curves, for thermo-elements . . 250
Acceleration of gravity . . . i04-r07	Capacity, specinc mative gases 3149
Aerodynamic data: soaring data 125	liquids 310
Agonic line wind pressures 124	liquid gases - . 312
Agonic line - 116	solids . - . . 313
	Capillarity, correction to barometer for . . . 123
	liquids near solidifying point . . . 146
	Salt solutions in water - 145
Air thermometer, comparisons $:$ - . . 24	thickness of soap films ${ }^{46}$
Air: transmissibility of, for radiation . . 18 I , 182	
Alcohol: density 98-100	Carrying capacity of wires ${ }^{\text {c }}$. . . . 279
vapor pressure 149	Cells, voltaic: composition, E. M. F. . . 262-263
viscosit	double-fivid 263
ys: densities 87	secondary 263
electrical $\begin{gathered}\text { conductivity of } \\ \text { resistance of }\end{gathered} .: ~: ~$ 277-280 $273-280$	
low temp. : ${ }^{\text {273-280 }}$	\qquad
melting-points 22	tro-, equivalents . . . 301
specific heats 241	equivalent of silver . $26 \mathrm{r}, 301$
thermal conductivity 205	Chemical elements: atomic weights 301
thermoelectric powers 269	boiling-points 218
Alternating currents, resistance of wires for - . 297	compressibility 73
Altitudes, determination of by barometer . . 169	conductivity, thermal ${ }_{\text {densities }}$. ${ }^{205}$
or resistance 284	electro-chemical equivalents ${ }_{4} 30 \mathrm{I}$
wire table, English 292	hardness 73
metric 293	melting-points . : . . ${ }^{217}$
Alums: indices of refraction ${ }^{187}$	resistance, electrical - 274-276
Antilogarithms 26-20	spermal conductivities ${ }_{\text {a }}^{\text {238, }} \mathbf{- 2 4 0}$
	expansion, linear ${ }^{\circ}$: 232
Aqueous solutions: boiling-points ${ }^{\text {densities }} 922$	Circular functions: argument ${ }^{\circ}{ }^{\circ}$) ${ }^{\circ}$. . 32
alcohols $: ~: ~: ~ .98-100$ ffusion of :	
electrolytic conductivities 302-303	$\begin{aligned} & \text { Coals, } \\ & \text { Cobalt, magnetic properties of } \end{aligned}: \quad: \quad . \quad 32$
Aqueous vapor: pressure 154-155	Color screens 201-202
Aqueous vapor saturated, weight of . . . 156	Combination, heat of 212
transparency 182	Combustion, heat of coals 2150
Astronomical data ${ }^{\text {c }}$ (. . . . 109.110	explosives fuels (liquid)
tomic numbers 336	Compressibility: chemical elements
Atomic weights	
β rays, absorption coefficients .	Concretes: resistance to crushing 68
Barometer: boilng ters beights $70-171$	Conductivity, electrical: see Resista
correction for capillarity 123	
latitude, inch - . 121	alternating currents, effect of magnetic field, effect of ${ }^{\text {a }}$, ${ }^{\text {a }}$
sea level metric . . 122	electrolytic 302-308
temperature . . . 119	equivalent . . - 305-308
heights, determination of, by . . 669	ionic (separate ions) • - 308
Batteries: composition, electromotive forces . 262	fic molecular - . 303
Baumé scale: conversion to densities ${ }^{\text {beld }}$: $: 331$	temp'ture coef. . 304
muth, resistance of, in magnetic feld : $: 333$	glass and porc'l'n, temp'ture
	coef. 282
oiling-points. inorganic compounds . . 219,220	Conductivity, thermal : gases 207
organic compounds . . . 223-225	iquids 207

Differential formulæ Diffusion: aqueous solutions, water ${ }^{*}$: : . 12
gases and vapors: coefficients : . . I40
metals into metals I40
vapors 139
Diffusion integral
Diffusivities, thermal
Dip, magnetic II3
secular change II3
Dispersion of Kerr Constant 33 I

$\log . e^{x}, x$, from o to 10 48

$e^{\frac{\sqrt{\top} \pi}{4} x}, e^{-\frac{\sqrt[V]{2}}{2}-x}$, and their logarithms... .55
$\frac{e x+e-x}{2}$, and their logarithms 4 I
$\frac{e^{x-e-x}}{2}$, ". ". 4 I

distance from sun IO9
length of degrees 108
: crystals 74-75
.
Electric lights, efficiency of 179
Electrical conductivity: alloys ${ }^{277-279}$
alternating current, effect of 297 magnetic field, effect of . . 333
Electrical resistance: see Conductivity.
metals and alloys, low temp. 280
specific: metallic wires . . 273 metals * 274
temperature coefficients . 276
temperature effect, glass . 282
Electricity, specific heat of .
Electrachemical equivalents 30I, $26 I$
Electrolytic conductivity:
equivalent 305-308
specific molecular . . . 303
limiting values 304 temp. coef • 304
Electromagnetic /electrostatic units $=v$. . . 260
Electromotive force: cells: double fluid . . . 263
standard . . 261,263
contact. 264-266
liquids-liquids in air
metals in salt solutions .264
Peltier 275
salts with liquids
solids-solids in air . . 264
thermo-electric . 268-270
Elementary "Wirkungsquantum" . . . 25I, 342
Electrons, miscellaneous data 342
boiling-points 218
compressibility 73
densities $\cdot{ }^{\circ} 205$
hardness
melting-points 217
periodic system 343
specific heats 238,240
spectra (prominent lines) 172
expansion, linear 232 cubical, gases . 236
Emanation, radium 34I
Emission of perfect radiator 251

Longitude of a few stations 3000030
Lowering of freezing-points by salts 227
Lubricants for cuttiog tools 226
Lunar parallax IO9
Mache radioactivity unit 341
Maclaurin's theorem 12
Magnetic field: bismuth, resistance in . . . 333
Ettiagshausen effect 334
galvanomagnetic effects . . . 334
Hall effect 334
Leduc effect 334
Nernst effect 334
nickel, resistaoce in 333
optical rotation 326-33I
resistance of metals in 333
thermo-magnetic effects . . . 334
Magnetic observatories, magnetic elements . . II7
Magnetic properties: of cobalt at $100^{\circ} \mathrm{C}$. . . 32 I iroo: hysteresis $\underset{\text { permeability }}{*} \quad 322-325$ permeability 315-317, 320-321
saturated • . 32 I
weak fields : : . 322
magnetite $\dot{\text {. }}$. . 32 I
nickel at $100^{\circ} \mathrm{C}$. . . 321
Magnetic susceptibility, liquids, gases . . 332
Magnetic units, conversion formulæ 33
Magnetism, terrestrial: agonic line . . . 176
declioation III
dip II3
borizontal intensity . II4
nclination II3
inteasity, horizontal . II4
total
observatories II7
Magneto-optic rotation 326-33I
Masses of the earth and planets ito
Materials, strength of: bricks 68
concrete 68
metals
stones
timber
$69-70$
$\begin{aligned} & \text { timber } \\ & \text { woods }\end{aligned} . \quad . \quad . \quad . \quad 69-70$
Mechanical equivalent of heat 237
Melting-points: chemical elements 217
eutectics 226
ioorganic compounds : . . 219
minerals (iloys) 225
mixtures (allo
(low melting-points) . 222
organic compouads 223
pressure effect 22 I
Meniscus, volume of mercury 123
Mercury: density of 97
electric resistance of 273-274
meniscus, volume of 23
pressure of columns of iI
specific heat 239
Metals: vapor pressure 151
indices of refraction 1405
optical constants . . 195-196, 198
potential differeaces with solids . . . 266
reflection of light by 195-196,198
refractive indices I95-rg6
resistance, electrical 273,284-293
specific 274
sheet, weight of 89
Metallic reflection ${ }^{-195-196,198}$
Methyl alcohol, density of aqueous 100
Metric weights aad measures: British equiv. . 7-10
U. S. equivalents $\quad{ }^{5-6}$

Minerals, specific heats of 242	Radiation: Planck's formula ${ }^{\text {a }}$,
Moduli of elasticity risidit 230	resistance, wireless telegraphy . . 300
Moduh of elasticity: rigidity - 71	sensitiveness of the eye to i80
	"solar constant" of 181
Molecular magnitudes . ${ }^{\text {specific }}$. . . ${ }^{\text {301-304 }}$	Stefan's formula ${ }^{\text {a }}$, 251
Molecules per cu. cm. gas 342	transmissibility of atmosphere to 181, 182
Moments of inertia gas 342	Radii of gyration ${ }^{67}$
Monthly temperature means ${ }^{\text {a }} 83$	
Moon's light and radiation 110	Radium emanation : : . . : : : ${ }^{\text {a }}$ 337-341
Musical scales 103	Radio-active equilibrium 337
Nernst thermo-magnetic difference of potential . 334	
Neutral points, thermo-electric	terms of n " and i. 197
Newton's rings and scale of colors : . . ${ }^{\text {208-209 }}$	Refraction, indices of: $\begin{gathered}\text { various substances }\end{gathered}$
Nickel: Kerr's constants for 33 I	
magnetic properties of, at $100^{\circ} \mathrm{C}$. : . ${ }^{\circ} 2 \mathrm{I}$	fluorite : : : . . ${ }^{\text {a }}$ I86
Fesistance in magnetic field 333	gases and vapors . . . 193
Nitroso-dimethyl-aniline, refractive index . . I86	glass 184
Nutation 336	Iceland spar 186
Observatories, magnetic, elements 117	monorefringent solids ${ }^{\text {a }} 88$
Ohm, various determinations of 272	nitroso-dimethyl-aniline . 186
Oils, viscosity of - 272	quart2 887
	rock-sait . - . . . 185
Organic compounds, boiling-points . . . 223-224 densities 223-224	salt solutions silvine $. ~: ~: ~ 191 ~$ 185
	Relative humidity solids, iso
	Resistance: see also Conductivit
Parallax: solar; lunar 109	alloys, low temperature 280
Parallax: stellar iro	alternating current, effect of . . . 297
Peltier effect Pendulum, length of seconds : 268, 27 I	aluminum ${ }^{284}$
Periodic system of the elements 343	coppe
Permeabilities, magnetic . . $315-317,320-321$	glass and porcelain 282
Phosphorescence from radio-active bodies . . 337	legal unit of
Photometric standards 178	magnetic field, of bismuth in . . . 333
Pi, $\boldsymbol{\pi}$, value of 12	metals in
Planck's radiation formula 251	nickel in . . . 333
Plane, data for the soaring of a 125	metals at low temperatures . . 280
Planetary data. rio	ohm, various determinations of . . 27
Planets, misceilaneous data iro	platinum, thermometer
Platinum resistance thermometer 247	radiation, wireless telegraphy . . 300
Poisson's ratio 73	specific: metals $274-276$
Polarized light: by reflection 197	wires273, 286-293
by metallic reflection A $\cdot 195$	temperature variation $276,280,282,285$
rotation by magnetic field $326-33 \mathrm{I}$	Rigidity, modulus of - ${ }^{\text {a }}$ (71
Potential difference: cells: $\begin{gathered}\text { solutions } \\ \text { double fluid }\end{gathered} \cdot: .203$	Ring correction (mapnetizeratiore variation . . 71
Potential difference: cells: double fluid secondary $\quad: \quad .263$	Ring correction (magnetization) 317 Rock-salt, indices of refraction
$\underset{\text { single fluid }}{\text { secondary }}$: : : $\quad:{ }_{262}^{263}$	Rock-salt, indices of refraction 185
single fluid standard $.: ~: ~ 26 i, ~$ 263	
storage ${ }_{263}$	ray spectra 336
contact: liquid-liquid . . 264	Rotation of polarized light: by solutions . . . 203
liquid-salt . . . 264	Rotation, magneto-optic: formulæ 326
metal-liquid . . 267	gases - . . . 330
solid-solid . . . 266	Kerr's constant . . 33 I
sparking: air . . . 294-295	liquids 328
kerosene . . . 296	solids 327
various . . . ${ }^{296}$	Solutions 329
thermoelectric . . . 268-271	Verdet's constant 326-330
Precession 109	Rowland's standard wave-lengths 773
barometric and boiling water :170-171 heights	Salts, lowering of freezing-point by : : : . . 227
mercury columns, due to ir8	Saturation, magnetic, for steel 321
water columns, ${ }_{\text {a }}{ }^{\text {a }}$. 118	Scales, musical 0103
wind 124	Screens, color 201-202
Pressure effect on melting-points 2211	Seconds pendulum 107
solubility 143	Secondary batteries 263
Pressure, vapor: alcohol, ethyl and methyl . 149	Sections of wires ${ }^{283}$
aqueous - 154-155	Shearing tests of timber 69-70
in atmosphere . . ${ }^{157}$	
mercury $_{\text {salt solutions }}$ - : : : : 151	
various . . . : i ${ }^{\text {sat-155 }}$	Silvine, indices of refraction 85
Probable errors 56-59	Sines, natural and logarithmic, circular . . 32-40
Probability tables 56-59	Sky-light comparison with suplight hyperbolic. - 41-47
Purkinje's phenomenon 880	Sky-light, comparison with surnlight : : . ${ }_{\text {Soaring of }}$ (182
	Solar constant of radiation I8I
refractive index of 887	distance from earth 109
repecific heat 240	energy, data of $181 \mathrm{I}-183$
	motion 110
Radiation: black-body 25 LI	lax tion mithly change 109
	radiation monthly change 0.0. i8i, i83
cooling by, and convection : : ${ }_{\text {a }}^{\text {a }}$ 252-253	temperature

Terrestrial magnetism: agonic line $\begin{array}{r}\text { declination, secular change }{ }^{\text {III }} \text { II }\end{array}$ declination, secular change III did secular change . . . 113 horizontal intensity . . . II4 inclination II3 secular change II3
observatories total intensity - 117 secular change 115
Thermal conductivities: gases 207
liquids 207
salt solutions 207
solids 205
solids, high temperature 206
water • 207
Thermal diffusivities 208
Thermal expansion: cubical: crystals 234
$\begin{aligned} & \text { gases } \\ & \text { liquids }\end{aligned} . \quad . \quad . \quad .236$
solids
. 234
linear: elements ${ }^{\circ}$. . . 232
various 233
Thermal unit, dynamical equivalent 227
Thermodynamic ice-point 247
Thermodynamic scale of temperature . . . 247
Thermo-electricity 268-27I
Peltier effect 268,27I
Thermo-elements, calibration curves . . . 250
Thermo-magnetic effects ${ }^{\circ}$. 334
Thermometer: air-16, 0^{0} to $300^{\circ} \mathrm{C}$. 245
59, 100° to $200^{\circ} \mathrm{C}$. . . 245
high-temperature-59 . . . 246
bydrogen-16, 0° to $100^{\circ} \mathrm{C}$. $\dot{5} .244$
$16,59,-5^{\circ}$ to $-35^{\circ} \mathrm{C} \quad .2444$ $16,59,-5^{\circ}$ to $-35^{\circ} \mathrm{C} \cdot 244$
$59,0^{\circ}$ to $100^{\circ} \mathrm{C}$
various 246
platinum resistance 247
standard calibration points $\quad .247$
Thermometer stem correction 248-249
Thomson thermo-electric effect 268
Timber, strength of 69-70

Time equation of
Time, sidereal, solar 110

Tools, lubricants for cutting 126
Transformation points, minerals 226
Transformer-iron, permeability of .. 315-316, 320
steels, energy losses in $\quad 322-325$
Transmissibility to radiation: atmospheric . I8I, 182 crystals 200
glass . .
wa
water
(radians)
United States weights and measures, conversion
to metric units ent: definitions, see APPENDIX - 5-6
Units of measurement: definitions, see APPENDIX.
conversion factors \cdot.
photometric I
ratio of electro-magnetic to static . . . 260
V, ratlo of electro-magnetic to -static units . . 260
Vacuo, reduction of denslties 82
weighings
82
82
Vapor, aqueous: vapor pressure.
pressurc of, in atmosphere . . 157

Vapor, aqueous: relative humidity (saturated) weight of . . V Vaporization, latent heat of
Vapors: densities for steam . . 254, 255
diffusion of ${ }^{\text {a }}$ 39, 910
indices of refraction 193
pressures: alcohol, ethyl, methyl . . . r49
aqueous 154-155
mercury I5I
salt solutions 552
specific heats 243
viscosity 136-137
acity of light 109
sound; in gases and liquids . . . 02
stars solids Ior
stars 110
Sun ${ }^{\text {a }}$. 110
onstants: Verdet and Kundt's . . . 330
gases 330
liquids 328
solids 327
Viscosity : ${ }^{\text {solutions, }}$ aqueous 329
Viscosity : alcohol in water 128
gases 136-137
liquids 128-129
vapors 138-137
water: temperature variation . . . 277
specific: gases 136-137
oils 288
solutions 131-135
vapors 136-137
water: temp. var. 277
Visibility of white lights.
Voltaic cells: composition, E. M, F. . . 262-263
double-fiuid 263
secondary 263
single-fluid 262
standard 26r, 263
storage 263
Volts, legal (international) . . . xxxvi, 261
Volume of mercury meniscus 233
Volumes: critical, for gases 231
gases . . - 164
glass vessels, determinations of . . . 1 I
Vater: boiling-points for various pressures:
common measures . . 170
metric measures . . I7I
densities, temperature variation . . 95,96

Water: ionization of 300 solutions in boiling-points 228 densities . . . 92,98-100 diffusion 138 electrolytic conduction 302-308 solutions of alcohol, densities . . .98-100 thermal conductivity 207 transparency of 202 vapor pressure 154-155
vapor, pressure of, in atmosphere . . . 157
(saturated) weights of I56
transparency of I81
viscosity: absolute, temp. var. 127
specific, temp. var. I27
Wave-lengths: cadmium red line I72
elements, brighter lines 172
Fabry-Buisson iron arc lines . . 172
Fabry-Buisson iron arc lines . . 172
iron lines, Fabry-Buisson . . . 172
iron lines, Fabry-Buisson . . . 172
primary standards
Rowland's solar lines ' . '. . 173
secondary standards 172
solar lines (Rowland) 173
tertiary standards 176
wireless telegraphy . . . 298-300
Weighings-reduction to vacuo $: . \quad . \quad . \quad 2$
Weights and measures: British to metric . . 9-10
metric to British . . . 7-8
metric to U. S. . . . 6
U. S. to metric : : 5
Weights of bodies 87
Weights of sheet metal 89
Wind pressures I24
Wire gages 283
Wire tables, aluminum English 292
copper English : 286
Wires, carrying capacity of 279
Wireless telegraphy 298-300
Woods: densities of 85
strength of 69-70
X-rays 335-336
Yearly temperature means. 183
Young's modulus of elasticity 72
Zero, thermodynamic ice-point 247
Zonal harmonics 164164

Tbe łíversiot jaress

CAMBRIDGE - MASSACHUSETTS
U $\cdot \mathrm{S} \cdot \mathrm{A}$

[^0]: * It is important to remember that in problems like that here given the term "pound " or "gram" refers to force and not to mass.

[^1]: * It will be noticed that when Θ is given the dimension formula $L^{2} \mathrm{~T}^{-2}$ the formulx in thermal and dynamical units are always identical. The thermometric units practically suppress mass.

[^2]: * According to the ordinary definition referred to air as standard medium, the specific inductive capacity of a substance is \mathbf{K}, or is identical in dimensions with what is here taken as inductive capacity. Hence in that case the conversion factor must be talsen as 1 on the electrostatic and as $l^{-2} t^{2}$ on the electromagnetic system.

[^3]: * The term "specific", as used here and in 9 , refers conductance and resistance to that between the ends of a bar of unit section and unit length, and hence is different from the same term in specific heat, specific inductivity, capacity, etc., which refer to a standard substance.

[^4]: * Permeability, as ordinarily taken with the standard medium as unity, has the same dimension formula and conversion factor as that which is bere taken as magnetic inductive capacity. Hence for ordinary transformations the conversion factor should be taken as I in the electromagnetic and ${ }^{-2} t^{2}$ in the electrostatic systems.

[^5]: * "In the following specification the term 'silver voltameter' means the arrangement of apparatus by means of which an electric current is passed through a solution of nitrate of silver in water. The silver voltameter measures the total electrical quantity which has passed during the time of the experiment, and by noting this time the time average of the current, or, if the current has bcen kept constant, the current itself can be deduced.
 "In employing the silver voltameter to measure currents of about one amperre, the following arrangements should be adopted: -

[^6]: "The kathode on which the silver is to be deposited should take the form of a platinum bowl not less than 10 centimeters in diameter and from 4 to 5 centimeters in depth.
 "The anode should be a plate of pure silver some 30 square centimeters in area and 2 or 3 millimeters in thickness.
 "This is supported horizontally in the liquid near the top of the solution by a platinum wire passed through holes in the plate at opposite corners. To prevent the disintegrated silver which is formed on the anode from falling on to the kathode, the anode should be wrapped round with pure filter paper, secured at the back with sealing wax.
 "The liquid should consist of a neutral solution of pure silver nitrate, containing about 15 parts by weight of the nitrate to 85 parts of water.
 "The resistance of the voltameter changes somewhat as the current passes. To prevent these changes having too great an effect on the current, some resistance besides that of the voltameter should be inserted in the circuit. The total metallic resistance of the circuit should not be less than ro ohms."

 * A committee, consisting of Messrs. Helmholtz, Ayrton, and Carhart, was appointed to prepare specifications for the Clark's cell, but no report was made, on account of Helmholtz's death.
 + The one millionth part of the farad is more commonly used in practical measurements, and is called the microfarad.

[^7]: Smithsonian Tables.

[^8]: Smithsonian Tables.

[^9]: * Legendre's "Exercises de Calcul Intégral," tome ii.

[^10]: * Modulus of rigidity in ro ${ }^{11}$ dynes per sq. cm.

[^11]: Smitnsonian Tables.

[^12]: *From - 10° to 0° the values are due to means from Pierre, Weidner, and Rosetti; from 0° to $4 \mathrm{I}^{\mathrm{O}}$, to Chappuis, 42° to 100°, to Thiesen; 110° to 250°, to means from the works of 'Ramsey, Young, Waterston, and Hirn.
 Smithsonian tables.

[^13]: Smithsonian Tables.

[^14]: - For references $\mathbf{x}-4$, values are derived by comparative experiments with invariable pendulums, the value fo Washington taken as 980.11 s . For the latter see Appeodix 5 of the Coast aod Geodetic Survey Report for Igos.

[^15]: * All the values in this table depend on relative determination of gravity and an adopted value for gravity at Washington (Coast and Geodetic Survey Office) of 980.11 I . This adopted value was the result of the determioation in $1 g o 0$ of the relative value of gravity at Potsdam and at Washington. See footuote on previous page.

[^16]: * The data here given with regard to the different determinations which have been made of the length of the seconds pendulum are quoted from Harkness (Solar Parallax and its Related Constants, Washington, 1891).
 \dagger Calculated from a logarithmic expression given by Unferdinger.

[^17]: ＊Lalande， 1966 ，R．A．${ }_{1010}{ }^{1^{h} 3^{m} \cdot 9}, \operatorname{Dec}_{\cdot 1910} 61^{\circ} \cdot 4^{\prime}$ in 1913 was found to have a radial velocity（of approach）of 326 Km．per sec．（Mount Wilson Solar Observatory．）

[^18]: * Tables have been compiled from United States Magnetic Tables and Magnetic Charts for 1905, published by the Coast and Geodetic Survey in Igo8.
 Smithsonian Tables.

[^19]: *" Comptes rendus," vol. 15, 1842; " Mém. Serv. Étr." 1846 .
 \dagger "Poge. Ann." vol. 109, "860.
 \ddagger "Zeitschr. Phys. Chem." vol. 6, 1890 .
 §Thorpe and Rogers, "Philos. Trans." ${ }^{1} 85$ A, p. 397, 1894; "Proc. Roy. Soc." 55, p. 148, 1894.
 if Hosking, Phil. Mag. 17, p. 502, 1909; 18, p. 260, 1909.
 Tide Haas, Diss. Leiden, 1894 .

[^20]: *This table was calcnlated from the table of fluidities given by Noack (Wied. Ann. vol. 27, p. 217), and shows a maximum for a solution containiog about 40 per ceot of alcohol. A similar result was obtaioed for solutions of acetic $+$
 Table 115 is from a paper by Engler in Dingler's "Poly. Jour." vol. 268, p. 76, and Table 116 is from a paper by Lamansky in the same journal, vol. 248, p. 29. The very mixed composition of these oils renders the viscosity a very ancertain quantity, neither the density nor the flashing point being a good guide to viscosity.
 \ddagger The different groups in this table are from different residues.

[^21]: * Taken from Winkelmann's papers (Wied. Ann. vols. 22, 23, and 26). The coefficients for 0° were calculated by Winkelmann on the assumption that the rate of diffusion is proportional to the absolute temperature. According to the investigations of Loschmidt and of Obermeyer the coefficient of diffusion of a gas, onother temperature and pressure of 76 centimetres of mercury may be calculated from the observed coefficient at another pressure by the formula $k_{0}=k_{T}\left(\frac{T_{0}}{T}\right)^{n} \frac{76}{\phi}$, where T is temperature absolute and p the pressure of the gas. The exponent n is found to be about $\mathbf{r} .75$ for the permanent gases and about 2 for condensible gases. The following are examples : $\mathrm{Air}-\mathrm{CO}_{2}, n=1.968 ; \mathrm{CO}_{2}-\mathrm{N}_{2} \mathrm{O}, n=2.05 ; \mathrm{CO}_{2}-\mathrm{H}, n=\mathbf{1 . 7 4 2} ; \mathrm{CO}-\mathrm{O}, n=1.785 ; \mathrm{H}-\mathrm{O}$ $n=\mathrm{r} .755 ; \mathrm{O}-\mathrm{N}, n=1.792$. Winkelmann's results, as given in the above table, seem to give about 2 for vapors diffusing into air, hydrogeo or carbon dioxide.

[^22]: *This table contains the volumes of different gases, supposed measured at $0^{\circ} \mathrm{C}$. and 76 centimeters' pressure, which unit volume of the liquid named will absorb at atmospheric pressure and the temperature stated in the first column. The numbers tabulated are commonly called the absorption coefficients for the gases io water, or in alcobol, at the temperature t and under one atmosphere of pressure. The table has been compiled from data published by Bohr \& Bock, Bunsen, Carius, Dittmar, Hamberg, Henrick, Pagliano \& Emo, Raoult, Schöofeld, Setschenow, and Winkler. The numbera are io many cases averages from several of these authorities.

[^23]: * This determination of the capillary constants of liquids has been the subject of many careful experiments, but the results of the different experimenters, and even of the same observer when the method of measurement is changed, do not agree well together. The values here quoted can only be taken as approximations to the actual values for the liquids in a state of purity in contact with pure air. In the case of water the values given by Lord Rayleigh from the wave lengtl of ripples (Phil. Mag. 1890) and by Hall from direct measurement of the tension of a flat film (Phil. Mag. 1893) have been preferred, and the temperature correction has been taken as 0.141 dyne per degree centigrade. The values for alcohol were derived from the experiments of Hall above referred to and the experiments on the effect of temperature made by Timberg (Wied. Ann. vol. 30).

 The authority for a few of the other values given is quoted, but they are for the most part average values derived from a large number of results published by different experimenters.
 \dagger From Volkmann (Wied. Arn. vol. 17, p. 353).

[^24]: * This table of tensions at the surface separating the liquid named in the first colunon and air, water or mercury as stated at the head of the last three columns, is from Quincke's experiments (Pogg. Ann. vol. 130, and Phil. Mag. 187r). The numbers given are the equivalent in dynes per centimeter of those obtained by Worthington from Quincke's results (Phil. Mag. vol. 20, 1885) with the exception of those in brackets, which were not corrected by Worthington; they are probably somewhat too high, for the reason stated by Worthington. The temperature was about $20{ }^{\circ} \mathrm{C}$.
 † Quincke, " Pogg. Ann." vol. 135, p. 66r.
 \ddagger It will be observed that the value here given on the authority of Quincke is mucb higber than his subsequent measurements, as quoted above, give.
 \| "Proc. Roy. Soc." 1877, and "Phil. Trans. Roy. Soc." 188 I , 1883, and 1893.
 Note. - Quincke points out that substances may be divided into groups in each of which the ratio of the surface tension to the density is nearly constant. Thus, if this ratio for mercury be taken as unit, the ratio for the bromides and iodides is about a half: that of the nitrates, chlorides, sugars, and fats, as well as the metals, lead, bismuth, and antimony, about 1 ; that of water, the carbnnates, sulphates, and probably phosphates, and the metals platinum, goid, silver, cadmium, tin, and copper, 2 ; that of zinc, iron, and palladium, 3 ; and that of sodium, 6 .

[^25]: * These tables of vapor pressures are quoted from results published by Ramsay and Young (Jour. Chem. Soc. vol. 47). The tables are intended to give a series suitable for hot-jacket purposes.

[^26]: = Compiled from a table by Tammano, "Mém. Ac. St. Petersb." 35, No. 9, 1887. See alse Referate, "Zeit. £. Phys." ch. 2, 42, 1886.

[^27]: * The table was calculated from the formula $p=p_{1}-0.00066 B\left(t-t_{1}\right)\left(1+0.0015 t_{1}\right)$ (Ferrel, Annual Report
 U. S. Chief Signal Officer, 1886, App. 24
 \dagger When B is less than 7^{6} the correction is to be added, and when B is greater than 76 it is to be subtracted.

[^28]: * Pressures in inches of mercury

[^29]: * Measures of Burns. $\quad \dagger$ Means of St. John and Burns.
 \ddagger Means of St. John and Goos. Others are means of measures by all three. References: St. John and Ware, Astrophysical Journal, 36, 1912; 38, 1913; Burns, Z. f. wissen. Photog. 12, p. 207, 1913, J. de Phys. 1913, and unpublished data; Goos, Astrophysical Journal, 35, 1912;37, 1913. The lines in the table have been selected from the many given in these references with a view to equal distribution and where possible of classes a and b.

[^30]: * The two lines here given for A are stated by Rowland to be: the first, a line "beginniog at the head of A, outside edge ; " the second, a " single line beginaing at the tail of A."
 \dagger The principal line in the head of B.
 \ddagger Chief line in the a group.
 See Table r63, Rowland's Solar Wave-lengths (foot of page) for correction to reduce these values to standard system of wave-lengths, Table 160.

[^31]: * According to Christiansen.

[^32]: * Weegmann gives $\mu_{D}=1.59668$-. 000518 t. Knops gives $\mu_{F}=$ r.61500-. 00056 t.
 \dagger Weegmann gives $\mu_{D}=1.51474-.000665 t$. Knops gives $\mu_{D}=\mathrm{r} .51399-.000644$ t.
 \ddagger Wüllner gives $\mu_{C}=1.63407-.00078 t ; \mu_{F}=1.66908-.00082 t ; \mu_{h}=1.69215-.00085$ t.
 § Dufet gives $\mu_{D}=1.33397-10^{-7}\left(125 t+20.6 t^{2}-.000435 t^{3}-.00115 t^{4}\right)$ between 0° and 50°; and nearly the same variation with temperature was found by Ruhlmann, namely, $\mu_{D}=1.33373-10^{-7}\left(20.14 t^{2}+.000494 t^{4}\right)$.

[^33]: ＊The colors marked are the same as the corresponding colors in Newton＇s table．

[^34]: * Jaeger and Diesselhorst.

[^35]: * Herschel, Lebour, and Dunn (British Association Committee).

[^36]: ＊One pound of clay tamping used．
 \dagger Two pounds of clay tamping used．
 \ddagger Rate of burning．
 § Cartridges x in．diam． ｜｜For 300 grammes．
 Compiled from U．S．Geological Survey Results，－＂Investigation of Explosives for use io Coal Mines，rog．＂

 ## Smithsonian Tables．

[^37]: 1 Thomsen． 3 Favre and Silberinann． 5 Hess．
 7 Andrews．
 2 Berthelot． 4 Joule．$\quad 6$ Average of seven different． 8 Woods．

[^38]: ＊Combustinn at coustant pressure．

[^39]: Smithsonian Tables.

[^40]: 1，Friedel and Crafts；2，Ordway；3，Faraday；4，Marchand；5，Amat；6，Olszweski；7，Gibbs；8，Baskerville ； 9 ， Carnelly；10，Carnelly and O＇Shea；1r，Ruft；13，W roblewski and Olszewski；14，Anschütz；15，Roscoe；16，Tilden 17，Ladenburg ；18，Staedel；19，Clarke，＂Const．of Nature＂；20，Bruhl；21，Schacherl；22，Tammac；23，Thorpe 24，Ramsay；25，Lorenz；26，Morgan．

[^41]: * Liquid at - $11.0^{\circ} \mathrm{C}$. and 180 atmospheres' pressure (Cailletet).
 + $4^{\circ}{ }^{\circ} 46$
 \ddagger Boiling-point under 15 mm . pressure.
 § In vacuo.

[^42]: ${ }^{1}$ Hausrath, Ann. Phys. 9, 1902.
 Leblane-Nayes, Z. Phys. Ch. 6, 8890
 3 Jones, Z. Phys. Ch. 11, 1893.
 4 Raoult, Z. Phys. Ch. 2, 1888.
 5 Arrhenius, Z. Phys. Ch. 2, 188
 Jones, Am. Chem. J. 27, 1902
 8 Jones-Caldwell, Am. Chem. J. 25, 1901.
 9 Biltz, Z. Plys. Ch. 40, 1902.
 is Kahlonberg, J. Phys. Ch. 5, 1901.
 12 Abegg, Z. Phys. Ch. 20, 1896.
 13 Jones-Getman, Am, Ch. J. 27, 1902.
 14 Jones-Chambers, Am. Ch. J. 23, 1900.
 14 Loomis, Wied. Ann. 60, 1897.
 16 Roozeboom, Z. Phys. Ch. 4, 1889.
 17 Raonlt, Z. Phys. Ch. 27, 1898.
 18 Roloff, Z. Phys. Ch. 18, 1895.
 ${ }^{9} 9$ Kistiakowsky, Z. Phys. Ch. 6, 1890.
 20 Loomis, Wied. Ann. 51, 1894.
 to Jones-Mackay: Am, Chem. J. 19, 1897.
 Smithsonian Tables.

[^43]: * Compiled from a paper by Gerlach, "Zeit. f. Aual. Chem." vol. 26.

[^44]: * Chappuis, Arch. sc. phys. (3) 18, $8892 . \quad \dagger$ Holhorn, Ann. d. Phys. (4) 6, 19or. \ddagger Rothe, unpublished,

[^45]: * "Proc. Roy. Soc." 1872 .

[^46]: Smithsonian Tableg.

[^47]: * The Minotto or Sawdust, the Meidinger, the Callaud, and the Lockwood cells are modifications of the Daniell, and hence have about the same electromotive force.
 8 mitheonian Tables.

[^48]: * "Rend. della R. Acc. di Roma," 1890.
 \dagger Amalgamated.
 \ddagger Not constant.
 § After some time.
 II A quantity of bromine was used correspondiog to $\mathrm{NaOH}=r$.

[^49]: Smithsonian Tables.

[^50]: ＊＂Wied．Ann．＂vol．34，p． 767.
 †＂Ann．de Chim．et de Phys．＂（4）vol．10，p． $20 r$.
 \ddagger Becquerel＇s antimony is 806 parts $\mathrm{Sb}+{ }_{406}$ parts $\mathrm{Zn}+\mathbf{1 2 1}$ parts Bi ．
 § Becquerel＇s bismuth is to parts $\mathrm{Bi}+1$ part Sb ．

[^51]: Smithbonian Tables.

[^52]: * T. Gray, " Phil. Mag." 1880, and "Proc. Roy. Soc." 1882.

[^53]: Prepared by Greenleaf W. Picard; copyright by Wireless Specialty Apparatus Company, New York. Computed on

[^54]: Smithsonian Tasles.

[^55]: * Acids and alkaline salts show peculiar irregularities.

[^56]: * These valnes are at the concentration 80.0.

[^57]: Smithbonian Tables．

[^58]: Smithsonian Tableb.

[^59]: ＊＂Phil．Mag．＂4th series，vol．xlv．p． 151 ．
 \dagger fbid． 5 th series，vol，xix．p． 73.
 \ddagger＂Magnetic Induction in fron and Other Metals．＂
 § T．Gray，from special experiments．

[^60]: * "Phil. Mag." 5 series, vol. xxix.
 \dagger The results in this and the other tables for forces above 1200 were not obtained from the ovoids above referred to, but from a small piece of the metal provided with a polished mirror surface and placed, with its polished face normal to the lines of force, between the poles of a powerful electromagnet. The induction was then inferred from the rotation of the plane of a polarized ray of red light reflected normally from the surface. (See Kerr's "Constants," p. 33 .)

[^61]: Smithsonian Tables.

[^62]: ©mithsonian Tablea.

[^63]: * E. M. U. = C. G. S. electromagnetic units. E. S. U. $=$ C. G. S. electrostatic units.

